aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase650
1 files changed, 325 insertions, 325 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 4296fdaf..32e96ba4 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2284982 . 3453990495)
+(2285080 . 3454219022)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -56,7 +56,7 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -2386)
+(-32 R -2371)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))
@@ -88,11 +88,11 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -2386 UP UPUP -2468)
+(-40 -2371 UP UPUP -3930)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4407 |has| (-409 |#2|) (-365)) (-4412 |has| (-409 |#2|) (-365)) (-4406 |has| (-409 |#2|) (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2805 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2805 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2805 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2805 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))))
-(-41 R -2386)
+((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2809 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2809 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2809 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))))
+(-41 R -2371)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))))
@@ -111,7 +111,7 @@ NIL
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4414 . T) (-4415 . T))
-((-2805 (-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|))))))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|)))))))
+((-2809 (-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|))))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -2386)
+(-54 |Base| R -2371)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -167,64 +167,64 @@ NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-61 -2639)
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+(-61 -2640)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2639)
+(-62 -2640)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2639)
+(-63 -2640)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2639)
+(-64 -2640)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2639)
+(-65 -2640)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2639)
+(-66 -2640)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2639)
+(-67 -2640)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2639)
+(-68 -2640)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2639)
+(-69 -2640)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2639)
+(-70 -2640)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2639)
+(-71 -2640)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2639)
+(-72 -2640)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2639)
+(-73 -2640)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2639)
+(-74 -2640)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2639)
+(-77 -2640)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2639)
+(-78 -2640)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2639)
+(-79 -2640)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2639)
+(-80 -2640)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2639)
+(-81 -2640)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2639)
+(-82 -2640)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2639)
+(-83 -2640)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2639)
+(-84 -2640)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2639)
+(-85 -2640)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2639)
+(-86 -2640)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2639)
+(-87 -2640)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2639)
+(-88 -2640)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2639)
+(-89 -2640)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -295,7 +295,7 @@ NIL
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -343,7 +343,7 @@ NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
@@ -363,7 +363,7 @@ NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2805 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
+((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -388,7 +388,7 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op,{} p,{} v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op,{} p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op,{} p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op,{} p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,{}p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f,{} a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-115 -2386 UP)
+(-115 -2371 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
@@ -399,7 +399,7 @@ NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-909))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1022))) (|HasCategory| (-116 |#1|) (QUOTE (-820))) (-2805 (|HasCategory| (-116 |#1|) (QUOTE (-820))) (|HasCategory| (-116 |#1|) (QUOTE (-850)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-1150))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-547))) (|HasCategory| (-116 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((|HasCategory| (-116 |#1|) (QUOTE (-909))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1022))) (|HasCategory| (-116 |#1|) (QUOTE (-820))) (-2809 (|HasCategory| (-116 |#1|) (QUOTE (-820))) (|HasCategory| (-116 |#1|) (QUOTE (-850)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-1150))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-547))) (|HasCategory| (-116 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -415,7 +415,7 @@ NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
@@ -435,15 +435,15 @@ NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2805 (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099)))) (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))))
+((-2809 (-12 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2809 (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099)))) (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -468,11 +468,11 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
(((-4416 "*") . T))
NIL
-(-135 |minix| -4225 S T$)
+(-135 |minix| -2420 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-136 |minix| -4225 R)
+(-136 |minix| -2420 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -489,13 +489,13 @@ NIL
NIL
NIL
(-140)
-((|parents| (((|List| (|ConstructorCall|)) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category \\spad{`c'}.")) (|principalAncestors| (((|List| (|ConstructorCall|)) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category \\spad{`c'}.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category \\spad{`c'},{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object \\spad{`c'}.")))
+((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category \\spad{`c'}.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category \\spad{`c'}.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category \\spad{`c'},{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object \\spad{`c'}.")))
NIL
NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
((-4414 . T) (-4404 . T) (-4415 . T))
-((-2805 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+((-2809 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -520,7 +520,7 @@ NIL
((|constructor| (NIL "Rings of Characteristic Zero.")))
((-4411 . T))
NIL
-(-148 -2386 UP UPUP)
+(-148 -2371 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -2386)
+(-158 R -2371)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -594,7 +594,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4410)) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4407 -2805 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4410 |has| |#1| (-6 -4410)) (-4413 |has| |#1| (-6 -4413)) (-3661 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((-4407 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4410 |has| |#1| (-6 -4410)) (-4413 |has| |#1| (-6 -4413)) (-3638 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -606,8 +606,8 @@ NIL
NIL
(-169 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4407 -2805 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4410 |has| |#1| (-6 -4410)) (-4413 |has| |#1| (-6 -4413)) (-3661 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1199)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1059))) (-12 (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4413)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-351)))))
+((-4407 -2809 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4410 |has| |#1| (-6 -4410)) (-4413 |has| |#1| (-6 -4413)) (-3638 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1199)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1059))) (-12 (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-1199)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasAttribute| |#1| (QUOTE -4410)) (|HasAttribute| |#1| (QUOTE -4413)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-351)))))
(-170 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -660,8 +660,8 @@ NIL
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-183)
-((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") (((|Constructor|) $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
+(-183 C)
+((|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments(t)} returns the list of syntax objects for the arguments used to invoke the constructor.")) (|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain") ((|#1| $) "\\spad{constructor(t)} returns the name of the constructor used to make the call.")))
NIL
NIL
(-184 S)
@@ -680,7 +680,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-188 R -2386)
+(-188 R -2371)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -788,23 +788,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-215 -2386 UP UPUP R)
+(-215 -2371 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-216 -2386 FP)
+(-216 -2371 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-217)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2805 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
+((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
(-218)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-219 R -2386)
+(-219 R -2371)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -819,18 +819,18 @@ NIL
(-222 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-223 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
((-4411 . T))
NIL
-(-224 R -2386)
+(-224 R -2371)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-225)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3651 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((-3628 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-226)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -839,7 +839,7 @@ NIL
(-227 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-228 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
@@ -876,22 +876,22 @@ NIL
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-237 S -4225 R)
+(-237 S -2420 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasAttribute| |#3| (QUOTE -4411)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099))))
-(-238 -4225 R)
+(-238 -2420 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4408 |has| |#2| (-1049)) (-4409 |has| |#2| (-1049)) (-4411 |has| |#2| (-6 -4411)) ((-4416 "*") |has| |#2| (-172)) (-4414 . T))
NIL
-(-239 -4225 A B)
+(-239 -2420 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-240 -4225 R)
+(-240 -2420 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
((-4408 |has| |#2| (-1049)) (-4409 |has| |#2| (-1049)) (-4411 |has| |#2| (-6 -4411)) ((-4416 "*") |has| |#2| (-172)) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2805 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2805 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
(-241)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -911,7 +911,7 @@ NIL
(-245 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-246 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
@@ -919,9 +919,9 @@ NIL
(-247 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-248)
-((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
+((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
NIL
(-249)
@@ -934,12 +934,12 @@ NIL
NIL
(-251 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4411 -2805 (-2447 (|has| |#4| (-1049)) (|has| |#4| (-233))) (-2447 (|has| |#4| (-1049)) (|has| |#4| (-900 (-1175)))) (|has| |#4| (-6 -4411)) (-2447 (|has| |#4| (-1049)) (|has| |#4| (-639 (-566))))) (-4408 |has| |#4| (-1049)) (-4409 |has| |#4| (-1049)) ((-4416 "*") |has| |#4| (-172)) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2805 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2805 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-793))) (-2805 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-848)))) (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (QUOTE (-726))) (-2805 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2805 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-726)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-848)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099))))) (-2805 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2805 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-726))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2805 (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099)))) (-2805 (|HasAttribute| |#4| (QUOTE -4411)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))))
+((-4411 -2809 (-2432 (|has| |#4| (-1049)) (|has| |#4| (-233))) (-2432 (|has| |#4| (-1049)) (|has| |#4| (-900 (-1175)))) (|has| |#4| (-6 -4411)) (-2432 (|has| |#4| (-1049)) (|has| |#4| (-639 (-566))))) (-4408 |has| |#4| (-1049)) (-4409 |has| |#4| (-1049)) ((-4416 "*") |has| |#4| (-172)) (-4414 . T))
+((-2809 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-793))) (-2809 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-848)))) (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (QUOTE (-726))) (-2809 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-726)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-848)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-726))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099)))) (-2809 (|HasAttribute| |#4| (QUOTE -4411)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))))
(-252 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4411 -2805 (-2447 (|has| |#3| (-1049)) (|has| |#3| (-233))) (-2447 (|has| |#3| (-1049)) (|has| |#3| (-900 (-1175)))) (|has| |#3| (-6 -4411)) (-2447 (|has| |#3| (-1049)) (|has| |#3| (-639 (-566))))) (-4408 |has| |#3| (-1049)) (-4409 |has| |#3| (-1049)) ((-4416 "*") |has| |#3| (-172)) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2805 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2805 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2805 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2805 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2805 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2805 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2805 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-726))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2805 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-2805 (|HasAttribute| |#3| (QUOTE -4411)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
+((-4411 -2809 (-2432 (|has| |#3| (-1049)) (|has| |#3| (-233))) (-2432 (|has| |#3| (-1049)) (|has| |#3| (-900 (-1175)))) (|has| |#3| (-6 -4411)) (-2432 (|has| |#3| (-1049)) (|has| |#3| (-639 (-566))))) (-4408 |has| |#3| (-1049)) (-4409 |has| |#3| (-1049)) ((-4416 "*") |has| |#3| (-172)) (-4414 . T))
+((-2809 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2809 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-726))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-2809 (|HasAttribute| |#3| (QUOTE -4411)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
(-253 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
@@ -991,7 +991,7 @@ NIL
(-265 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-266 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1036,11 +1036,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-277 R -2386)
+(-277 R -2371)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-278 R -2386)
+(-278 R -2371)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1053,7 +1053,7 @@ NIL
NIL
((|HasCategory| |#1| (QUOTE (-365))))
(-281)
-((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
+((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Identifier|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Identifier|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|Syntax|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter.")))
NIL
NIL
(-282 A S)
@@ -1088,7 +1088,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-290 S R |Mod| -3418 -3891 |exactQuo|)
+(-290 S R |Mod| -3646 -3298 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
@@ -1110,21 +1110,21 @@ NIL
NIL
(-295 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4411 -2805 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4408 |has| |#1| (-1049)) (-4409 |has| |#1| (-1049)))
-((|HasCategory| |#1| (QUOTE (-365))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2805 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726)))) (|HasCategory| |#1| (QUOTE (-475))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2805 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-303))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475)))) (-2805 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726)))) (-2805 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-726))))
+((-4411 -2809 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4408 |has| |#1| (-1049)) (-4409 |has| |#1| (-1049)))
+((|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726)))) (|HasCategory| |#1| (QUOTE (-475))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-303))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475)))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-726))))
(-296 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|)))))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
(-297)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-298 -2386 S)
+(-298 -2371 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-299 E -2386)
+(-299 E -2371)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1172,7 +1172,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-311 -2386)
+(-311 -2371)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1187,7 +1187,7 @@ NIL
(-314 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1022))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (-2805 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1150))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-547))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))) (-2805 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145))))))
+((|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1022))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (-2809 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-1150))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1250) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-547))) (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))) (-2809 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1250 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145))))))
(-315 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1198,9 +1198,9 @@ NIL
NIL
(-317 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4411 -2805 (-2447 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-12 (|has| |#1| (-558)) (-2805 (-2447 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (|has| |#1| (-1049)) (|has| |#1| (-475)))) (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-558)) (-4406 |has| |#1| (-558)))
-((-2805 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (-2805 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-21))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2805 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2805 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2805 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2805 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566)))))
-(-318 R -2386)
+((-4411 -2809 (-2432 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-12 (|has| |#1| (-558)) (-2809 (-2432 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (|has| |#1| (-1049)) (|has| |#1| (-475)))) (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-558)) (-4406 |has| |#1| (-558)))
+((-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2809 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2809 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2809 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566)))))
+(-318 R -2371)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1211,7 +1211,7 @@ NIL
(-320 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-321 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1243,12 +1243,12 @@ NIL
(-328 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-329 S -2386)
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-329 S -2371)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))))
-(-330 -2386)
+(-330 -2371)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
@@ -1265,22 +1265,22 @@ NIL
NIL
NIL
(-334)
-((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall|)) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
+((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
(-335 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-336 S -2386 UP UPUP R)
+(-336 S -2371 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-337 -2386 UP UPUP R)
+(-337 -2371 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-338 -2386 UP UPUP R)
+(-338 -2371 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1300,26 +1300,26 @@ NIL
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-343 S -2386 UP UPUP)
+(-343 S -2371 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365))))
-(-344 -2386 UP UPUP)
+(-344 -2371 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
((-4407 |has| (-409 |#2|) (-365)) (-4412 |has| (-409 |#2|) (-365)) (-4406 |has| (-409 |#2|) (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-345 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
+((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
(-346 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-347 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-348 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1336,31 +1336,31 @@ NIL
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
-(-352 R UP -2386)
+(-352 R UP -2371)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-353 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
+((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
(-354 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-355 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-356 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
+((-2809 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
(-357 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
-(-358 -2386 GF)
+((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+(-358 -2371 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1368,14 +1368,14 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-360 -2386 FP FPP)
+(-360 -2371 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-361 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-2809 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-362 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
@@ -1454,7 +1454,7 @@ NIL
NIL
(-381)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4397 . T) (-4405 . T) (-3651 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((-4397 . T) (-4405 . T) (-3628 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-382 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1504,7 +1504,7 @@ NIL
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-394 -2386 UP UPUP R)
+(-394 -2371 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1528,11 +1528,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-400 -2639 |returnType| -3072 |symbols|)
+(-400 -2640 |returnType| -3218 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-401 -2386 UP)
+(-401 -2371 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1554,7 +1554,7 @@ NIL
((|HasAttribute| |#1| (QUOTE -4397)) (|HasAttribute| |#1| (QUOTE -4405)))
(-406)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3651 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((-3628 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-407 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1567,7 +1567,7 @@ NIL
(-409 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
((-4401 -12 (|has| |#1| (-6 -4412)) (|has| |#1| (-454)) (|has| |#1| (-6 -4401))) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-820))) (-2805 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-850)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-547))) (-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-454)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-820))) (-2809 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-850)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-547))) (-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4401)) (|HasCategory| |#1| (QUOTE (-454)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-410 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
@@ -1588,11 +1588,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-415 R -2386 UP A)
+(-415 R -2371 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
((-4411 . T))
NIL
-(-416 R -2386 UP A |ibasis|)
+(-416 R -2371 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1038) (|devaluate| |#2|))))
@@ -1611,7 +1611,7 @@ NIL
(-420 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1218))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-454))))
+((|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1218))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-1218)))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-454))))
(-421 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1640,7 +1640,7 @@ NIL
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
((-4414 . T) (-4404 . T) (-4415 . T))
NIL
-(-428 R -2386)
+(-428 R -2371)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
@@ -1648,7 +1648,7 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
((-4401 -12 (|has| |#1| (-6 -4401)) (|has| |#2| (-6 -4401))) (-4408 . T) (-4409 . T) (-4411 . T))
((-12 (|HasAttribute| |#1| (QUOTE -4401)) (|HasAttribute| |#2| (QUOTE -4401))))
-(-430 R -2386)
+(-430 R -2371)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1658,17 +1658,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))))
(-432 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4411 -2805 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-558)) (-4406 |has| |#1| (-558)))
+((-4411 -2809 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-558)) (-4406 |has| |#1| (-558)))
NIL
-(-433 R -2386)
+(-433 R -2371)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-434 R -2386)
+(-434 R -2371)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-435 R -2386)
+(-435 R -2371)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1676,7 +1676,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-437 R -2386 UP)
+(-437 R -2371 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-48)))))
@@ -1708,7 +1708,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-445 R UP -2386)
+(-445 R UP -2371)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1755,7 +1755,7 @@ NIL
(-456 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-457 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1820,7 +1820,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-473 |lv| -2386 R)
+(-473 |lv| -2371 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1835,11 +1835,11 @@ NIL
(-476 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-477 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|)))))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))))
+((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))))
(-478 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4415 . T) (-4414 . T))
@@ -1855,7 +1855,7 @@ NIL
(-481 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|)))))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
(-482)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
@@ -1863,11 +1863,11 @@ NIL
(-483 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-484 -4225 S)
+((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-484 -2420 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4408 |has| |#2| (-1049)) (-4409 |has| |#2| (-1049)) (-4411 |has| |#2| (-6 -4411)) ((-4416 "*") |has| |#2| (-172)) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2805 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2805 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
(-485)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
@@ -1875,8 +1875,8 @@ NIL
(-486 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-487 -2386 UP UPUP R)
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+(-487 -2371 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1887,7 +1887,7 @@ NIL
(-489)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2805 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
+((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
(-490 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1912,7 +1912,7 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-496 -2386 UP |AlExt| |AlPol|)
+(-496 -2371 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
@@ -1923,16 +1923,16 @@ NIL
(-498 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-499 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-500 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-501 R UP -2386)
+(-501 R UP -2371)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
@@ -1952,7 +1952,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-506 -2386 |Expon| |VarSet| |DPoly|)
+(-506 -2371 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-1175)))))
@@ -2003,7 +2003,7 @@ NIL
(-518 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-519)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
@@ -2011,15 +2011,15 @@ NIL
(-520 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| (-583 |#1|) (QUOTE (-145))) (|HasCategory| (-583 |#1|) (QUOTE (-370)))) (|HasCategory| (-583 |#1|) (QUOTE (-147))) (|HasCategory| (-583 |#1|) (QUOTE (-370))) (|HasCategory| (-583 |#1|) (QUOTE (-145))))
+((-2809 (|HasCategory| (-583 |#1|) (QUOTE (-145))) (|HasCategory| (-583 |#1|) (QUOTE (-370)))) (|HasCategory| (-583 |#1|) (QUOTE (-147))) (|HasCategory| (-583 |#1|) (QUOTE (-370))) (|HasCategory| (-583 |#1|) (QUOTE (-145))))
(-521 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-522 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-523 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
@@ -2031,7 +2031,7 @@ NIL
(-525 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-526)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2064,7 +2064,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-534 K -2386 |Par|)
+(-534 K -2371 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2088,7 +2088,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-540 K -2386 |Par|)
+(-540 K -2371 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2139,12 +2139,12 @@ NIL
(-552 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|)))))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-553 R -2386)
+((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
+(-553 R -2371)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-554 R0 -2386 UP UPUP R)
+(-554 R0 -2371 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2154,7 +2154,7 @@ NIL
NIL
(-556 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3651 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((-3628 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-557 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2164,7 +2164,7 @@ NIL
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
((-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
-(-559 R -2386)
+(-559 R -2371)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2176,7 +2176,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-562 R -2386 L)
+(-562 R -2371 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -656) (|devaluate| |#2|))))
@@ -2184,11 +2184,11 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-564 -2386 UP UPUP R)
+(-564 -2371 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-565 -2386 UP)
+(-565 -2371 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
@@ -2200,15 +2200,15 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-568 R -2386 L)
+(-568 R -2371 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -656) (|devaluate| |#2|))))
-(-569 R -2386)
+(-569 R -2371)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-629)))))
-(-570 -2386 UP)
+(-570 -2371 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2216,27 +2216,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-572 -2386)
+(-572 -2371)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-573 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3651 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((-3628 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-574)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-575 R -2386)
+(-575 R -2371)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-629))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-558))))
-(-576 -2386 UP)
+(-576 -2371 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-577 R -2386)
+(-577 R -2371)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2268,15 +2268,15 @@ NIL
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-585 R -2386)
+(-585 R -2371)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-586 E -2386)
+(-586 E -2371)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-587 -2386)
+(-587 -2371)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
((-4409 . T) (-4408 . T))
((|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175)))))
@@ -2307,7 +2307,7 @@ NIL
(-594 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2805 (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+((-2809 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2809 (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
(-595 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
@@ -2315,7 +2315,7 @@ NIL
(-596 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))) (|HasCategory| (-566) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))) (|HasCategory| (-566) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))))
(-597 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
((-4409 |has| |#1| (-558)) (-4408 |has| |#1| (-558)) ((-4416 "*") |has| |#1| (-558)) (-4407 |has| |#1| (-558)) (-4411 . T))
@@ -2328,7 +2328,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-600 R -2386 FG)
+(-600 R -2371 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2339,7 +2339,7 @@ NIL
(-602 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-603 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2358,12 +2358,12 @@ NIL
NIL
(-607 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4411 -2805 (-2447 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4409 . T) (-4408 . T))
-((-2805 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
+((-4411 -2809 (-2432 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4409 . T) (-4408 . T))
+((-2809 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
(-608 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))))
(-609 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
@@ -2388,7 +2388,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-615 -2386 UP)
+(-615 -2371 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2416,7 +2416,7 @@ NIL
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
((-4408 . T) (-4409 . T) (-4411 . T))
((|HasCategory| |#1| (QUOTE (-848))))
-(-622 R -2386)
+(-622 R -2371)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
@@ -2448,18 +2448,18 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-630 R -2386)
+(-630 R -2371)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-631 |lv| -2386)
+(-631 |lv| -2371)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-632)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2849) (QUOTE (-52))))))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1157) (QUOTE (-850))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 (-52))) (QUOTE (-1099))))
+((-12 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -3867) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1157) (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 (-52))) (QUOTE (-1099))))
(-633 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
@@ -2470,8 +2470,8 @@ NIL
NIL
(-635 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4411 -2805 (-2447 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4409 . T) (-4408 . T))
-((-2805 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
+((-4411 -2809 (-2432 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4409 . T) (-4408 . T))
+((-2809 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
(-636 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2483,7 +2483,7 @@ NIL
(-638 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2436 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365))))
+((-2418 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365))))
(-639 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
((-4411 . T))
@@ -2507,7 +2507,7 @@ NIL
(-644 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-645 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2519,7 +2519,7 @@ NIL
(-647 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-648 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
@@ -2536,7 +2536,7 @@ NIL
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-652 R -2386 L)
+(-652 R -2371 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -2556,11 +2556,11 @@ NIL
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
((-4408 . T) (-4409 . T) (-4411 . T))
NIL
-(-657 -2386 UP)
+(-657 -2371 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-658 A -1554)
+(-658 A -3056)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4408 . T) (-4409 . T) (-4411 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365))))
@@ -2596,11 +2596,11 @@ NIL
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
((-4415 . T) (-4414 . T))
NIL
-(-667 -2386)
+(-667 -2371)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-668 -2386 |Row| |Col| M)
+(-668 -2371 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2611,7 +2611,7 @@ NIL
(-670 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
((-4411 . T) (-4414 . T) (-4408 . T) (-4409 . T))
-((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558))) (-2805 (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558))) (-2809 (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-671)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2631,7 +2631,7 @@ NIL
(-675 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-676)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2687,7 +2687,7 @@ NIL
(-689 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
((-4414 . T) (-4415 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4416 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-690 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2696,7 +2696,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-692 S -2386 FLAF FLAS)
+(-692 S -2371 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2706,8 +2706,8 @@ NIL
NIL
(-694)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4407 . T) (-4412 |has| (-699) (-365)) (-4406 |has| (-699) (-365)) (-3661 . T) (-4413 |has| (-699) (-6 -4413)) (-4410 |has| (-699) (-6 -4410)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-699) (QUOTE (-147))) (|HasCategory| (-699) (QUOTE (-145))) (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-370))) (|HasCategory| (-699) (QUOTE (-365))) (-2805 (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-233))) (-2805 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (LIST (QUOTE -287) (QUOTE (-699)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -310) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2805 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-699) (QUOTE (-1022))) (|HasCategory| (-699) (QUOTE (-1199))) (-12 (|HasCategory| (-699) (QUOTE (-1002))) (|HasCategory| (-699) (QUOTE (-1199)))) (-2805 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (-2805 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (|HasCategory| (-699) (QUOTE (-547))) (-12 (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-1199)))) (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909))) (-2805 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365)))) (-2805 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-558)))) (-12 (|HasCategory| (-699) (QUOTE (-233))) (|HasCategory| (-699) (QUOTE (-365)))) (-12 (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-558))) (|HasAttribute| (-699) (QUOTE -4413)) (|HasAttribute| (-699) (QUOTE -4410)) (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-145)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-351)))))
+((-4407 . T) (-4412 |has| (-699) (-365)) (-4406 |has| (-699) (-365)) (-3638 . T) (-4413 |has| (-699) (-6 -4413)) (-4410 |has| (-699) (-6 -4410)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((|HasCategory| (-699) (QUOTE (-147))) (|HasCategory| (-699) (QUOTE (-145))) (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-370))) (|HasCategory| (-699) (QUOTE (-365))) (-2809 (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-233))) (-2809 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (LIST (QUOTE -287) (QUOTE (-699)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -310) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2809 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-699) (QUOTE (-1022))) (|HasCategory| (-699) (QUOTE (-1199))) (-12 (|HasCategory| (-699) (QUOTE (-1002))) (|HasCategory| (-699) (QUOTE (-1199)))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (|HasCategory| (-699) (QUOTE (-547))) (-12 (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-1199)))) (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-558)))) (-12 (|HasCategory| (-699) (QUOTE (-233))) (|HasCategory| (-699) (QUOTE (-365)))) (-12 (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-558))) (|HasAttribute| (-699) (QUOTE -4413)) (|HasAttribute| (-699) (QUOTE -4410)) (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-145)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-351)))))
(-695 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
((-4415 . T))
@@ -2720,13 +2720,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-698 OV E -2386 PG)
+(-698 OV E -2371 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-699)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3651 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
+((-3628 . T) (-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-700 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2752,7 +2752,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-706 S -2876 I)
+(-706 S -2875 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2772,14 +2772,14 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-711 R |Mod| -3418 -3891 |exactQuo|)
+(-711 R |Mod| -3646 -3298 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-712 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4410 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-713 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
@@ -2788,7 +2788,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4409 |has| |#1| (-172)) (-4408 |has| |#1| (-172)) (-4411 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-715 R |Mod| -3418 -3891 |exactQuo|)
+(-715 R |Mod| -3646 -3298 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4411 . T))
NIL
@@ -2800,7 +2800,7 @@ NIL
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
((-4409 . T) (-4408 . T))
NIL
-(-718 -2386)
+(-718 -2371)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
((-4411 . T))
NIL
@@ -2836,7 +2836,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-727 -2386 UP)
+(-727 -2371 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2855,7 +2855,7 @@ NIL
(-731 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
(((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((|HasCategory| |#2| (QUOTE (-909))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-732 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2988,11 +2988,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-765 -2386)
+(-765 -2371)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-766 P -2386)
+(-766 P -2371)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -3000,7 +3000,7 @@ NIL
NIL
NIL
NIL
-(-768 UP -2386)
+(-768 UP -2371)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3016,7 +3016,7 @@ NIL
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
(((-4416 "*") . T))
NIL
-(-772 R -2386)
+(-772 R -2371)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3036,7 +3036,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-777 -2386 |ExtF| |SUEx| |ExtP| |n|)
+(-777 -2371 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3051,7 +3051,7 @@ NIL
(-780 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2436 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2436 (|HasCategory| |#1| (QUOTE (-547)))) (-2436 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2436 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566))))) (-2436 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2436 (|HasCategory| |#1| (LIST (QUOTE -992) (QUOTE (-566))))))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2418 (|HasCategory| |#1| (QUOTE (-547)))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566))))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-2418 (|HasCategory| |#1| (LIST (QUOTE -992) (QUOTE (-566))))))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-781 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -3059,7 +3059,7 @@ NIL
(-782 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4410 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-783 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
@@ -3120,23 +3120,23 @@ NIL
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
((-4408 . T) (-4409 . T) (-4411 . T))
NIL
-(-798 -2805 R OS S)
+(-798 -2809 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-799 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
((-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2805 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2805 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2809 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))
(-800)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-801 R -2386 L)
+(-801 R -2371 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-802 R -2386)
+(-802 R -2371)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3144,7 +3144,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-804 R -2386)
+(-804 R -2371)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3152,11 +3152,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-806 -2386 UP UPUP R)
+(-806 -2371 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-807 -2386 UP L LQ)
+(-807 -2371 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3164,38 +3164,38 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-809 -2386 UP L LQ)
+(-809 -2371 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-810 -2386 UP)
+(-810 -2371 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-811 -2386 L UP A LO)
+(-811 -2371 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-812 -2386 UP)
+(-812 -2371 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-813 -2386 LO)
+(-813 -2371 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-814 -2386 LODO)
+(-814 -2371 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-815 -4225 S |f|)
+(-815 -2420 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4408 |has| |#2| (-1049)) (-4409 |has| |#2| (-1049)) (-4411 |has| |#2| (-6 -4411)) ((-4416 "*") |has| |#2| (-172)) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2805 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2805 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+((-2809 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2809 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
(-816 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-817 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
(((-4416 "*") |has| |#2| (-365)) (-4407 |has| |#2| (-365)) (-4412 |has| |#2| (-365)) (-4406 |has| |#2| (-365)) (-4411 . T) (-4409 . T) (-4408 . T))
@@ -3263,7 +3263,7 @@ NIL
(-833 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
((-4411 |has| |#1| (-848)))
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2805 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2805 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547))))
+((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547))))
(-834 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,{}n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
@@ -3303,12 +3303,12 @@ NIL
(-843 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
((-4411 |has| |#1| (-848)))
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2805 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2805 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547))))
+((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2809 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547))))
(-844)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-845 -4225 S)
+(-845 -2420 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3344,11 +3344,11 @@ NIL
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558))))
-(-854 R |sigma| -1545)
+(-854 R |sigma| -1695)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
((-4408 . T) (-4409 . T) (-4411 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365))))
-(-855 |x| R |sigma| -1545)
+(-855 |x| R |sigma| -1695)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
((-4408 . T) (-4409 . T) (-4411 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-365))))
@@ -3415,15 +3415,15 @@ NIL
(-871 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-870 |#1|) (QUOTE (-909))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-147))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-870 |#1|) (QUOTE (-1022))) (|HasCategory| (-870 |#1|) (QUOTE (-820))) (-2805 (|HasCategory| (-870 |#1|) (QUOTE (-820))) (|HasCategory| (-870 |#1|) (QUOTE (-850)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-1150))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-233))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -870) (|devaluate| |#1|)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (QUOTE (-308))) (|HasCategory| (-870 |#1|) (QUOTE (-547))) (|HasCategory| (-870 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (|HasCategory| (-870 |#1|) (QUOTE (-145)))))
+((|HasCategory| (-870 |#1|) (QUOTE (-909))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-147))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-870 |#1|) (QUOTE (-1022))) (|HasCategory| (-870 |#1|) (QUOTE (-820))) (-2809 (|HasCategory| (-870 |#1|) (QUOTE (-820))) (|HasCategory| (-870 |#1|) (QUOTE (-850)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-1150))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-233))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -870) (|devaluate| |#1|)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (QUOTE (-308))) (|HasCategory| (-870 |#1|) (QUOTE (-547))) (|HasCategory| (-870 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (|HasCategory| (-870 |#1|) (QUOTE (-145)))))
(-872 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-820))) (-2805 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-820))) (-2809 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-873 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))))
(-874)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3479,7 +3479,7 @@ NIL
(-887 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2436 (|HasCategory| |#2| (QUOTE (-1049)))) (-2436 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (-2436 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))
+((-12 (-2418 (|HasCategory| |#2| (QUOTE (-1049)))) (-2418 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (-2418 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))
(-888 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3488,7 +3488,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-890 R -2876)
+(-890 R -2875)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3512,7 +3512,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-896 UP -2386)
+(-896 UP -2371)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3535,7 +3535,7 @@ NIL
(-901 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-902 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
@@ -3551,7 +3551,7 @@ NIL
(-905 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
((-4411 . T))
-((-2805 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850))))
+((-2809 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850))))
(-906 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3572,7 +3572,7 @@ NIL
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370))))
-(-911 R0 -2386 UP UPUP R)
+(-911 R0 -2371 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3600,7 +3600,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-918 -2386)
+(-918 -2371)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3616,11 +3616,11 @@ NIL
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
(((-4416 "*") . T))
NIL
-(-922 -2386 P)
+(-922 -2371 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-923 |xx| -2386)
+(-923 |xx| -2371)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
@@ -3644,7 +3644,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-929 R -2386)
+(-929 R -2371)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3656,7 +3656,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-932 S R -2386)
+(-932 S R -2371)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3676,11 +3676,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -886) (|devaluate| |#1|))))
-(-937 R -2386 -2876)
+(-937 R -2371 -2875)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-938 -2876)
+(-938 -2875)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3703,7 +3703,7 @@ NIL
(-943 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-944 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3728,7 +3728,7 @@ NIL
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
NIL
-(-950 E V R P -2386)
+(-950 E V R P -2371)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3739,8 +3739,8 @@ NIL
(-952 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-953 E V R P -2386)
+((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-953 E V R P -2371)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-454))))
@@ -3763,12 +3763,12 @@ NIL
(-958 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-959)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-960 -2386)
+(-960 -2371)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3783,11 +3783,11 @@ NIL
(-963 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4412)))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4412)))
(-964 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
((-4411 -12 (|has| |#2| (-475)) (|has| |#1| (-475))))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850)))))
(-965)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3868,7 +3868,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-985 K R UP -2386)
+(-985 K R UP -2371)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -3927,11 +3927,11 @@ NIL
(-999 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
((-4407 |has| |#1| (-291)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365))) (-2805 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))))
(-1000 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-1001 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3940,14 +3940,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1003 -2386 UP UPUP |radicnd| |n|)
+(-1003 -2371 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
((-4407 |has| (-409 |#2|) (-365)) (-4412 |has| (-409 |#2|) (-365)) (-4406 |has| (-409 |#2|) (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2805 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2805 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2805 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2805 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))))
+((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2809 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2809 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2809 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))))
(-1004 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2805 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
+((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2809 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
(-1005)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3980,19 +3980,19 @@ NIL
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
((-4407 . T) (-4412 . T) (-4406 . T) (-4409 . T) (-4408 . T) ((-4416 "*") . T) (-4411 . T))
NIL
-(-1013 R -2386)
+(-1013 R -2371)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1014 R -2386)
+(-1014 R -2371)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1015 -2386 UP)
+(-1015 -2371 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1016 -2386 UP)
+(-1016 -2371 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4027,8 +4027,8 @@ NIL
(-1024 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
((-4407 . T) (-4412 . T) (-4406 . T) (-4409 . T) (-4408 . T) ((-4416 "*") . T) (-4411 . T))
-((-2805 (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))))
-(-1025 -2386 L)
+((-2809 (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))))
+(-1025 -2371 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -4064,14 +4064,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1034 -2386 |Expon| |VarSet| |FPol| |LFPol|)
+(-1034 -2371 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
(((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
(-1035)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -2849) (QUOTE (-52))))))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -3867) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))))
(-1036)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4128,7 +4128,7 @@ NIL
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
((-4411 . T))
NIL
-(-1050 |xx| -2386)
+(-1050 |xx| -2371)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4147,7 +4147,7 @@ NIL
(-1054 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
((-4414 . T) (-4409 . T) (-4408 . T))
-((|HasCategory| |#3| (QUOTE (-172))) (-2805 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-558))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))))
+((|HasCategory| |#3| (QUOTE (-172))) (-2809 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-558))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))))
(-1055 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4179,7 +4179,7 @@ NIL
(-1062)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -2849) (QUOTE (-52))))))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 (-1175)) (|:| -2849 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -3867) (QUOTE (-52))))))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1175)) (|:| -3867 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))))
(-1063 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
@@ -4228,11 +4228,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1075 |Base| R -2386)
+(-1075 |Base| R -2371)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1076 |Base| R -2386)
+(-1076 |Base| R -2371)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -4247,7 +4247,7 @@ NIL
(-1079 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
((-4407 |has| |#1| (-365)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))))
(-1080 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4275,7 +4275,7 @@ NIL
(-1086 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1087 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4335,7 +4335,7 @@ NIL
(-1101 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
((-4414 . T) (-4404 . T) (-4415 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-1102 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -4379,7 +4379,7 @@ NIL
(-1112 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4408 |has| |#3| (-1049)) (-4409 |has| |#3| (-1049)) (-4411 |has| |#3| (-6 -4411)) ((-4416 "*") |has| |#3| (-172)) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2805 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#3| (QUOTE (-365))) (-2805 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2805 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2805 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2805 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2805 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2805 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2805 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2805 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (-2805 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2805 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2805 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasAttribute| |#3| (QUOTE -4411)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
+((-2809 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#3| (QUOTE (-365))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2809 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2809 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (-2809 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2809 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasAttribute| |#3| (QUOTE -4411)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
(-1113 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4388,7 +4388,7 @@ NIL
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1115 R -2386)
+(-1115 R -2371)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4427,16 +4427,16 @@ NIL
(-1124 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1125 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))))
(-1126 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
((-4415 . T) (-4414 . T))
NIL
-(-1127 UP -2386)
+(-1127 UP -2371)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4491,11 +4491,11 @@ NIL
(-1140 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))) (-2805 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))))) (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))) (-2809 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))))) (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))))
(-1141 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
((-4411 . T) (-4403 |has| |#2| (-6 (-4416 "*"))) (-4414 . T) (-4408 . T) (-4409 . T))
-((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (-2805 (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (-2809 (|HasAttribute| |#2| (QUOTE (-4416 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-1142 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
@@ -4515,7 +4515,7 @@ NIL
(-1146 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-1147 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4527,7 +4527,7 @@ NIL
(-1149 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|)))))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))))
+((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))))
(-1150)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4551,7 +4551,7 @@ NIL
(-1155 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
((-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-1156)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
((-4415 . T) (-4414 . T))
@@ -4559,11 +4559,11 @@ NIL
(-1157)
NIL
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+((-2809 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
(-1158 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#1|)))))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 (-1157)) (|:| -2849 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#1|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 (-1157)) (|:| -3867 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))))
(-1159 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
@@ -4594,9 +4594,9 @@ NIL
NIL
(-1166 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4416 "*") -2805 (-2447 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2447 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4407 -2805 (-2447 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2447 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1167 R -2386)
+(((-4416 "*") -2809 (-2432 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2432 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4407 -2809 (-2432 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2432 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
+((-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1167 R -2371)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4615,15 +4615,15 @@ NIL
(-1171 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4410 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1172 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-1173 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-1174)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4639,7 +4639,7 @@ NIL
(-1177 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-6 -4412)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| (-971) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasAttribute| |#1| (QUOTE -4412)))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| (-971) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasAttribute| |#1| (QUOTE -4412)))
(-1178)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4679,7 +4679,7 @@ NIL
(-1187 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
((-4414 . T) (-4415 . T))
-((-12 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2050) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2849) (|devaluate| |#2|)))))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2805 (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2050 |#1|) (|:| -2849 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2004) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3867) (|devaluate| |#2|)))))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2809 (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -2004 |#1|) (|:| -3867 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
(-1188 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4731,7 +4731,7 @@ NIL
(-1200 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
((-4415 . T) (-4414 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-1201 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4740,7 +4740,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1203 R -2386)
+(-1203 R -2371)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4748,7 +4748,7 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1205 R -2386)
+(-1205 R -2371)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -886) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -886) (|devaluate| |#1|)))))
@@ -4763,7 +4763,7 @@ NIL
(-1208 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))))
(-1209 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4776,7 +4776,7 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1212 -2386)
+(-1212 -2371)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
@@ -4839,11 +4839,11 @@ NIL
(-1227 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2805 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2805 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))))
+((-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2809 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2809 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))))
(-1228 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4416 "*") -2805 (-2447 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2447 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4407 -2805 (-2447 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2447 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
-((-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4416 "*") -2809 (-2432 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-2432 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4407 -2809 (-2432 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-2432 (|has| |#1| (-365)) (|has| (-1256 |#1| |#2| |#3|) (-909)))) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
+((-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1256) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1256 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1229 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4879,7 +4879,7 @@ NIL
(-1237 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
(((-4416 "*") |has| |#2| (-172)) (-4407 |has| |#2| (-558)) (-4410 |has| |#2| (-365)) (-4412 |has| |#2| (-6 -4412)) (-4409 . T) (-4408 . T) (-4411 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2805 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2805 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2805 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2809 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2809 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2809 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-1238 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
@@ -4895,7 +4895,7 @@ NIL
(-1241 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1111))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3780) (LIST (|devaluate| |#2|) (QUOTE (-1175))))))
+((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1111))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3783) (LIST (|devaluate| |#2|) (QUOTE (-1175))))))
(-1242 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T))
@@ -4923,15 +4923,15 @@ NIL
(-1248 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))
+((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))
(-1249 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4412 |has| |#1| (-365)) (-4406 |has| |#1| (-365)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2805 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2809 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-1250 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
(((-4416 "*") |has| (-1249 |#2| |#3| |#4|) (-172)) (-4407 |has| (-1249 |#2| |#3| |#4|) (-558)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-172))) (-2805 (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-454))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-558))))
+((|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-172))) (-2809 (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1249 |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-454))) (|HasCategory| (-1249 |#2| |#3| |#4|) (QUOTE (-558))))
(-1251 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
@@ -4947,7 +4947,7 @@ NIL
(-1254 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasSignature| |#2| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3921) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1199))) (|HasSignature| |#2| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1941) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))))
(-1255 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T))
@@ -4955,12 +4955,12 @@ NIL
(-1256 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4416 "*") |has| |#1| (-172)) (-4407 |has| |#1| (-558)) (-4408 . T) (-4409 . T) (-4411 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2805 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -3780) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2805 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -3921) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -2608) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2809 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -3783) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2809 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1199))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1941) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -3863) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
(-1257 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1258 -2386 UP L UTS)
+(-1258 -2371 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-558))))
@@ -4987,7 +4987,7 @@ NIL
(-1264 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
((-4415 . T) (-4414 . T))
-((-2805 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2805 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2805 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-2809 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2809 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2809 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-1265)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
@@ -5020,7 +5020,7 @@ NIL
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1273 K R UP -2386)
+(-1273 K R UP -2371)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -5056,11 +5056,11 @@ NIL
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
((-4407 |has| |#2| (-6 -4407)) (-4409 . T) (-4408 . T) (-4411 . T))
NIL
-(-1282 S -2386)
+(-1282 S -2371)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1283 -2386)
+(-1283 -2371)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
((-4406 . T) (-4412 . T) (-4407 . T) ((-4416 "*") . T) (-4408 . T) (-4409 . T) (-4411 . T))
NIL
@@ -5116,4 +5116,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2284962 2284967 2284972 2284977) (-2 NIL 2284942 2284947 2284952 2284957) (-1 NIL 2284922 2284927 2284932 2284937) (0 NIL 2284902 2284907 2284912 2284917) (-1292 "ZMOD.spad" 2284711 2284724 2284840 2284897) (-1291 "ZLINDEP.spad" 2283755 2283766 2284701 2284706) (-1290 "ZDSOLVE.spad" 2273604 2273626 2283745 2283750) (-1289 "YSTREAM.spad" 2273097 2273108 2273594 2273599) (-1288 "XRPOLY.spad" 2272317 2272337 2272953 2273022) (-1287 "XPR.spad" 2270108 2270121 2272035 2272134) (-1286 "XPOLY.spad" 2269663 2269674 2269964 2270033) (-1285 "XPOLYC.spad" 2268980 2268996 2269589 2269658) (-1284 "XPBWPOLY.spad" 2267417 2267437 2268760 2268829) (-1283 "XF.spad" 2265878 2265893 2267319 2267412) (-1282 "XF.spad" 2264319 2264336 2265762 2265767) (-1281 "XFALG.spad" 2261343 2261359 2264245 2264314) (-1280 "XEXPPKG.spad" 2260594 2260620 2261333 2261338) (-1279 "XDPOLY.spad" 2260208 2260224 2260450 2260519) (-1278 "XALG.spad" 2259868 2259879 2260164 2260203) (-1277 "WUTSET.spad" 2255707 2255724 2259514 2259541) (-1276 "WP.spad" 2254906 2254950 2255565 2255632) (-1275 "WHILEAST.spad" 2254704 2254713 2254896 2254901) (-1274 "WHEREAST.spad" 2254375 2254384 2254694 2254699) (-1273 "WFFINTBS.spad" 2251938 2251960 2254365 2254370) (-1272 "WEIER.spad" 2250152 2250163 2251928 2251933) (-1271 "VSPACE.spad" 2249825 2249836 2250120 2250147) (-1270 "VSPACE.spad" 2249518 2249531 2249815 2249820) (-1269 "VOID.spad" 2249195 2249204 2249508 2249513) (-1268 "VIEW.spad" 2246817 2246826 2249185 2249190) (-1267 "VIEWDEF.spad" 2242014 2242023 2246807 2246812) (-1266 "VIEW3D.spad" 2225849 2225858 2242004 2242009) (-1265 "VIEW2D.spad" 2213586 2213595 2225839 2225844) (-1264 "VECTOR.spad" 2212260 2212271 2212511 2212538) (-1263 "VECTOR2.spad" 2210887 2210900 2212250 2212255) (-1262 "VECTCAT.spad" 2208787 2208798 2210855 2210882) (-1261 "VECTCAT.spad" 2206494 2206507 2208564 2208569) (-1260 "VARIABLE.spad" 2206274 2206289 2206484 2206489) (-1259 "UTYPE.spad" 2205918 2205927 2206264 2206269) (-1258 "UTSODETL.spad" 2205211 2205235 2205874 2205879) (-1257 "UTSODE.spad" 2203399 2203419 2205201 2205206) (-1256 "UTS.spad" 2198188 2198216 2201866 2201963) (-1255 "UTSCAT.spad" 2195639 2195655 2198086 2198183) (-1254 "UTSCAT.spad" 2192734 2192752 2195183 2195188) (-1253 "UTS2.spad" 2192327 2192362 2192724 2192729) (-1252 "URAGG.spad" 2186960 2186971 2192317 2192322) (-1251 "URAGG.spad" 2181557 2181570 2186916 2186921) (-1250 "UPXSSING.spad" 2179200 2179226 2180638 2180771) (-1249 "UPXS.spad" 2176348 2176376 2177332 2177481) (-1248 "UPXSCONS.spad" 2174105 2174125 2174480 2174629) (-1247 "UPXSCCA.spad" 2172670 2172690 2173951 2174100) (-1246 "UPXSCCA.spad" 2171377 2171399 2172660 2172665) (-1245 "UPXSCAT.spad" 2169958 2169974 2171223 2171372) (-1244 "UPXS2.spad" 2169499 2169552 2169948 2169953) (-1243 "UPSQFREE.spad" 2167911 2167925 2169489 2169494) (-1242 "UPSCAT.spad" 2165504 2165528 2167809 2167906) (-1241 "UPSCAT.spad" 2162803 2162829 2165110 2165115) (-1240 "UPOLYC.spad" 2157781 2157792 2162645 2162798) (-1239 "UPOLYC.spad" 2152651 2152664 2157517 2157522) (-1238 "UPOLYC2.spad" 2152120 2152139 2152641 2152646) (-1237 "UP.spad" 2149313 2149328 2149706 2149859) (-1236 "UPMP.spad" 2148203 2148216 2149303 2149308) (-1235 "UPDIVP.spad" 2147766 2147780 2148193 2148198) (-1234 "UPDECOMP.spad" 2146003 2146017 2147756 2147761) (-1233 "UPCDEN.spad" 2145210 2145226 2145993 2145998) (-1232 "UP2.spad" 2144572 2144593 2145200 2145205) (-1231 "UNISEG.spad" 2143925 2143936 2144491 2144496) (-1230 "UNISEG2.spad" 2143418 2143431 2143881 2143886) (-1229 "UNIFACT.spad" 2142519 2142531 2143408 2143413) (-1228 "ULS.spad" 2133071 2133099 2134164 2134593) (-1227 "ULSCONS.spad" 2125465 2125485 2125837 2125986) (-1226 "ULSCCAT.spad" 2123194 2123214 2125311 2125460) (-1225 "ULSCCAT.spad" 2121031 2121053 2123150 2123155) (-1224 "ULSCAT.spad" 2119247 2119263 2120877 2121026) (-1223 "ULS2.spad" 2118759 2118812 2119237 2119242) (-1222 "UINT8.spad" 2118636 2118645 2118749 2118754) (-1221 "UINT64.spad" 2118512 2118521 2118626 2118631) (-1220 "UINT32.spad" 2118388 2118397 2118502 2118507) (-1219 "UINT16.spad" 2118264 2118273 2118378 2118383) (-1218 "UFD.spad" 2117329 2117338 2118190 2118259) (-1217 "UFD.spad" 2116456 2116467 2117319 2117324) (-1216 "UDVO.spad" 2115303 2115312 2116446 2116451) (-1215 "UDPO.spad" 2112730 2112741 2115259 2115264) (-1214 "TYPE.spad" 2112662 2112671 2112720 2112725) (-1213 "TYPEAST.spad" 2112581 2112590 2112652 2112657) (-1212 "TWOFACT.spad" 2111231 2111246 2112571 2112576) (-1211 "TUPLE.spad" 2110715 2110726 2111130 2111135) (-1210 "TUBETOOL.spad" 2107552 2107561 2110705 2110710) (-1209 "TUBE.spad" 2106193 2106210 2107542 2107547) (-1208 "TS.spad" 2104782 2104798 2105758 2105855) (-1207 "TSETCAT.spad" 2091909 2091926 2104750 2104777) (-1206 "TSETCAT.spad" 2079022 2079041 2091865 2091870) (-1205 "TRMANIP.spad" 2073388 2073405 2078728 2078733) (-1204 "TRIMAT.spad" 2072347 2072372 2073378 2073383) (-1203 "TRIGMNIP.spad" 2070864 2070881 2072337 2072342) (-1202 "TRIGCAT.spad" 2070376 2070385 2070854 2070859) (-1201 "TRIGCAT.spad" 2069886 2069897 2070366 2070371) (-1200 "TREE.spad" 2068457 2068468 2069493 2069520) (-1199 "TRANFUN.spad" 2068288 2068297 2068447 2068452) (-1198 "TRANFUN.spad" 2068117 2068128 2068278 2068283) (-1197 "TOPSP.spad" 2067791 2067800 2068107 2068112) (-1196 "TOOLSIGN.spad" 2067454 2067465 2067781 2067786) (-1195 "TEXTFILE.spad" 2066011 2066020 2067444 2067449) (-1194 "TEX.spad" 2063143 2063152 2066001 2066006) (-1193 "TEX1.spad" 2062699 2062710 2063133 2063138) (-1192 "TEMUTL.spad" 2062254 2062263 2062689 2062694) (-1191 "TBCMPPK.spad" 2060347 2060370 2062244 2062249) (-1190 "TBAGG.spad" 2059383 2059406 2060327 2060342) (-1189 "TBAGG.spad" 2058427 2058452 2059373 2059378) (-1188 "TANEXP.spad" 2057803 2057814 2058417 2058422) (-1187 "TABLE.spad" 2056214 2056237 2056484 2056511) (-1186 "TABLEAU.spad" 2055695 2055706 2056204 2056209) (-1185 "TABLBUMP.spad" 2052478 2052489 2055685 2055690) (-1184 "SYSTEM.spad" 2051706 2051715 2052468 2052473) (-1183 "SYSSOLP.spad" 2049179 2049190 2051696 2051701) (-1182 "SYSNNI.spad" 2048359 2048370 2049169 2049174) (-1181 "SYSINT.spad" 2047763 2047774 2048349 2048354) (-1180 "SYNTAX.spad" 2043957 2043966 2047753 2047758) (-1179 "SYMTAB.spad" 2042013 2042022 2043947 2043952) (-1178 "SYMS.spad" 2037998 2038007 2042003 2042008) (-1177 "SYMPOLY.spad" 2037005 2037016 2037087 2037214) (-1176 "SYMFUNC.spad" 2036480 2036491 2036995 2037000) (-1175 "SYMBOL.spad" 2033907 2033916 2036470 2036475) (-1174 "SWITCH.spad" 2030664 2030673 2033897 2033902) (-1173 "SUTS.spad" 2027563 2027591 2029131 2029228) (-1172 "SUPXS.spad" 2024698 2024726 2025695 2025844) (-1171 "SUP.spad" 2021503 2021514 2022284 2022437) (-1170 "SUPFRACF.spad" 2020608 2020626 2021493 2021498) (-1169 "SUP2.spad" 2019998 2020011 2020598 2020603) (-1168 "SUMRF.spad" 2018964 2018975 2019988 2019993) (-1167 "SUMFS.spad" 2018597 2018614 2018954 2018959) (-1166 "SULS.spad" 2009136 2009164 2010242 2010671) (-1165 "SUCHTAST.spad" 2008905 2008914 2009126 2009131) (-1164 "SUCH.spad" 2008585 2008600 2008895 2008900) (-1163 "SUBSPACE.spad" 2000592 2000607 2008575 2008580) (-1162 "SUBRESP.spad" 1999752 1999766 2000548 2000553) (-1161 "STTF.spad" 1995851 1995867 1999742 1999747) (-1160 "STTFNC.spad" 1992319 1992335 1995841 1995846) (-1159 "STTAYLOR.spad" 1984717 1984728 1992200 1992205) (-1158 "STRTBL.spad" 1983222 1983239 1983371 1983398) (-1157 "STRING.spad" 1982631 1982640 1982645 1982672) (-1156 "STRICAT.spad" 1982419 1982428 1982599 1982626) (-1155 "STREAM.spad" 1979277 1979288 1981944 1981959) (-1154 "STREAM3.spad" 1978822 1978837 1979267 1979272) (-1153 "STREAM2.spad" 1977890 1977903 1978812 1978817) (-1152 "STREAM1.spad" 1977594 1977605 1977880 1977885) (-1151 "STINPROD.spad" 1976500 1976516 1977584 1977589) (-1150 "STEP.spad" 1975701 1975710 1976490 1976495) (-1149 "STBL.spad" 1974227 1974255 1974394 1974409) (-1148 "STAGG.spad" 1973302 1973313 1974217 1974222) (-1147 "STAGG.spad" 1972375 1972388 1973292 1973297) (-1146 "STACK.spad" 1971726 1971737 1971982 1972009) (-1145 "SREGSET.spad" 1969430 1969447 1971372 1971399) (-1144 "SRDCMPK.spad" 1967975 1967995 1969420 1969425) (-1143 "SRAGG.spad" 1963072 1963081 1967943 1967970) (-1142 "SRAGG.spad" 1958189 1958200 1963062 1963067) (-1141 "SQMATRIX.spad" 1955805 1955823 1956721 1956808) (-1140 "SPLTREE.spad" 1950357 1950370 1955241 1955268) (-1139 "SPLNODE.spad" 1946945 1946958 1950347 1950352) (-1138 "SPFCAT.spad" 1945722 1945731 1946935 1946940) (-1137 "SPECOUT.spad" 1944272 1944281 1945712 1945717) (-1136 "SPADXPT.spad" 1936411 1936420 1944262 1944267) (-1135 "spad-parser.spad" 1935876 1935885 1936401 1936406) (-1134 "SPADAST.spad" 1935577 1935586 1935866 1935871) (-1133 "SPACEC.spad" 1919590 1919601 1935567 1935572) (-1132 "SPACE3.spad" 1919366 1919377 1919580 1919585) (-1131 "SORTPAK.spad" 1918911 1918924 1919322 1919327) (-1130 "SOLVETRA.spad" 1916668 1916679 1918901 1918906) (-1129 "SOLVESER.spad" 1915188 1915199 1916658 1916663) (-1128 "SOLVERAD.spad" 1911198 1911209 1915178 1915183) (-1127 "SOLVEFOR.spad" 1909618 1909636 1911188 1911193) (-1126 "SNTSCAT.spad" 1909218 1909235 1909586 1909613) (-1125 "SMTS.spad" 1907478 1907504 1908783 1908880) (-1124 "SMP.spad" 1904953 1904973 1905343 1905470) (-1123 "SMITH.spad" 1903796 1903821 1904943 1904948) (-1122 "SMATCAT.spad" 1901906 1901936 1903740 1903791) (-1121 "SMATCAT.spad" 1899948 1899980 1901784 1901789) (-1120 "SKAGG.spad" 1898909 1898920 1899916 1899943) (-1119 "SINT.spad" 1897735 1897744 1898775 1898904) (-1118 "SIMPAN.spad" 1897463 1897472 1897725 1897730) (-1117 "SIG.spad" 1896791 1896800 1897453 1897458) (-1116 "SIGNRF.spad" 1895899 1895910 1896781 1896786) (-1115 "SIGNEF.spad" 1895168 1895185 1895889 1895894) (-1114 "SIGAST.spad" 1894549 1894558 1895158 1895163) (-1113 "SHP.spad" 1892467 1892482 1894505 1894510) (-1112 "SHDP.spad" 1882178 1882205 1882687 1882818) (-1111 "SGROUP.spad" 1881786 1881795 1882168 1882173) (-1110 "SGROUP.spad" 1881392 1881403 1881776 1881781) (-1109 "SGCF.spad" 1874273 1874282 1881382 1881387) (-1108 "SFRTCAT.spad" 1873201 1873218 1874241 1874268) (-1107 "SFRGCD.spad" 1872264 1872284 1873191 1873196) (-1106 "SFQCMPK.spad" 1866901 1866921 1872254 1872259) (-1105 "SFORT.spad" 1866336 1866350 1866891 1866896) (-1104 "SEXOF.spad" 1866179 1866219 1866326 1866331) (-1103 "SEX.spad" 1866071 1866080 1866169 1866174) (-1102 "SEXCAT.spad" 1863622 1863662 1866061 1866066) (-1101 "SET.spad" 1861922 1861933 1863043 1863082) (-1100 "SETMN.spad" 1860356 1860373 1861912 1861917) (-1099 "SETCAT.spad" 1859678 1859687 1860346 1860351) (-1098 "SETCAT.spad" 1858998 1859009 1859668 1859673) (-1097 "SETAGG.spad" 1855519 1855530 1858978 1858993) (-1096 "SETAGG.spad" 1852048 1852061 1855509 1855514) (-1095 "SEQAST.spad" 1851751 1851760 1852038 1852043) (-1094 "SEGXCAT.spad" 1850873 1850886 1851741 1851746) (-1093 "SEG.spad" 1850686 1850697 1850792 1850797) (-1092 "SEGCAT.spad" 1849593 1849604 1850676 1850681) (-1091 "SEGBIND.spad" 1848665 1848676 1849548 1849553) (-1090 "SEGBIND2.spad" 1848361 1848374 1848655 1848660) (-1089 "SEGAST.spad" 1848075 1848084 1848351 1848356) (-1088 "SEG2.spad" 1847500 1847513 1848031 1848036) (-1087 "SDVAR.spad" 1846776 1846787 1847490 1847495) (-1086 "SDPOL.spad" 1844202 1844213 1844493 1844620) (-1085 "SCPKG.spad" 1842281 1842292 1844192 1844197) (-1084 "SCOPE.spad" 1841430 1841439 1842271 1842276) (-1083 "SCACHE.spad" 1840112 1840123 1841420 1841425) (-1082 "SASTCAT.spad" 1840021 1840030 1840102 1840107) (-1081 "SAOS.spad" 1839893 1839902 1840011 1840016) (-1080 "SAERFFC.spad" 1839606 1839626 1839883 1839888) (-1079 "SAE.spad" 1837781 1837797 1838392 1838527) (-1078 "SAEFACT.spad" 1837482 1837502 1837771 1837776) (-1077 "RURPK.spad" 1835123 1835139 1837472 1837477) (-1076 "RULESET.spad" 1834564 1834588 1835113 1835118) (-1075 "RULE.spad" 1832768 1832792 1834554 1834559) (-1074 "RULECOLD.spad" 1832620 1832633 1832758 1832763) (-1073 "RTVALUE.spad" 1832353 1832362 1832610 1832615) (-1072 "RSTRCAST.spad" 1832070 1832079 1832343 1832348) (-1071 "RSETGCD.spad" 1828448 1828468 1832060 1832065) (-1070 "RSETCAT.spad" 1818232 1818249 1828416 1828443) (-1069 "RSETCAT.spad" 1808036 1808055 1818222 1818227) (-1068 "RSDCMPK.spad" 1806488 1806508 1808026 1808031) (-1067 "RRCC.spad" 1804872 1804902 1806478 1806483) (-1066 "RRCC.spad" 1803254 1803286 1804862 1804867) (-1065 "RPTAST.spad" 1802956 1802965 1803244 1803249) (-1064 "RPOLCAT.spad" 1782316 1782331 1802824 1802951) (-1063 "RPOLCAT.spad" 1761390 1761407 1781900 1781905) (-1062 "ROUTINE.spad" 1757253 1757262 1760037 1760064) (-1061 "ROMAN.spad" 1756581 1756590 1757119 1757248) (-1060 "ROIRC.spad" 1755661 1755693 1756571 1756576) (-1059 "RNS.spad" 1754564 1754573 1755563 1755656) (-1058 "RNS.spad" 1753553 1753564 1754554 1754559) (-1057 "RNG.spad" 1753288 1753297 1753543 1753548) (-1056 "RMODULE.spad" 1753053 1753064 1753278 1753283) (-1055 "RMCAT2.spad" 1752461 1752518 1753043 1753048) (-1054 "RMATRIX.spad" 1751285 1751304 1751628 1751667) (-1053 "RMATCAT.spad" 1746818 1746849 1751241 1751280) (-1052 "RMATCAT.spad" 1742241 1742274 1746666 1746671) (-1051 "RLINSET.spad" 1741635 1741646 1742231 1742236) (-1050 "RINTERP.spad" 1741523 1741543 1741625 1741630) (-1049 "RING.spad" 1740993 1741002 1741503 1741518) (-1048 "RING.spad" 1740471 1740482 1740983 1740988) (-1047 "RIDIST.spad" 1739855 1739864 1740461 1740466) (-1046 "RGCHAIN.spad" 1738434 1738450 1739340 1739367) (-1045 "RGBCSPC.spad" 1738215 1738227 1738424 1738429) (-1044 "RGBCMDL.spad" 1737745 1737757 1738205 1738210) (-1043 "RF.spad" 1735359 1735370 1737735 1737740) (-1042 "RFFACTOR.spad" 1734821 1734832 1735349 1735354) (-1041 "RFFACT.spad" 1734556 1734568 1734811 1734816) (-1040 "RFDIST.spad" 1733544 1733553 1734546 1734551) (-1039 "RETSOL.spad" 1732961 1732974 1733534 1733539) (-1038 "RETRACT.spad" 1732389 1732400 1732951 1732956) (-1037 "RETRACT.spad" 1731815 1731828 1732379 1732384) (-1036 "RETAST.spad" 1731627 1731636 1731805 1731810) (-1035 "RESULT.spad" 1729687 1729696 1730274 1730301) (-1034 "RESRING.spad" 1729034 1729081 1729625 1729682) (-1033 "RESLATC.spad" 1728358 1728369 1729024 1729029) (-1032 "REPSQ.spad" 1728087 1728098 1728348 1728353) (-1031 "REP.spad" 1725639 1725648 1728077 1728082) (-1030 "REPDB.spad" 1725344 1725355 1725629 1725634) (-1029 "REP2.spad" 1714916 1714927 1725186 1725191) (-1028 "REP1.spad" 1708906 1708917 1714866 1714871) (-1027 "REGSET.spad" 1706703 1706720 1708552 1708579) (-1026 "REF.spad" 1706032 1706043 1706658 1706663) (-1025 "REDORDER.spad" 1705208 1705225 1706022 1706027) (-1024 "RECLOS.spad" 1703991 1704011 1704695 1704788) (-1023 "REALSOLV.spad" 1703123 1703132 1703981 1703986) (-1022 "REAL.spad" 1702995 1703004 1703113 1703118) (-1021 "REAL0Q.spad" 1700277 1700292 1702985 1702990) (-1020 "REAL0.spad" 1697105 1697120 1700267 1700272) (-1019 "RDUCEAST.spad" 1696826 1696835 1697095 1697100) (-1018 "RDIV.spad" 1696477 1696502 1696816 1696821) (-1017 "RDIST.spad" 1696040 1696051 1696467 1696472) (-1016 "RDETRS.spad" 1694836 1694854 1696030 1696035) (-1015 "RDETR.spad" 1692943 1692961 1694826 1694831) (-1014 "RDEEFS.spad" 1692016 1692033 1692933 1692938) (-1013 "RDEEF.spad" 1691012 1691029 1692006 1692011) (-1012 "RCFIELD.spad" 1688198 1688207 1690914 1691007) (-1011 "RCFIELD.spad" 1685470 1685481 1688188 1688193) (-1010 "RCAGG.spad" 1683382 1683393 1685460 1685465) (-1009 "RCAGG.spad" 1681221 1681234 1683301 1683306) (-1008 "RATRET.spad" 1680581 1680592 1681211 1681216) (-1007 "RATFACT.spad" 1680273 1680285 1680571 1680576) (-1006 "RANDSRC.spad" 1679592 1679601 1680263 1680268) (-1005 "RADUTIL.spad" 1679346 1679355 1679582 1679587) (-1004 "RADIX.spad" 1676247 1676261 1677813 1677906) (-1003 "RADFF.spad" 1674660 1674697 1674779 1674935) (-1002 "RADCAT.spad" 1674253 1674262 1674650 1674655) (-1001 "RADCAT.spad" 1673844 1673855 1674243 1674248) (-1000 "QUEUE.spad" 1673186 1673197 1673451 1673478) (-999 "QUAT.spad" 1671768 1671778 1672110 1672175) (-998 "QUATCT2.spad" 1671387 1671405 1671758 1671763) (-997 "QUATCAT.spad" 1669552 1669562 1671317 1671382) (-996 "QUATCAT.spad" 1667468 1667480 1669235 1669240) (-995 "QUAGG.spad" 1666294 1666304 1667436 1667463) (-994 "QQUTAST.spad" 1666063 1666071 1666284 1666289) (-993 "QFORM.spad" 1665526 1665540 1666053 1666058) (-992 "QFCAT.spad" 1664229 1664239 1665428 1665521) (-991 "QFCAT.spad" 1662523 1662535 1663724 1663729) (-990 "QFCAT2.spad" 1662214 1662230 1662513 1662518) (-989 "QEQUAT.spad" 1661771 1661779 1662204 1662209) (-988 "QCMPACK.spad" 1656518 1656537 1661761 1661766) (-987 "QALGSET.spad" 1652593 1652625 1656432 1656437) (-986 "QALGSET2.spad" 1650589 1650607 1652583 1652588) (-985 "PWFFINTB.spad" 1647899 1647920 1650579 1650584) (-984 "PUSHVAR.spad" 1647228 1647247 1647889 1647894) (-983 "PTRANFN.spad" 1643354 1643364 1647218 1647223) (-982 "PTPACK.spad" 1640442 1640452 1643344 1643349) (-981 "PTFUNC2.spad" 1640263 1640277 1640432 1640437) (-980 "PTCAT.spad" 1639512 1639522 1640231 1640258) (-979 "PSQFR.spad" 1638819 1638843 1639502 1639507) (-978 "PSEUDLIN.spad" 1637677 1637687 1638809 1638814) (-977 "PSETPK.spad" 1623110 1623126 1637555 1637560) (-976 "PSETCAT.spad" 1617030 1617053 1623090 1623105) (-975 "PSETCAT.spad" 1610924 1610949 1616986 1616991) (-974 "PSCURVE.spad" 1609907 1609915 1610914 1610919) (-973 "PSCAT.spad" 1608674 1608703 1609805 1609902) (-972 "PSCAT.spad" 1607531 1607562 1608664 1608669) (-971 "PRTITION.spad" 1606476 1606484 1607521 1607526) (-970 "PRTDAST.spad" 1606195 1606203 1606466 1606471) (-969 "PRS.spad" 1595757 1595774 1606151 1606156) (-968 "PRQAGG.spad" 1595188 1595198 1595725 1595752) (-967 "PROPLOG.spad" 1594483 1594491 1595178 1595183) (-966 "PROPFRML.spad" 1593291 1593302 1594473 1594478) (-965 "PROPERTY.spad" 1592777 1592785 1593281 1593286) (-964 "PRODUCT.spad" 1590457 1590469 1590743 1590798) (-963 "PR.spad" 1588843 1588855 1589548 1589675) (-962 "PRINT.spad" 1588595 1588603 1588833 1588838) (-961 "PRIMES.spad" 1586846 1586856 1588585 1588590) (-960 "PRIMELT.spad" 1584827 1584841 1586836 1586841) (-959 "PRIMCAT.spad" 1584450 1584458 1584817 1584822) (-958 "PRIMARR.spad" 1583455 1583465 1583633 1583660) (-957 "PRIMARR2.spad" 1582178 1582190 1583445 1583450) (-956 "PREASSOC.spad" 1581550 1581562 1582168 1582173) (-955 "PPCURVE.spad" 1580687 1580695 1581540 1581545) (-954 "PORTNUM.spad" 1580462 1580470 1580677 1580682) (-953 "POLYROOT.spad" 1579291 1579313 1580418 1580423) (-952 "POLY.spad" 1576624 1576634 1577141 1577268) (-951 "POLYLIFT.spad" 1575885 1575908 1576614 1576619) (-950 "POLYCATQ.spad" 1573987 1574009 1575875 1575880) (-949 "POLYCAT.spad" 1567393 1567414 1573855 1573982) (-948 "POLYCAT.spad" 1560137 1560160 1566601 1566606) (-947 "POLY2UP.spad" 1559585 1559599 1560127 1560132) (-946 "POLY2.spad" 1559180 1559192 1559575 1559580) (-945 "POLUTIL.spad" 1558121 1558150 1559136 1559141) (-944 "POLTOPOL.spad" 1556869 1556884 1558111 1558116) (-943 "POINT.spad" 1555707 1555717 1555794 1555821) (-942 "PNTHEORY.spad" 1552373 1552381 1555697 1555702) (-941 "PMTOOLS.spad" 1551130 1551144 1552363 1552368) (-940 "PMSYM.spad" 1550675 1550685 1551120 1551125) (-939 "PMQFCAT.spad" 1550262 1550276 1550665 1550670) (-938 "PMPRED.spad" 1549731 1549745 1550252 1550257) (-937 "PMPREDFS.spad" 1549175 1549197 1549721 1549726) (-936 "PMPLCAT.spad" 1548245 1548263 1549107 1549112) (-935 "PMLSAGG.spad" 1547826 1547840 1548235 1548240) (-934 "PMKERNEL.spad" 1547393 1547405 1547816 1547821) (-933 "PMINS.spad" 1546969 1546979 1547383 1547388) (-932 "PMFS.spad" 1546542 1546560 1546959 1546964) (-931 "PMDOWN.spad" 1545828 1545842 1546532 1546537) (-930 "PMASS.spad" 1544836 1544844 1545818 1545823) (-929 "PMASSFS.spad" 1543801 1543817 1544826 1544831) (-928 "PLOTTOOL.spad" 1543581 1543589 1543791 1543796) (-927 "PLOT.spad" 1538412 1538420 1543571 1543576) (-926 "PLOT3D.spad" 1534832 1534840 1538402 1538407) (-925 "PLOT1.spad" 1533973 1533983 1534822 1534827) (-924 "PLEQN.spad" 1521189 1521216 1533963 1533968) (-923 "PINTERP.spad" 1520805 1520824 1521179 1521184) (-922 "PINTERPA.spad" 1520587 1520603 1520795 1520800) (-921 "PI.spad" 1520194 1520202 1520561 1520582) (-920 "PID.spad" 1519150 1519158 1520120 1520189) (-919 "PICOERCE.spad" 1518807 1518817 1519140 1519145) (-918 "PGROEB.spad" 1517404 1517418 1518797 1518802) (-917 "PGE.spad" 1508657 1508665 1517394 1517399) (-916 "PGCD.spad" 1507539 1507556 1508647 1508652) (-915 "PFRPAC.spad" 1506682 1506692 1507529 1507534) (-914 "PFR.spad" 1503339 1503349 1506584 1506677) (-913 "PFOTOOLS.spad" 1502597 1502613 1503329 1503334) (-912 "PFOQ.spad" 1501967 1501985 1502587 1502592) (-911 "PFO.spad" 1501386 1501413 1501957 1501962) (-910 "PF.spad" 1500960 1500972 1501191 1501284) (-909 "PFECAT.spad" 1498626 1498634 1500886 1500955) (-908 "PFECAT.spad" 1496320 1496330 1498582 1498587) (-907 "PFBRU.spad" 1494190 1494202 1496310 1496315) (-906 "PFBR.spad" 1491728 1491751 1494180 1494185) (-905 "PERM.spad" 1487409 1487419 1491558 1491573) (-904 "PERMGRP.spad" 1482145 1482155 1487399 1487404) (-903 "PERMCAT.spad" 1480697 1480707 1482125 1482140) (-902 "PERMAN.spad" 1479229 1479243 1480687 1480692) (-901 "PENDTREE.spad" 1478568 1478578 1478858 1478863) (-900 "PDRING.spad" 1477059 1477069 1478548 1478563) (-899 "PDRING.spad" 1475558 1475570 1477049 1477054) (-898 "PDEPROB.spad" 1474573 1474581 1475548 1475553) (-897 "PDEPACK.spad" 1468575 1468583 1474563 1474568) (-896 "PDECOMP.spad" 1468037 1468054 1468565 1468570) (-895 "PDECAT.spad" 1466391 1466399 1468027 1468032) (-894 "PCOMP.spad" 1466242 1466255 1466381 1466386) (-893 "PBWLB.spad" 1464824 1464841 1466232 1466237) (-892 "PATTERN.spad" 1459255 1459265 1464814 1464819) (-891 "PATTERN2.spad" 1458991 1459003 1459245 1459250) (-890 "PATTERN1.spad" 1457293 1457309 1458981 1458986) (-889 "PATRES.spad" 1454840 1454852 1457283 1457288) (-888 "PATRES2.spad" 1454502 1454516 1454830 1454835) (-887 "PATMATCH.spad" 1452659 1452690 1454210 1454215) (-886 "PATMAB.spad" 1452084 1452094 1452649 1452654) (-885 "PATLRES.spad" 1451168 1451182 1452074 1452079) (-884 "PATAB.spad" 1450932 1450942 1451158 1451163) (-883 "PARTPERM.spad" 1448294 1448302 1450922 1450927) (-882 "PARSURF.spad" 1447722 1447750 1448284 1448289) (-881 "PARSU2.spad" 1447517 1447533 1447712 1447717) (-880 "script-parser.spad" 1447037 1447045 1447507 1447512) (-879 "PARSCURV.spad" 1446465 1446493 1447027 1447032) (-878 "PARSC2.spad" 1446254 1446270 1446455 1446460) (-877 "PARPCURV.spad" 1445712 1445740 1446244 1446249) (-876 "PARPC2.spad" 1445501 1445517 1445702 1445707) (-875 "PAN2EXPR.spad" 1444913 1444921 1445491 1445496) (-874 "PALETTE.spad" 1443883 1443891 1444903 1444908) (-873 "PAIR.spad" 1442866 1442879 1443471 1443476) (-872 "PADICRC.spad" 1440196 1440214 1441371 1441464) (-871 "PADICRAT.spad" 1438211 1438223 1438432 1438525) (-870 "PADIC.spad" 1437906 1437918 1438137 1438206) (-869 "PADICCT.spad" 1436447 1436459 1437832 1437901) (-868 "PADEPAC.spad" 1435126 1435145 1436437 1436442) (-867 "PADE.spad" 1433866 1433882 1435116 1435121) (-866 "OWP.spad" 1433106 1433136 1433724 1433791) (-865 "OVERSET.spad" 1432679 1432687 1433096 1433101) (-864 "OVAR.spad" 1432460 1432483 1432669 1432674) (-863 "OUT.spad" 1431544 1431552 1432450 1432455) (-862 "OUTFORM.spad" 1420840 1420848 1431534 1431539) (-861 "OUTBFILE.spad" 1420258 1420266 1420830 1420835) (-860 "OUTBCON.spad" 1419256 1419264 1420248 1420253) (-859 "OUTBCON.spad" 1418252 1418262 1419246 1419251) (-858 "OSI.spad" 1417727 1417735 1418242 1418247) (-857 "OSGROUP.spad" 1417645 1417653 1417717 1417722) (-856 "ORTHPOL.spad" 1416106 1416116 1417562 1417567) (-855 "OREUP.spad" 1415559 1415587 1415786 1415825) (-854 "ORESUP.spad" 1414858 1414882 1415239 1415278) (-853 "OREPCTO.spad" 1412677 1412689 1414778 1414783) (-852 "OREPCAT.spad" 1406734 1406744 1412633 1412672) (-851 "OREPCAT.spad" 1400681 1400693 1406582 1406587) (-850 "ORDSET.spad" 1399847 1399855 1400671 1400676) (-849 "ORDSET.spad" 1399011 1399021 1399837 1399842) (-848 "ORDRING.spad" 1398401 1398409 1398991 1399006) (-847 "ORDRING.spad" 1397799 1397809 1398391 1398396) (-846 "ORDMON.spad" 1397654 1397662 1397789 1397794) (-845 "ORDFUNS.spad" 1396780 1396796 1397644 1397649) (-844 "ORDFIN.spad" 1396600 1396608 1396770 1396775) (-843 "ORDCOMP.spad" 1395065 1395075 1396147 1396176) (-842 "ORDCOMP2.spad" 1394350 1394362 1395055 1395060) (-841 "OPTPROB.spad" 1392988 1392996 1394340 1394345) (-840 "OPTPACK.spad" 1385373 1385381 1392978 1392983) (-839 "OPTCAT.spad" 1383048 1383056 1385363 1385368) (-838 "OPSIG.spad" 1382700 1382708 1383038 1383043) (-837 "OPQUERY.spad" 1382249 1382257 1382690 1382695) (-836 "OP.spad" 1381991 1382001 1382071 1382138) (-835 "OPERCAT.spad" 1381455 1381465 1381981 1381986) (-834 "OPERCAT.spad" 1380917 1380929 1381445 1381450) (-833 "ONECOMP.spad" 1379662 1379672 1380464 1380493) (-832 "ONECOMP2.spad" 1379080 1379092 1379652 1379657) (-831 "OMSERVER.spad" 1378082 1378090 1379070 1379075) (-830 "OMSAGG.spad" 1377870 1377880 1378038 1378077) (-829 "OMPKG.spad" 1376482 1376490 1377860 1377865) (-828 "OM.spad" 1375447 1375455 1376472 1376477) (-827 "OMLO.spad" 1374872 1374884 1375333 1375372) (-826 "OMEXPR.spad" 1374706 1374716 1374862 1374867) (-825 "OMERR.spad" 1374249 1374257 1374696 1374701) (-824 "OMERRK.spad" 1373283 1373291 1374239 1374244) (-823 "OMENC.spad" 1372627 1372635 1373273 1373278) (-822 "OMDEV.spad" 1366916 1366924 1372617 1372622) (-821 "OMCONN.spad" 1366325 1366333 1366906 1366911) (-820 "OINTDOM.spad" 1366088 1366096 1366251 1366320) (-819 "OFMONOID.spad" 1362275 1362285 1366078 1366083) (-818 "ODVAR.spad" 1361536 1361546 1362265 1362270) (-817 "ODR.spad" 1361180 1361206 1361348 1361497) (-816 "ODPOL.spad" 1358562 1358572 1358902 1359029) (-815 "ODP.spad" 1348409 1348429 1348782 1348913) (-814 "ODETOOLS.spad" 1346992 1347011 1348399 1348404) (-813 "ODESYS.spad" 1344642 1344659 1346982 1346987) (-812 "ODERTRIC.spad" 1340583 1340600 1344599 1344604) (-811 "ODERED.spad" 1339970 1339994 1340573 1340578) (-810 "ODERAT.spad" 1337521 1337538 1339960 1339965) (-809 "ODEPRRIC.spad" 1334412 1334434 1337511 1337516) (-808 "ODEPROB.spad" 1333669 1333677 1334402 1334407) (-807 "ODEPRIM.spad" 1330943 1330965 1333659 1333664) (-806 "ODEPAL.spad" 1330319 1330343 1330933 1330938) (-805 "ODEPACK.spad" 1316921 1316929 1330309 1330314) (-804 "ODEINT.spad" 1316352 1316368 1316911 1316916) (-803 "ODEIFTBL.spad" 1313747 1313755 1316342 1316347) (-802 "ODEEF.spad" 1309114 1309130 1313737 1313742) (-801 "ODECONST.spad" 1308633 1308651 1309104 1309109) (-800 "ODECAT.spad" 1307229 1307237 1308623 1308628) (-799 "OCT.spad" 1305367 1305377 1306083 1306122) (-798 "OCTCT2.spad" 1305011 1305032 1305357 1305362) (-797 "OC.spad" 1302785 1302795 1304967 1305006) (-796 "OC.spad" 1300284 1300296 1302468 1302473) (-795 "OCAMON.spad" 1300132 1300140 1300274 1300279) (-794 "OASGP.spad" 1299947 1299955 1300122 1300127) (-793 "OAMONS.spad" 1299467 1299475 1299937 1299942) (-792 "OAMON.spad" 1299328 1299336 1299457 1299462) (-791 "OAGROUP.spad" 1299190 1299198 1299318 1299323) (-790 "NUMTUBE.spad" 1298777 1298793 1299180 1299185) (-789 "NUMQUAD.spad" 1286639 1286647 1298767 1298772) (-788 "NUMODE.spad" 1277775 1277783 1286629 1286634) (-787 "NUMINT.spad" 1275333 1275341 1277765 1277770) (-786 "NUMFMT.spad" 1274173 1274181 1275323 1275328) (-785 "NUMERIC.spad" 1266245 1266255 1273978 1273983) (-784 "NTSCAT.spad" 1264747 1264763 1266213 1266240) (-783 "NTPOLFN.spad" 1264292 1264302 1264664 1264669) (-782 "NSUP.spad" 1257338 1257348 1261878 1262031) (-781 "NSUP2.spad" 1256730 1256742 1257328 1257333) (-780 "NSMP.spad" 1252961 1252980 1253269 1253396) (-779 "NREP.spad" 1251333 1251347 1252951 1252956) (-778 "NPCOEF.spad" 1250579 1250599 1251323 1251328) (-777 "NORMRETR.spad" 1250177 1250216 1250569 1250574) (-776 "NORMPK.spad" 1248079 1248098 1250167 1250172) (-775 "NORMMA.spad" 1247767 1247793 1248069 1248074) (-774 "NONE.spad" 1247508 1247516 1247757 1247762) (-773 "NONE1.spad" 1247184 1247194 1247498 1247503) (-772 "NODE1.spad" 1246653 1246669 1247174 1247179) (-771 "NNI.spad" 1245540 1245548 1246627 1246648) (-770 "NLINSOL.spad" 1244162 1244172 1245530 1245535) (-769 "NIPROB.spad" 1242703 1242711 1244152 1244157) (-768 "NFINTBAS.spad" 1240163 1240180 1242693 1242698) (-767 "NETCLT.spad" 1240137 1240148 1240153 1240158) (-766 "NCODIV.spad" 1238335 1238351 1240127 1240132) (-765 "NCNTFRAC.spad" 1237977 1237991 1238325 1238330) (-764 "NCEP.spad" 1236137 1236151 1237967 1237972) (-763 "NASRING.spad" 1235733 1235741 1236127 1236132) (-762 "NASRING.spad" 1235327 1235337 1235723 1235728) (-761 "NARNG.spad" 1234671 1234679 1235317 1235322) (-760 "NARNG.spad" 1234013 1234023 1234661 1234666) (-759 "NAGSP.spad" 1233086 1233094 1234003 1234008) (-758 "NAGS.spad" 1222611 1222619 1233076 1233081) (-757 "NAGF07.spad" 1221004 1221012 1222601 1222606) (-756 "NAGF04.spad" 1215236 1215244 1220994 1220999) (-755 "NAGF02.spad" 1209045 1209053 1215226 1215231) (-754 "NAGF01.spad" 1204648 1204656 1209035 1209040) (-753 "NAGE04.spad" 1198108 1198116 1204638 1204643) (-752 "NAGE02.spad" 1188450 1188458 1198098 1198103) (-751 "NAGE01.spad" 1184334 1184342 1188440 1188445) (-750 "NAGD03.spad" 1182254 1182262 1184324 1184329) (-749 "NAGD02.spad" 1174785 1174793 1182244 1182249) (-748 "NAGD01.spad" 1168898 1168906 1174775 1174780) (-747 "NAGC06.spad" 1164685 1164693 1168888 1168893) (-746 "NAGC05.spad" 1163154 1163162 1164675 1164680) (-745 "NAGC02.spad" 1162409 1162417 1163144 1163149) (-744 "NAALG.spad" 1161944 1161954 1162377 1162404) (-743 "NAALG.spad" 1161499 1161511 1161934 1161939) (-742 "MULTSQFR.spad" 1158457 1158474 1161489 1161494) (-741 "MULTFACT.spad" 1157840 1157857 1158447 1158452) (-740 "MTSCAT.spad" 1155874 1155895 1157738 1157835) (-739 "MTHING.spad" 1155531 1155541 1155864 1155869) (-738 "MSYSCMD.spad" 1154965 1154973 1155521 1155526) (-737 "MSET.spad" 1152907 1152917 1154671 1154710) (-736 "MSETAGG.spad" 1152752 1152762 1152875 1152902) (-735 "MRING.spad" 1149723 1149735 1152460 1152527) (-734 "MRF2.spad" 1149291 1149305 1149713 1149718) (-733 "MRATFAC.spad" 1148837 1148854 1149281 1149286) (-732 "MPRFF.spad" 1146867 1146886 1148827 1148832) (-731 "MPOLY.spad" 1144338 1144353 1144697 1144824) (-730 "MPCPF.spad" 1143602 1143621 1144328 1144333) (-729 "MPC3.spad" 1143417 1143457 1143592 1143597) (-728 "MPC2.spad" 1143059 1143092 1143407 1143412) (-727 "MONOTOOL.spad" 1141394 1141411 1143049 1143054) (-726 "MONOID.spad" 1140713 1140721 1141384 1141389) (-725 "MONOID.spad" 1140030 1140040 1140703 1140708) (-724 "MONOGEN.spad" 1138776 1138789 1139890 1140025) (-723 "MONOGEN.spad" 1137544 1137559 1138660 1138665) (-722 "MONADWU.spad" 1135558 1135566 1137534 1137539) (-721 "MONADWU.spad" 1133570 1133580 1135548 1135553) (-720 "MONAD.spad" 1132714 1132722 1133560 1133565) (-719 "MONAD.spad" 1131856 1131866 1132704 1132709) (-718 "MOEBIUS.spad" 1130542 1130556 1131836 1131851) (-717 "MODULE.spad" 1130412 1130422 1130510 1130537) (-716 "MODULE.spad" 1130302 1130314 1130402 1130407) (-715 "MODRING.spad" 1129633 1129672 1130282 1130297) (-714 "MODOP.spad" 1128292 1128304 1129455 1129522) (-713 "MODMONOM.spad" 1128021 1128039 1128282 1128287) (-712 "MODMON.spad" 1124816 1124832 1125535 1125688) (-711 "MODFIELD.spad" 1124174 1124213 1124718 1124811) (-710 "MMLFORM.spad" 1123034 1123042 1124164 1124169) (-709 "MMAP.spad" 1122774 1122808 1123024 1123029) (-708 "MLO.spad" 1121201 1121211 1122730 1122769) (-707 "MLIFT.spad" 1119773 1119790 1121191 1121196) (-706 "MKUCFUNC.spad" 1119306 1119324 1119763 1119768) (-705 "MKRECORD.spad" 1118908 1118921 1119296 1119301) (-704 "MKFUNC.spad" 1118289 1118299 1118898 1118903) (-703 "MKFLCFN.spad" 1117245 1117255 1118279 1118284) (-702 "MKBCFUNC.spad" 1116730 1116748 1117235 1117240) (-701 "MINT.spad" 1116169 1116177 1116632 1116725) (-700 "MHROWRED.spad" 1114670 1114680 1116159 1116164) (-699 "MFLOAT.spad" 1113186 1113194 1114560 1114665) (-698 "MFINFACT.spad" 1112586 1112608 1113176 1113181) (-697 "MESH.spad" 1110318 1110326 1112576 1112581) (-696 "MDDFACT.spad" 1108511 1108521 1110308 1110313) (-695 "MDAGG.spad" 1107798 1107808 1108491 1108506) (-694 "MCMPLX.spad" 1103809 1103817 1104423 1104624) (-693 "MCDEN.spad" 1103017 1103029 1103799 1103804) (-692 "MCALCFN.spad" 1100119 1100145 1103007 1103012) (-691 "MAYBE.spad" 1099403 1099414 1100109 1100114) (-690 "MATSTOR.spad" 1096679 1096689 1099393 1099398) (-689 "MATRIX.spad" 1095383 1095393 1095867 1095894) (-688 "MATLIN.spad" 1092709 1092733 1095267 1095272) (-687 "MATCAT.spad" 1084294 1084316 1092677 1092704) (-686 "MATCAT.spad" 1075751 1075775 1084136 1084141) (-685 "MATCAT2.spad" 1075019 1075067 1075741 1075746) (-684 "MAPPKG3.spad" 1073918 1073932 1075009 1075014) (-683 "MAPPKG2.spad" 1073252 1073264 1073908 1073913) (-682 "MAPPKG1.spad" 1072070 1072080 1073242 1073247) (-681 "MAPPAST.spad" 1071383 1071391 1072060 1072065) (-680 "MAPHACK3.spad" 1071191 1071205 1071373 1071378) (-679 "MAPHACK2.spad" 1070956 1070968 1071181 1071186) (-678 "MAPHACK1.spad" 1070586 1070596 1070946 1070951) (-677 "MAGMA.spad" 1068376 1068393 1070576 1070581) (-676 "MACROAST.spad" 1067955 1067963 1068366 1068371) (-675 "M3D.spad" 1065651 1065661 1067333 1067338) (-674 "LZSTAGG.spad" 1062879 1062889 1065641 1065646) (-673 "LZSTAGG.spad" 1060105 1060117 1062869 1062874) (-672 "LWORD.spad" 1056810 1056827 1060095 1060100) (-671 "LSTAST.spad" 1056594 1056602 1056800 1056805) (-670 "LSQM.spad" 1054820 1054834 1055218 1055269) (-669 "LSPP.spad" 1054353 1054370 1054810 1054815) (-668 "LSMP.spad" 1053193 1053221 1054343 1054348) (-667 "LSMP1.spad" 1050997 1051011 1053183 1053188) (-666 "LSAGG.spad" 1050666 1050676 1050965 1050992) (-665 "LSAGG.spad" 1050355 1050367 1050656 1050661) (-664 "LPOLY.spad" 1049309 1049328 1050211 1050280) (-663 "LPEFRAC.spad" 1048566 1048576 1049299 1049304) (-662 "LO.spad" 1047967 1047981 1048500 1048527) (-661 "LOGIC.spad" 1047569 1047577 1047957 1047962) (-660 "LOGIC.spad" 1047169 1047179 1047559 1047564) (-659 "LODOOPS.spad" 1046087 1046099 1047159 1047164) (-658 "LODO.spad" 1045471 1045487 1045767 1045806) (-657 "LODOF.spad" 1044515 1044532 1045428 1045433) (-656 "LODOCAT.spad" 1043173 1043183 1044471 1044510) (-655 "LODOCAT.spad" 1041829 1041841 1043129 1043134) (-654 "LODO2.spad" 1041102 1041114 1041509 1041548) (-653 "LODO1.spad" 1040502 1040512 1040782 1040821) (-652 "LODEEF.spad" 1039274 1039292 1040492 1040497) (-651 "LNAGG.spad" 1035076 1035086 1039264 1039269) (-650 "LNAGG.spad" 1030842 1030854 1035032 1035037) (-649 "LMOPS.spad" 1027578 1027595 1030832 1030837) (-648 "LMODULE.spad" 1027346 1027356 1027568 1027573) (-647 "LMDICT.spad" 1026629 1026639 1026897 1026924) (-646 "LLINSET.spad" 1026026 1026036 1026619 1026624) (-645 "LITERAL.spad" 1025932 1025943 1026016 1026021) (-644 "LIST.spad" 1023650 1023660 1025079 1025106) (-643 "LIST3.spad" 1022941 1022955 1023640 1023645) (-642 "LIST2.spad" 1021581 1021593 1022931 1022936) (-641 "LIST2MAP.spad" 1018458 1018470 1021571 1021576) (-640 "LINSET.spad" 1018080 1018090 1018448 1018453) (-639 "LINEXP.spad" 1017512 1017522 1018060 1018075) (-638 "LINDEP.spad" 1016289 1016301 1017424 1017429) (-637 "LIMITRF.spad" 1014203 1014213 1016279 1016284) (-636 "LIMITPS.spad" 1013086 1013099 1014193 1014198) (-635 "LIE.spad" 1011100 1011112 1012376 1012521) (-634 "LIECAT.spad" 1010576 1010586 1011026 1011095) (-633 "LIECAT.spad" 1010080 1010092 1010532 1010537) (-632 "LIB.spad" 1008128 1008136 1008739 1008754) (-631 "LGROBP.spad" 1005481 1005500 1008118 1008123) (-630 "LF.spad" 1004400 1004416 1005471 1005476) (-629 "LFCAT.spad" 1003419 1003427 1004390 1004395) (-628 "LEXTRIPK.spad" 998922 998937 1003409 1003414) (-627 "LEXP.spad" 996925 996952 998902 998917) (-626 "LETAST.spad" 996624 996632 996915 996920) (-625 "LEADCDET.spad" 995008 995025 996614 996619) (-624 "LAZM3PK.spad" 993712 993734 994998 995003) (-623 "LAUPOL.spad" 992401 992414 993305 993374) (-622 "LAPLACE.spad" 991974 991990 992391 992396) (-621 "LA.spad" 991414 991428 991896 991935) (-620 "LALG.spad" 991190 991200 991394 991409) (-619 "LALG.spad" 990974 990986 991180 991185) (-618 "KVTFROM.spad" 990709 990719 990964 990969) (-617 "KTVLOGIC.spad" 990221 990229 990699 990704) (-616 "KRCFROM.spad" 989959 989969 990211 990216) (-615 "KOVACIC.spad" 988672 988689 989949 989954) (-614 "KONVERT.spad" 988394 988404 988662 988667) (-613 "KOERCE.spad" 988131 988141 988384 988389) (-612 "KERNEL.spad" 986750 986760 987915 987920) (-611 "KERNEL2.spad" 986453 986465 986740 986745) (-610 "KDAGG.spad" 985556 985578 986433 986448) (-609 "KDAGG.spad" 984667 984691 985546 985551) (-608 "KAFILE.spad" 983630 983646 983865 983892) (-607 "JORDAN.spad" 981457 981469 982920 983065) (-606 "JOINAST.spad" 981151 981159 981447 981452) (-605 "JAVACODE.spad" 981017 981025 981141 981146) (-604 "IXAGG.spad" 979140 979164 981007 981012) (-603 "IXAGG.spad" 977118 977144 978987 978992) (-602 "IVECTOR.spad" 975888 975903 976043 976070) (-601 "ITUPLE.spad" 975033 975043 975878 975883) (-600 "ITRIGMNP.spad" 973844 973863 975023 975028) (-599 "ITFUN3.spad" 973338 973352 973834 973839) (-598 "ITFUN2.spad" 973068 973080 973328 973333) (-597 "ITAYLOR.spad" 970860 970875 972904 973029) (-596 "ISUPS.spad" 963271 963286 969834 969931) (-595 "ISUMP.spad" 962768 962784 963261 963266) (-594 "ISTRING.spad" 961771 961784 961937 961964) (-593 "ISAST.spad" 961490 961498 961761 961766) (-592 "IRURPK.spad" 960203 960222 961480 961485) (-591 "IRSN.spad" 958163 958171 960193 960198) (-590 "IRRF2F.spad" 956638 956648 958119 958124) (-589 "IRREDFFX.spad" 956239 956250 956628 956633) (-588 "IROOT.spad" 954570 954580 956229 956234) (-587 "IR.spad" 952359 952373 954425 954452) (-586 "IR2.spad" 951379 951395 952349 952354) (-585 "IR2F.spad" 950579 950595 951369 951374) (-584 "IPRNTPK.spad" 950339 950347 950569 950574) (-583 "IPF.spad" 949904 949916 950144 950237) (-582 "IPADIC.spad" 949665 949691 949830 949899) (-581 "IP4ADDR.spad" 949222 949230 949655 949660) (-580 "IOMODE.spad" 948843 948851 949212 949217) (-579 "IOBFILE.spad" 948204 948212 948833 948838) (-578 "IOBCON.spad" 948069 948077 948194 948199) (-577 "INVLAPLA.spad" 947714 947730 948059 948064) (-576 "INTTR.spad" 940960 940977 947704 947709) (-575 "INTTOOLS.spad" 938671 938687 940534 940539) (-574 "INTSLPE.spad" 937977 937985 938661 938666) (-573 "INTRVL.spad" 937543 937553 937891 937972) (-572 "INTRF.spad" 935907 935921 937533 937538) (-571 "INTRET.spad" 935339 935349 935897 935902) (-570 "INTRAT.spad" 934014 934031 935329 935334) (-569 "INTPM.spad" 932377 932393 933657 933662) (-568 "INTPAF.spad" 930145 930163 932309 932314) (-567 "INTPACK.spad" 920455 920463 930135 930140) (-566 "INT.spad" 919816 919824 920309 920450) (-565 "INTHERTR.spad" 919082 919099 919806 919811) (-564 "INTHERAL.spad" 918748 918772 919072 919077) (-563 "INTHEORY.spad" 915161 915169 918738 918743) (-562 "INTG0.spad" 908624 908642 915093 915098) (-561 "INTFTBL.spad" 902653 902661 908614 908619) (-560 "INTFACT.spad" 901712 901722 902643 902648) (-559 "INTEF.spad" 900027 900043 901702 901707) (-558 "INTDOM.spad" 898642 898650 899953 900022) (-557 "INTDOM.spad" 897319 897329 898632 898637) (-556 "INTCAT.spad" 895572 895582 897233 897314) (-555 "INTBIT.spad" 895075 895083 895562 895567) (-554 "INTALG.spad" 894257 894284 895065 895070) (-553 "INTAF.spad" 893749 893765 894247 894252) (-552 "INTABL.spad" 892267 892298 892430 892457) (-551 "INT8.spad" 892147 892155 892257 892262) (-550 "INT64.spad" 892026 892034 892137 892142) (-549 "INT32.spad" 891905 891913 892016 892021) (-548 "INT16.spad" 891784 891792 891895 891900) (-547 "INS.spad" 889251 889259 891686 891779) (-546 "INS.spad" 886804 886814 889241 889246) (-545 "INPSIGN.spad" 886238 886251 886794 886799) (-544 "INPRODPF.spad" 885304 885323 886228 886233) (-543 "INPRODFF.spad" 884362 884386 885294 885299) (-542 "INNMFACT.spad" 883333 883350 884352 884357) (-541 "INMODGCD.spad" 882817 882847 883323 883328) (-540 "INFSP.spad" 881102 881124 882807 882812) (-539 "INFPROD0.spad" 880152 880171 881092 881097) (-538 "INFORM.spad" 877313 877321 880142 880147) (-537 "INFORM1.spad" 876938 876948 877303 877308) (-536 "INFINITY.spad" 876490 876498 876928 876933) (-535 "INETCLTS.spad" 876467 876475 876480 876485) (-534 "INEP.spad" 874999 875021 876457 876462) (-533 "INDE.spad" 874728 874745 874989 874994) (-532 "INCRMAPS.spad" 874149 874159 874718 874723) (-531 "INBFILE.spad" 873221 873229 874139 874144) (-530 "INBFF.spad" 868991 869002 873211 873216) (-529 "INBCON.spad" 867279 867287 868981 868986) (-528 "INBCON.spad" 865565 865575 867269 867274) (-527 "INAST.spad" 865226 865234 865555 865560) (-526 "IMPTAST.spad" 864934 864942 865216 865221) (-525 "IMATRIX.spad" 863879 863905 864391 864418) (-524 "IMATQF.spad" 862973 863017 863835 863840) (-523 "IMATLIN.spad" 861578 861602 862929 862934) (-522 "ILIST.spad" 860234 860249 860761 860788) (-521 "IIARRAY2.spad" 859622 859660 859841 859868) (-520 "IFF.spad" 859032 859048 859303 859396) (-519 "IFAST.spad" 858646 858654 859022 859027) (-518 "IFARRAY.spad" 856133 856148 857829 857856) (-517 "IFAMON.spad" 855995 856012 856089 856094) (-516 "IEVALAB.spad" 855384 855396 855985 855990) (-515 "IEVALAB.spad" 854771 854785 855374 855379) (-514 "IDPO.spad" 854569 854581 854761 854766) (-513 "IDPOAMS.spad" 854325 854337 854559 854564) (-512 "IDPOAM.spad" 854045 854057 854315 854320) (-511 "IDPC.spad" 852979 852991 854035 854040) (-510 "IDPAM.spad" 852724 852736 852969 852974) (-509 "IDPAG.spad" 852471 852483 852714 852719) (-508 "IDENT.spad" 852121 852129 852461 852466) (-507 "IDECOMP.spad" 849358 849376 852111 852116) (-506 "IDEAL.spad" 844281 844320 849293 849298) (-505 "ICDEN.spad" 843432 843448 844271 844276) (-504 "ICARD.spad" 842621 842629 843422 843427) (-503 "IBPTOOLS.spad" 841214 841231 842611 842616) (-502 "IBITS.spad" 840413 840426 840850 840877) (-501 "IBATOOL.spad" 837288 837307 840403 840408) (-500 "IBACHIN.spad" 835775 835790 837278 837283) (-499 "IARRAY2.spad" 834763 834789 835382 835409) (-498 "IARRAY1.spad" 833808 833823 833946 833973) (-497 "IAN.spad" 832021 832029 833624 833717) (-496 "IALGFACT.spad" 831622 831655 832011 832016) (-495 "HYPCAT.spad" 831046 831054 831612 831617) (-494 "HYPCAT.spad" 830468 830478 831036 831041) (-493 "HOSTNAME.spad" 830276 830284 830458 830463) (-492 "HOMOTOP.spad" 830019 830029 830266 830271) (-491 "HOAGG.spad" 827287 827297 830009 830014) (-490 "HOAGG.spad" 824330 824342 827054 827059) (-489 "HEXADEC.spad" 822432 822440 822797 822890) (-488 "HEUGCD.spad" 821447 821458 822422 822427) (-487 "HELLFDIV.spad" 821037 821061 821437 821442) (-486 "HEAP.spad" 820429 820439 820644 820671) (-485 "HEADAST.spad" 819960 819968 820419 820424) (-484 "HDP.spad" 809803 809819 810180 810311) (-483 "HDMP.spad" 807015 807030 807633 807760) (-482 "HB.spad" 805252 805260 807005 807010) (-481 "HASHTBL.spad" 803722 803753 803933 803960) (-480 "HASAST.spad" 803438 803446 803712 803717) (-479 "HACKPI.spad" 802921 802929 803340 803433) (-478 "GTSET.spad" 801860 801876 802567 802594) (-477 "GSTBL.spad" 800379 800414 800553 800568) (-476 "GSERIES.spad" 797546 797573 798511 798660) (-475 "GROUP.spad" 796815 796823 797526 797541) (-474 "GROUP.spad" 796092 796102 796805 796810) (-473 "GROEBSOL.spad" 794580 794601 796082 796087) (-472 "GRMOD.spad" 793151 793163 794570 794575) (-471 "GRMOD.spad" 791720 791734 793141 793146) (-470 "GRIMAGE.spad" 784325 784333 791710 791715) (-469 "GRDEF.spad" 782704 782712 784315 784320) (-468 "GRAY.spad" 781163 781171 782694 782699) (-467 "GRALG.spad" 780210 780222 781153 781158) (-466 "GRALG.spad" 779255 779269 780200 780205) (-465 "GPOLSET.spad" 778709 778732 778937 778964) (-464 "GOSPER.spad" 777974 777992 778699 778704) (-463 "GMODPOL.spad" 777112 777139 777942 777969) (-462 "GHENSEL.spad" 776181 776195 777102 777107) (-461 "GENUPS.spad" 772282 772295 776171 776176) (-460 "GENUFACT.spad" 771859 771869 772272 772277) (-459 "GENPGCD.spad" 771443 771460 771849 771854) (-458 "GENMFACT.spad" 770895 770914 771433 771438) (-457 "GENEEZ.spad" 768834 768847 770885 770890) (-456 "GDMP.spad" 765888 765905 766664 766791) (-455 "GCNAALG.spad" 759783 759810 765682 765749) (-454 "GCDDOM.spad" 758955 758963 759709 759778) (-453 "GCDDOM.spad" 758189 758199 758945 758950) (-452 "GB.spad" 755707 755745 758145 758150) (-451 "GBINTERN.spad" 751727 751765 755697 755702) (-450 "GBF.spad" 747484 747522 751717 751722) (-449 "GBEUCLID.spad" 745358 745396 747474 747479) (-448 "GAUSSFAC.spad" 744655 744663 745348 745353) (-447 "GALUTIL.spad" 742977 742987 744611 744616) (-446 "GALPOLYU.spad" 741423 741436 742967 742972) (-445 "GALFACTU.spad" 739588 739607 741413 741418) (-444 "GALFACT.spad" 729721 729732 739578 739583) (-443 "FVFUN.spad" 726744 726752 729711 729716) (-442 "FVC.spad" 725796 725804 726734 726739) (-441 "FUNDESC.spad" 725474 725482 725786 725791) (-440 "FUNCTION.spad" 725323 725335 725464 725469) (-439 "FT.spad" 723616 723624 725313 725318) (-438 "FTEM.spad" 722779 722787 723606 723611) (-437 "FSUPFACT.spad" 721679 721698 722715 722720) (-436 "FST.spad" 719765 719773 721669 721674) (-435 "FSRED.spad" 719243 719259 719755 719760) (-434 "FSPRMELT.spad" 718067 718083 719200 719205) (-433 "FSPECF.spad" 716144 716160 718057 718062) (-432 "FS.spad" 710206 710216 715919 716139) (-431 "FS.spad" 704046 704058 709761 709766) (-430 "FSINT.spad" 703704 703720 704036 704041) (-429 "FSERIES.spad" 702891 702903 703524 703623) (-428 "FSCINT.spad" 702204 702220 702881 702886) (-427 "FSAGG.spad" 701321 701331 702160 702199) (-426 "FSAGG.spad" 700400 700412 701241 701246) (-425 "FSAGG2.spad" 699099 699115 700390 700395) (-424 "FS2UPS.spad" 693582 693616 699089 699094) (-423 "FS2.spad" 693227 693243 693572 693577) (-422 "FS2EXPXP.spad" 692350 692373 693217 693222) (-421 "FRUTIL.spad" 691292 691302 692340 692345) (-420 "FR.spad" 684986 684996 690316 690385) (-419 "FRNAALG.spad" 680073 680083 684928 684981) (-418 "FRNAALG.spad" 675172 675184 680029 680034) (-417 "FRNAAF2.spad" 674626 674644 675162 675167) (-416 "FRMOD.spad" 674020 674050 674557 674562) (-415 "FRIDEAL.spad" 673215 673236 674000 674015) (-414 "FRIDEAL2.spad" 672817 672849 673205 673210) (-413 "FRETRCT.spad" 672328 672338 672807 672812) (-412 "FRETRCT.spad" 671705 671717 672186 672191) (-411 "FRAMALG.spad" 670033 670046 671661 671700) (-410 "FRAMALG.spad" 668393 668408 670023 670028) (-409 "FRAC.spad" 665492 665502 665895 666068) (-408 "FRAC2.spad" 665095 665107 665482 665487) (-407 "FR2.spad" 664429 664441 665085 665090) (-406 "FPS.spad" 661238 661246 664319 664424) (-405 "FPS.spad" 658075 658085 661158 661163) (-404 "FPC.spad" 657117 657125 657977 658070) (-403 "FPC.spad" 656245 656255 657107 657112) (-402 "FPATMAB.spad" 656007 656017 656235 656240) (-401 "FPARFRAC.spad" 654480 654497 655997 656002) (-400 "FORTRAN.spad" 652986 653029 654470 654475) (-399 "FORT.spad" 651915 651923 652976 652981) (-398 "FORTFN.spad" 649085 649093 651905 651910) (-397 "FORTCAT.spad" 648769 648777 649075 649080) (-396 "FORMULA.spad" 646233 646241 648759 648764) (-395 "FORMULA1.spad" 645712 645722 646223 646228) (-394 "FORDER.spad" 645403 645427 645702 645707) (-393 "FOP.spad" 644604 644612 645393 645398) (-392 "FNLA.spad" 644028 644050 644572 644599) (-391 "FNCAT.spad" 642615 642623 644018 644023) (-390 "FNAME.spad" 642507 642515 642605 642610) (-389 "FMTC.spad" 642305 642313 642433 642502) (-388 "FMONOID.spad" 639360 639370 642261 642266) (-387 "FM.spad" 639055 639067 639294 639321) (-386 "FMFUN.spad" 636085 636093 639045 639050) (-385 "FMC.spad" 635137 635145 636075 636080) (-384 "FMCAT.spad" 632791 632809 635105 635132) (-383 "FM1.spad" 632148 632160 632725 632752) (-382 "FLOATRP.spad" 629869 629883 632138 632143) (-381 "FLOAT.spad" 623157 623165 629735 629864) (-380 "FLOATCP.spad" 620574 620588 623147 623152) (-379 "FLINEXP.spad" 620286 620296 620554 620569) (-378 "FLINEXP.spad" 619952 619964 620222 620227) (-377 "FLASORT.spad" 619272 619284 619942 619947) (-376 "FLALG.spad" 616918 616937 619198 619267) (-375 "FLAGG.spad" 613936 613946 616898 616913) (-374 "FLAGG.spad" 610855 610867 613819 613824) (-373 "FLAGG2.spad" 609536 609552 610845 610850) (-372 "FINRALG.spad" 607565 607578 609492 609531) (-371 "FINRALG.spad" 605520 605535 607449 607454) (-370 "FINITE.spad" 604672 604680 605510 605515) (-369 "FINAALG.spad" 593653 593663 604614 604667) (-368 "FINAALG.spad" 582646 582658 593609 593614) (-367 "FILE.spad" 582229 582239 582636 582641) (-366 "FILECAT.spad" 580747 580764 582219 582224) (-365 "FIELD.spad" 580153 580161 580649 580742) (-364 "FIELD.spad" 579645 579655 580143 580148) (-363 "FGROUP.spad" 578254 578264 579625 579640) (-362 "FGLMICPK.spad" 577041 577056 578244 578249) (-361 "FFX.spad" 576416 576431 576757 576850) (-360 "FFSLPE.spad" 575905 575926 576406 576411) (-359 "FFPOLY.spad" 567157 567168 575895 575900) (-358 "FFPOLY2.spad" 566217 566234 567147 567152) (-357 "FFP.spad" 565614 565634 565933 566026) (-356 "FF.spad" 565062 565078 565295 565388) (-355 "FFNBX.spad" 563574 563594 564778 564871) (-354 "FFNBP.spad" 562087 562104 563290 563383) (-353 "FFNB.spad" 560552 560573 561768 561861) (-352 "FFINTBAS.spad" 557966 557985 560542 560547) (-351 "FFIELDC.spad" 555541 555549 557868 557961) (-350 "FFIELDC.spad" 553202 553212 555531 555536) (-349 "FFHOM.spad" 551950 551967 553192 553197) (-348 "FFF.spad" 549385 549396 551940 551945) (-347 "FFCGX.spad" 548232 548252 549101 549194) (-346 "FFCGP.spad" 547121 547141 547948 548041) (-345 "FFCG.spad" 545913 545934 546802 546895) (-344 "FFCAT.spad" 538940 538962 545752 545908) (-343 "FFCAT.spad" 532046 532070 538860 538865) (-342 "FFCAT2.spad" 531791 531831 532036 532041) (-341 "FEXPR.spad" 523500 523546 531547 531586) (-340 "FEVALAB.spad" 523206 523216 523490 523495) (-339 "FEVALAB.spad" 522697 522709 522983 522988) (-338 "FDIV.spad" 522139 522163 522687 522692) (-337 "FDIVCAT.spad" 520181 520205 522129 522134) (-336 "FDIVCAT.spad" 518221 518247 520171 520176) (-335 "FDIV2.spad" 517875 517915 518211 518216) (-334 "FCTRDATA.spad" 516907 516915 517865 517870) (-333 "FCPAK1.spad" 515460 515468 516897 516902) (-332 "FCOMP.spad" 514839 514849 515450 515455) (-331 "FC.spad" 504754 504762 514829 514834) (-330 "FAXF.spad" 497689 497703 504656 504749) (-329 "FAXF.spad" 490676 490692 497645 497650) (-328 "FARRAY.spad" 488822 488832 489859 489886) (-327 "FAMR.spad" 486942 486954 488720 488817) (-326 "FAMR.spad" 485046 485060 486826 486831) (-325 "FAMONOID.spad" 484696 484706 485000 485005) (-324 "FAMONC.spad" 482918 482930 484686 484691) (-323 "FAGROUP.spad" 482524 482534 482814 482841) (-322 "FACUTIL.spad" 480720 480737 482514 482519) (-321 "FACTFUNC.spad" 479896 479906 480710 480715) (-320 "EXPUPXS.spad" 476729 476752 478028 478177) (-319 "EXPRTUBE.spad" 473957 473965 476719 476724) (-318 "EXPRODE.spad" 470829 470845 473947 473952) (-317 "EXPR.spad" 466104 466114 466818 467225) (-316 "EXPR2UPS.spad" 462196 462209 466094 466099) (-315 "EXPR2.spad" 461899 461911 462186 462191) (-314 "EXPEXPAN.spad" 458837 458862 459471 459564) (-313 "EXIT.spad" 458508 458516 458827 458832) (-312 "EXITAST.spad" 458244 458252 458498 458503) (-311 "EVALCYC.spad" 457702 457716 458234 458239) (-310 "EVALAB.spad" 457266 457276 457692 457697) (-309 "EVALAB.spad" 456828 456840 457256 457261) (-308 "EUCDOM.spad" 454370 454378 456754 456823) (-307 "EUCDOM.spad" 451974 451984 454360 454365) (-306 "ESTOOLS.spad" 443814 443822 451964 451969) (-305 "ESTOOLS2.spad" 443415 443429 443804 443809) (-304 "ESTOOLS1.spad" 443100 443111 443405 443410) (-303 "ES.spad" 435647 435655 443090 443095) (-302 "ES.spad" 428100 428110 435545 435550) (-301 "ESCONT.spad" 424873 424881 428090 428095) (-300 "ESCONT1.spad" 424622 424634 424863 424868) (-299 "ES2.spad" 424117 424133 424612 424617) (-298 "ES1.spad" 423683 423699 424107 424112) (-297 "ERROR.spad" 421004 421012 423673 423678) (-296 "EQTBL.spad" 419476 419498 419685 419712) (-295 "EQ.spad" 414269 414279 417068 417180) (-294 "EQ2.spad" 413985 413997 414259 414264) (-293 "EP.spad" 410299 410309 413975 413980) (-292 "ENV.spad" 408951 408959 410289 410294) (-291 "ENTIRER.spad" 408619 408627 408895 408946) (-290 "EMR.spad" 407820 407861 408545 408614) (-289 "ELTAGG.spad" 406060 406079 407810 407815) (-288 "ELTAGG.spad" 404264 404285 406016 406021) (-287 "ELTAB.spad" 403711 403729 404254 404259) (-286 "ELFUTS.spad" 403090 403109 403701 403706) (-285 "ELEMFUN.spad" 402779 402787 403080 403085) (-284 "ELEMFUN.spad" 402466 402476 402769 402774) (-283 "ELAGG.spad" 400409 400419 402446 402461) (-282 "ELAGG.spad" 398289 398301 400328 400333) (-281 "ELABEXPR.spad" 397212 397220 398279 398284) (-280 "EFUPXS.spad" 393988 394018 397168 397173) (-279 "EFULS.spad" 390824 390847 393944 393949) (-278 "EFSTRUC.spad" 388779 388795 390814 390819) (-277 "EF.spad" 383545 383561 388769 388774) (-276 "EAB.spad" 381821 381829 383535 383540) (-275 "E04UCFA.spad" 381357 381365 381811 381816) (-274 "E04NAFA.spad" 380934 380942 381347 381352) (-273 "E04MBFA.spad" 380514 380522 380924 380929) (-272 "E04JAFA.spad" 380050 380058 380504 380509) (-271 "E04GCFA.spad" 379586 379594 380040 380045) (-270 "E04FDFA.spad" 379122 379130 379576 379581) (-269 "E04DGFA.spad" 378658 378666 379112 379117) (-268 "E04AGNT.spad" 374500 374508 378648 378653) (-267 "DVARCAT.spad" 371185 371195 374490 374495) (-266 "DVARCAT.spad" 367868 367880 371175 371180) (-265 "DSMP.spad" 365335 365349 365640 365767) (-264 "DROPT.spad" 359280 359288 365325 365330) (-263 "DROPT1.spad" 358943 358953 359270 359275) (-262 "DROPT0.spad" 353770 353778 358933 358938) (-261 "DRAWPT.spad" 351925 351933 353760 353765) (-260 "DRAW.spad" 344525 344538 351915 351920) (-259 "DRAWHACK.spad" 343833 343843 344515 344520) (-258 "DRAWCX.spad" 341275 341283 343823 343828) (-257 "DRAWCURV.spad" 340812 340827 341265 341270) (-256 "DRAWCFUN.spad" 329984 329992 340802 340807) (-255 "DQAGG.spad" 328152 328162 329952 329979) (-254 "DPOLCAT.spad" 323493 323509 328020 328147) (-253 "DPOLCAT.spad" 318920 318938 323449 323454) (-252 "DPMO.spad" 311146 311162 311284 311585) (-251 "DPMM.spad" 303385 303403 303510 303811) (-250 "DOMTMPLT.spad" 303045 303053 303375 303380) (-249 "DOMCTOR.spad" 302800 302808 303035 303040) (-248 "DOMAIN.spad" 301931 301939 302790 302795) (-247 "DMP.spad" 299189 299204 299761 299888) (-246 "DLP.spad" 298537 298547 299179 299184) (-245 "DLIST.spad" 297116 297126 297720 297747) (-244 "DLAGG.spad" 295527 295537 297106 297111) (-243 "DIVRING.spad" 295069 295077 295471 295522) (-242 "DIVRING.spad" 294655 294665 295059 295064) (-241 "DISPLAY.spad" 292835 292843 294645 294650) (-240 "DIRPROD.spad" 282415 282431 283055 283186) (-239 "DIRPROD2.spad" 281223 281241 282405 282410) (-238 "DIRPCAT.spad" 280165 280181 281087 281218) (-237 "DIRPCAT.spad" 278836 278854 279760 279765) (-236 "DIOSP.spad" 277661 277669 278826 278831) (-235 "DIOPS.spad" 276645 276655 277641 277656) (-234 "DIOPS.spad" 275603 275615 276601 276606) (-233 "DIFRING.spad" 274895 274903 275583 275598) (-232 "DIFRING.spad" 274195 274205 274885 274890) (-231 "DIFEXT.spad" 273354 273364 274175 274190) (-230 "DIFEXT.spad" 272430 272442 273253 273258) (-229 "DIAGG.spad" 272060 272070 272410 272425) (-228 "DIAGG.spad" 271698 271710 272050 272055) (-227 "DHMATRIX.spad" 270002 270012 271155 271182) (-226 "DFSFUN.spad" 263410 263418 269992 269997) (-225 "DFLOAT.spad" 260131 260139 263300 263405) (-224 "DFINTTLS.spad" 258340 258356 260121 260126) (-223 "DERHAM.spad" 256250 256282 258320 258335) (-222 "DEQUEUE.spad" 255568 255578 255857 255884) (-221 "DEGRED.spad" 255183 255197 255558 255563) (-220 "DEFINTRF.spad" 252708 252718 255173 255178) (-219 "DEFINTEF.spad" 251204 251220 252698 252703) (-218 "DEFAST.spad" 250572 250580 251194 251199) (-217 "DECIMAL.spad" 248678 248686 249039 249132) (-216 "DDFACT.spad" 246477 246494 248668 248673) (-215 "DBLRESP.spad" 246075 246099 246467 246472) (-214 "DBASE.spad" 244729 244739 246065 246070) (-213 "DATAARY.spad" 244191 244204 244719 244724) (-212 "D03FAFA.spad" 244019 244027 244181 244186) (-211 "D03EEFA.spad" 243839 243847 244009 244014) (-210 "D03AGNT.spad" 242919 242927 243829 243834) (-209 "D02EJFA.spad" 242381 242389 242909 242914) (-208 "D02CJFA.spad" 241859 241867 242371 242376) (-207 "D02BHFA.spad" 241349 241357 241849 241854) (-206 "D02BBFA.spad" 240839 240847 241339 241344) (-205 "D02AGNT.spad" 235643 235651 240829 240834) (-204 "D01WGTS.spad" 233962 233970 235633 235638) (-203 "D01TRNS.spad" 233939 233947 233952 233957) (-202 "D01GBFA.spad" 233461 233469 233929 233934) (-201 "D01FCFA.spad" 232983 232991 233451 233456) (-200 "D01ASFA.spad" 232451 232459 232973 232978) (-199 "D01AQFA.spad" 231897 231905 232441 232446) (-198 "D01APFA.spad" 231321 231329 231887 231892) (-197 "D01ANFA.spad" 230815 230823 231311 231316) (-196 "D01AMFA.spad" 230325 230333 230805 230810) (-195 "D01ALFA.spad" 229865 229873 230315 230320) (-194 "D01AKFA.spad" 229391 229399 229855 229860) (-193 "D01AJFA.spad" 228914 228922 229381 229386) (-192 "D01AGNT.spad" 224973 224981 228904 228909) (-191 "CYCLOTOM.spad" 224479 224487 224963 224968) (-190 "CYCLES.spad" 221311 221319 224469 224474) (-189 "CVMP.spad" 220728 220738 221301 221306) (-188 "CTRIGMNP.spad" 219218 219234 220718 220723) (-187 "CTOR.spad" 218909 218917 219208 219213) (-186 "CTORKIND.spad" 218512 218520 218899 218904) (-185 "CTORCAT.spad" 217761 217769 218502 218507) (-184 "CTORCAT.spad" 217008 217018 217751 217756) (-183 "CTORCALL.spad" 216588 216596 216998 217003) (-182 "CSTTOOLS.spad" 215831 215844 216578 216583) (-181 "CRFP.spad" 209535 209548 215821 215826) (-180 "CRCEAST.spad" 209255 209263 209525 209530) (-179 "CRAPACK.spad" 208298 208308 209245 209250) (-178 "CPMATCH.spad" 207798 207813 208223 208228) (-177 "CPIMA.spad" 207503 207522 207788 207793) (-176 "COORDSYS.spad" 202396 202406 207493 207498) (-175 "CONTOUR.spad" 201803 201811 202386 202391) (-174 "CONTFRAC.spad" 197415 197425 201705 201798) (-173 "CONDUIT.spad" 197173 197181 197405 197410) (-172 "COMRING.spad" 196847 196855 197111 197168) (-171 "COMPPROP.spad" 196361 196369 196837 196842) (-170 "COMPLPAT.spad" 196128 196143 196351 196356) (-169 "COMPLEX.spad" 190265 190275 190509 190770) (-168 "COMPLEX2.spad" 189978 189990 190255 190260) (-167 "COMPFACT.spad" 189580 189594 189968 189973) (-166 "COMPCAT.spad" 187648 187658 189314 189575) (-165 "COMPCAT.spad" 185444 185456 187112 187117) (-164 "COMMUPC.spad" 185190 185208 185434 185439) (-163 "COMMONOP.spad" 184723 184731 185180 185185) (-162 "COMM.spad" 184532 184540 184713 184718) (-161 "COMMAAST.spad" 184295 184303 184522 184527) (-160 "COMBOPC.spad" 183200 183208 184285 184290) (-159 "COMBINAT.spad" 181945 181955 183190 183195) (-158 "COMBF.spad" 179313 179329 181935 181940) (-157 "COLOR.spad" 178150 178158 179303 179308) (-156 "COLONAST.spad" 177816 177824 178140 178145) (-155 "CMPLXRT.spad" 177525 177542 177806 177811) (-154 "CLLCTAST.spad" 177187 177195 177515 177520) (-153 "CLIP.spad" 173279 173287 177177 177182) (-152 "CLIF.spad" 171918 171934 173235 173274) (-151 "CLAGG.spad" 168403 168413 171908 171913) (-150 "CLAGG.spad" 164759 164771 168266 168271) (-149 "CINTSLPE.spad" 164084 164097 164749 164754) (-148 "CHVAR.spad" 162162 162184 164074 164079) (-147 "CHARZ.spad" 162077 162085 162142 162157) (-146 "CHARPOL.spad" 161585 161595 162067 162072) (-145 "CHARNZ.spad" 161338 161346 161565 161580) (-144 "CHAR.spad" 159206 159214 161328 161333) (-143 "CFCAT.spad" 158522 158530 159196 159201) (-142 "CDEN.spad" 157680 157694 158512 158517) (-141 "CCLASS.spad" 155829 155837 157091 157130) (-140 "CATEGORY.spad" 154919 154927 155819 155824) (-139 "CATCTOR.spad" 154810 154818 154909 154914) (-138 "CATAST.spad" 154428 154436 154800 154805) (-137 "CASEAST.spad" 154142 154150 154418 154423) (-136 "CARTEN.spad" 149245 149269 154132 154137) (-135 "CARTEN2.spad" 148631 148658 149235 149240) (-134 "CARD.spad" 145920 145928 148605 148626) (-133 "CAPSLAST.spad" 145694 145702 145910 145915) (-132 "CACHSET.spad" 145316 145324 145684 145689) (-131 "CABMON.spad" 144869 144877 145306 145311) (-130 "BYTEORD.spad" 144544 144552 144859 144864) (-129 "BYTE.spad" 143969 143977 144534 144539) (-128 "BYTEBUF.spad" 141826 141834 143138 143165) (-127 "BTREE.spad" 140895 140905 141433 141460) (-126 "BTOURN.spad" 139898 139908 140502 140529) (-125 "BTCAT.spad" 139286 139296 139866 139893) (-124 "BTCAT.spad" 138694 138706 139276 139281) (-123 "BTAGG.spad" 137816 137824 138662 138689) (-122 "BTAGG.spad" 136958 136968 137806 137811) (-121 "BSTREE.spad" 135693 135703 136565 136592) (-120 "BRILL.spad" 133888 133899 135683 135688) (-119 "BRAGG.spad" 132812 132822 133878 133883) (-118 "BRAGG.spad" 131700 131712 132768 132773) (-117 "BPADICRT.spad" 129681 129693 129936 130029) (-116 "BPADIC.spad" 129345 129357 129607 129676) (-115 "BOUNDZRO.spad" 129001 129018 129335 129340) (-114 "BOP.spad" 124125 124133 128991 128996) (-113 "BOP1.spad" 121545 121555 124115 124120) (-112 "BOOLEAN.spad" 120977 120985 121535 121540) (-111 "BMODULE.spad" 120689 120701 120945 120972) (-110 "BITS.spad" 120108 120116 120325 120352) (-109 "BINDING.spad" 119519 119527 120098 120103) (-108 "BINARY.spad" 117630 117638 117986 118079) (-107 "BGAGG.spad" 116827 116837 117610 117625) (-106 "BGAGG.spad" 116032 116044 116817 116822) (-105 "BFUNCT.spad" 115596 115604 116012 116027) (-104 "BEZOUT.spad" 114730 114757 115546 115551) (-103 "BBTREE.spad" 111549 111559 114337 114364) (-102 "BASTYPE.spad" 111221 111229 111539 111544) (-101 "BASTYPE.spad" 110891 110901 111211 111216) (-100 "BALFACT.spad" 110330 110343 110881 110886) (-99 "AUTOMOR.spad" 109777 109786 110310 110325) (-98 "ATTREG.spad" 106496 106503 109529 109772) (-97 "ATTRBUT.spad" 102519 102526 106476 106491) (-96 "ATTRAST.spad" 102236 102243 102509 102514) (-95 "ATRIG.spad" 101706 101713 102226 102231) (-94 "ATRIG.spad" 101174 101183 101696 101701) (-93 "ASTCAT.spad" 101078 101085 101164 101169) (-92 "ASTCAT.spad" 100980 100989 101068 101073) (-91 "ASTACK.spad" 100313 100322 100587 100614) (-90 "ASSOCEQ.spad" 99113 99124 100269 100274) (-89 "ASP9.spad" 98194 98207 99103 99108) (-88 "ASP8.spad" 97237 97250 98184 98189) (-87 "ASP80.spad" 96559 96572 97227 97232) (-86 "ASP7.spad" 95719 95732 96549 96554) (-85 "ASP78.spad" 95170 95183 95709 95714) (-84 "ASP77.spad" 94539 94552 95160 95165) (-83 "ASP74.spad" 93631 93644 94529 94534) (-82 "ASP73.spad" 92902 92915 93621 93626) (-81 "ASP6.spad" 91769 91782 92892 92897) (-80 "ASP55.spad" 90278 90291 91759 91764) (-79 "ASP50.spad" 88095 88108 90268 90273) (-78 "ASP4.spad" 87390 87403 88085 88090) (-77 "ASP49.spad" 86389 86402 87380 87385) (-76 "ASP42.spad" 84796 84835 86379 86384) (-75 "ASP41.spad" 83375 83414 84786 84791) (-74 "ASP35.spad" 82363 82376 83365 83370) (-73 "ASP34.spad" 81664 81677 82353 82358) (-72 "ASP33.spad" 81224 81237 81654 81659) (-71 "ASP31.spad" 80364 80377 81214 81219) (-70 "ASP30.spad" 79256 79269 80354 80359) (-69 "ASP29.spad" 78722 78735 79246 79251) (-68 "ASP28.spad" 69995 70008 78712 78717) (-67 "ASP27.spad" 68892 68905 69985 69990) (-66 "ASP24.spad" 67979 67992 68882 68887) (-65 "ASP20.spad" 67443 67456 67969 67974) (-64 "ASP1.spad" 66824 66837 67433 67438) (-63 "ASP19.spad" 61510 61523 66814 66819) (-62 "ASP12.spad" 60924 60937 61500 61505) (-61 "ASP10.spad" 60195 60208 60914 60919) (-60 "ARRAY2.spad" 59555 59564 59802 59829) (-59 "ARRAY1.spad" 58390 58399 58738 58765) (-58 "ARRAY12.spad" 57059 57070 58380 58385) (-57 "ARR2CAT.spad" 52721 52742 57027 57054) (-56 "ARR2CAT.spad" 48403 48426 52711 52716) (-55 "ARITY.spad" 47775 47782 48393 48398) (-54 "APPRULE.spad" 47019 47041 47765 47770) (-53 "APPLYORE.spad" 46634 46647 47009 47014) (-52 "ANY.spad" 45491 45498 46624 46629) (-51 "ANY1.spad" 44562 44571 45481 45486) (-50 "ANTISYM.spad" 43001 43017 44542 44557) (-49 "ANON.spad" 42694 42701 42991 42996) (-48 "AN.spad" 40995 41002 42510 42603) (-47 "AMR.spad" 39174 39185 40893 40990) (-46 "AMR.spad" 37190 37203 38911 38916) (-45 "ALIST.spad" 34602 34623 34952 34979) (-44 "ALGSC.spad" 33725 33751 34474 34527) (-43 "ALGPKG.spad" 29434 29445 33681 33686) (-42 "ALGMFACT.spad" 28623 28637 29424 29429) (-41 "ALGMANIP.spad" 26079 26094 28456 28461) (-40 "ALGFF.spad" 24394 24421 24611 24767) (-39 "ALGFACT.spad" 23515 23525 24384 24389) (-38 "ALGEBRA.spad" 23348 23357 23471 23510) (-37 "ALGEBRA.spad" 23213 23224 23338 23343) (-36 "ALAGG.spad" 22723 22744 23181 23208) (-35 "AHYP.spad" 22104 22111 22713 22718) (-34 "AGG.spad" 20413 20420 22094 22099) (-33 "AGG.spad" 18686 18695 20369 20374) (-32 "AF.spad" 17111 17126 18621 18626) (-31 "ADDAST.spad" 16789 16796 17101 17106) (-30 "ACPLOT.spad" 15360 15367 16779 16784) (-29 "ACFS.spad" 13111 13120 15262 15355) (-28 "ACFS.spad" 10948 10959 13101 13106) (-27 "ACF.spad" 7550 7557 10850 10943) (-26 "ACF.spad" 4238 4247 7540 7545) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2285060 2285065 2285070 2285075) (-2 NIL 2285040 2285045 2285050 2285055) (-1 NIL 2285020 2285025 2285030 2285035) (0 NIL 2285000 2285005 2285010 2285015) (-1292 "ZMOD.spad" 2284809 2284822 2284938 2284995) (-1291 "ZLINDEP.spad" 2283853 2283864 2284799 2284804) (-1290 "ZDSOLVE.spad" 2273702 2273724 2283843 2283848) (-1289 "YSTREAM.spad" 2273195 2273206 2273692 2273697) (-1288 "XRPOLY.spad" 2272415 2272435 2273051 2273120) (-1287 "XPR.spad" 2270206 2270219 2272133 2272232) (-1286 "XPOLY.spad" 2269761 2269772 2270062 2270131) (-1285 "XPOLYC.spad" 2269078 2269094 2269687 2269756) (-1284 "XPBWPOLY.spad" 2267515 2267535 2268858 2268927) (-1283 "XF.spad" 2265976 2265991 2267417 2267510) (-1282 "XF.spad" 2264417 2264434 2265860 2265865) (-1281 "XFALG.spad" 2261441 2261457 2264343 2264412) (-1280 "XEXPPKG.spad" 2260692 2260718 2261431 2261436) (-1279 "XDPOLY.spad" 2260306 2260322 2260548 2260617) (-1278 "XALG.spad" 2259966 2259977 2260262 2260301) (-1277 "WUTSET.spad" 2255805 2255822 2259612 2259639) (-1276 "WP.spad" 2255004 2255048 2255663 2255730) (-1275 "WHILEAST.spad" 2254802 2254811 2254994 2254999) (-1274 "WHEREAST.spad" 2254473 2254482 2254792 2254797) (-1273 "WFFINTBS.spad" 2252036 2252058 2254463 2254468) (-1272 "WEIER.spad" 2250250 2250261 2252026 2252031) (-1271 "VSPACE.spad" 2249923 2249934 2250218 2250245) (-1270 "VSPACE.spad" 2249616 2249629 2249913 2249918) (-1269 "VOID.spad" 2249293 2249302 2249606 2249611) (-1268 "VIEW.spad" 2246915 2246924 2249283 2249288) (-1267 "VIEWDEF.spad" 2242112 2242121 2246905 2246910) (-1266 "VIEW3D.spad" 2225947 2225956 2242102 2242107) (-1265 "VIEW2D.spad" 2213684 2213693 2225937 2225942) (-1264 "VECTOR.spad" 2212358 2212369 2212609 2212636) (-1263 "VECTOR2.spad" 2210985 2210998 2212348 2212353) (-1262 "VECTCAT.spad" 2208885 2208896 2210953 2210980) (-1261 "VECTCAT.spad" 2206592 2206605 2208662 2208667) (-1260 "VARIABLE.spad" 2206372 2206387 2206582 2206587) (-1259 "UTYPE.spad" 2206016 2206025 2206362 2206367) (-1258 "UTSODETL.spad" 2205309 2205333 2205972 2205977) (-1257 "UTSODE.spad" 2203497 2203517 2205299 2205304) (-1256 "UTS.spad" 2198286 2198314 2201964 2202061) (-1255 "UTSCAT.spad" 2195737 2195753 2198184 2198281) (-1254 "UTSCAT.spad" 2192832 2192850 2195281 2195286) (-1253 "UTS2.spad" 2192425 2192460 2192822 2192827) (-1252 "URAGG.spad" 2187058 2187069 2192415 2192420) (-1251 "URAGG.spad" 2181655 2181668 2187014 2187019) (-1250 "UPXSSING.spad" 2179298 2179324 2180736 2180869) (-1249 "UPXS.spad" 2176446 2176474 2177430 2177579) (-1248 "UPXSCONS.spad" 2174203 2174223 2174578 2174727) (-1247 "UPXSCCA.spad" 2172768 2172788 2174049 2174198) (-1246 "UPXSCCA.spad" 2171475 2171497 2172758 2172763) (-1245 "UPXSCAT.spad" 2170056 2170072 2171321 2171470) (-1244 "UPXS2.spad" 2169597 2169650 2170046 2170051) (-1243 "UPSQFREE.spad" 2168009 2168023 2169587 2169592) (-1242 "UPSCAT.spad" 2165602 2165626 2167907 2168004) (-1241 "UPSCAT.spad" 2162901 2162927 2165208 2165213) (-1240 "UPOLYC.spad" 2157879 2157890 2162743 2162896) (-1239 "UPOLYC.spad" 2152749 2152762 2157615 2157620) (-1238 "UPOLYC2.spad" 2152218 2152237 2152739 2152744) (-1237 "UP.spad" 2149411 2149426 2149804 2149957) (-1236 "UPMP.spad" 2148301 2148314 2149401 2149406) (-1235 "UPDIVP.spad" 2147864 2147878 2148291 2148296) (-1234 "UPDECOMP.spad" 2146101 2146115 2147854 2147859) (-1233 "UPCDEN.spad" 2145308 2145324 2146091 2146096) (-1232 "UP2.spad" 2144670 2144691 2145298 2145303) (-1231 "UNISEG.spad" 2144023 2144034 2144589 2144594) (-1230 "UNISEG2.spad" 2143516 2143529 2143979 2143984) (-1229 "UNIFACT.spad" 2142617 2142629 2143506 2143511) (-1228 "ULS.spad" 2133169 2133197 2134262 2134691) (-1227 "ULSCONS.spad" 2125563 2125583 2125935 2126084) (-1226 "ULSCCAT.spad" 2123292 2123312 2125409 2125558) (-1225 "ULSCCAT.spad" 2121129 2121151 2123248 2123253) (-1224 "ULSCAT.spad" 2119345 2119361 2120975 2121124) (-1223 "ULS2.spad" 2118857 2118910 2119335 2119340) (-1222 "UINT8.spad" 2118734 2118743 2118847 2118852) (-1221 "UINT64.spad" 2118610 2118619 2118724 2118729) (-1220 "UINT32.spad" 2118486 2118495 2118600 2118605) (-1219 "UINT16.spad" 2118362 2118371 2118476 2118481) (-1218 "UFD.spad" 2117427 2117436 2118288 2118357) (-1217 "UFD.spad" 2116554 2116565 2117417 2117422) (-1216 "UDVO.spad" 2115401 2115410 2116544 2116549) (-1215 "UDPO.spad" 2112828 2112839 2115357 2115362) (-1214 "TYPE.spad" 2112760 2112769 2112818 2112823) (-1213 "TYPEAST.spad" 2112679 2112688 2112750 2112755) (-1212 "TWOFACT.spad" 2111329 2111344 2112669 2112674) (-1211 "TUPLE.spad" 2110813 2110824 2111228 2111233) (-1210 "TUBETOOL.spad" 2107650 2107659 2110803 2110808) (-1209 "TUBE.spad" 2106291 2106308 2107640 2107645) (-1208 "TS.spad" 2104880 2104896 2105856 2105953) (-1207 "TSETCAT.spad" 2092007 2092024 2104848 2104875) (-1206 "TSETCAT.spad" 2079120 2079139 2091963 2091968) (-1205 "TRMANIP.spad" 2073486 2073503 2078826 2078831) (-1204 "TRIMAT.spad" 2072445 2072470 2073476 2073481) (-1203 "TRIGMNIP.spad" 2070962 2070979 2072435 2072440) (-1202 "TRIGCAT.spad" 2070474 2070483 2070952 2070957) (-1201 "TRIGCAT.spad" 2069984 2069995 2070464 2070469) (-1200 "TREE.spad" 2068555 2068566 2069591 2069618) (-1199 "TRANFUN.spad" 2068386 2068395 2068545 2068550) (-1198 "TRANFUN.spad" 2068215 2068226 2068376 2068381) (-1197 "TOPSP.spad" 2067889 2067898 2068205 2068210) (-1196 "TOOLSIGN.spad" 2067552 2067563 2067879 2067884) (-1195 "TEXTFILE.spad" 2066109 2066118 2067542 2067547) (-1194 "TEX.spad" 2063241 2063250 2066099 2066104) (-1193 "TEX1.spad" 2062797 2062808 2063231 2063236) (-1192 "TEMUTL.spad" 2062352 2062361 2062787 2062792) (-1191 "TBCMPPK.spad" 2060445 2060468 2062342 2062347) (-1190 "TBAGG.spad" 2059481 2059504 2060425 2060440) (-1189 "TBAGG.spad" 2058525 2058550 2059471 2059476) (-1188 "TANEXP.spad" 2057901 2057912 2058515 2058520) (-1187 "TABLE.spad" 2056312 2056335 2056582 2056609) (-1186 "TABLEAU.spad" 2055793 2055804 2056302 2056307) (-1185 "TABLBUMP.spad" 2052576 2052587 2055783 2055788) (-1184 "SYSTEM.spad" 2051804 2051813 2052566 2052571) (-1183 "SYSSOLP.spad" 2049277 2049288 2051794 2051799) (-1182 "SYSNNI.spad" 2048457 2048468 2049267 2049272) (-1181 "SYSINT.spad" 2047861 2047872 2048447 2048452) (-1180 "SYNTAX.spad" 2044055 2044064 2047851 2047856) (-1179 "SYMTAB.spad" 2042111 2042120 2044045 2044050) (-1178 "SYMS.spad" 2038096 2038105 2042101 2042106) (-1177 "SYMPOLY.spad" 2037103 2037114 2037185 2037312) (-1176 "SYMFUNC.spad" 2036578 2036589 2037093 2037098) (-1175 "SYMBOL.spad" 2034005 2034014 2036568 2036573) (-1174 "SWITCH.spad" 2030762 2030771 2033995 2034000) (-1173 "SUTS.spad" 2027661 2027689 2029229 2029326) (-1172 "SUPXS.spad" 2024796 2024824 2025793 2025942) (-1171 "SUP.spad" 2021601 2021612 2022382 2022535) (-1170 "SUPFRACF.spad" 2020706 2020724 2021591 2021596) (-1169 "SUP2.spad" 2020096 2020109 2020696 2020701) (-1168 "SUMRF.spad" 2019062 2019073 2020086 2020091) (-1167 "SUMFS.spad" 2018695 2018712 2019052 2019057) (-1166 "SULS.spad" 2009234 2009262 2010340 2010769) (-1165 "SUCHTAST.spad" 2009003 2009012 2009224 2009229) (-1164 "SUCH.spad" 2008683 2008698 2008993 2008998) (-1163 "SUBSPACE.spad" 2000690 2000705 2008673 2008678) (-1162 "SUBRESP.spad" 1999850 1999864 2000646 2000651) (-1161 "STTF.spad" 1995949 1995965 1999840 1999845) (-1160 "STTFNC.spad" 1992417 1992433 1995939 1995944) (-1159 "STTAYLOR.spad" 1984815 1984826 1992298 1992303) (-1158 "STRTBL.spad" 1983320 1983337 1983469 1983496) (-1157 "STRING.spad" 1982729 1982738 1982743 1982770) (-1156 "STRICAT.spad" 1982517 1982526 1982697 1982724) (-1155 "STREAM.spad" 1979375 1979386 1982042 1982057) (-1154 "STREAM3.spad" 1978920 1978935 1979365 1979370) (-1153 "STREAM2.spad" 1977988 1978001 1978910 1978915) (-1152 "STREAM1.spad" 1977692 1977703 1977978 1977983) (-1151 "STINPROD.spad" 1976598 1976614 1977682 1977687) (-1150 "STEP.spad" 1975799 1975808 1976588 1976593) (-1149 "STBL.spad" 1974325 1974353 1974492 1974507) (-1148 "STAGG.spad" 1973400 1973411 1974315 1974320) (-1147 "STAGG.spad" 1972473 1972486 1973390 1973395) (-1146 "STACK.spad" 1971824 1971835 1972080 1972107) (-1145 "SREGSET.spad" 1969528 1969545 1971470 1971497) (-1144 "SRDCMPK.spad" 1968073 1968093 1969518 1969523) (-1143 "SRAGG.spad" 1963170 1963179 1968041 1968068) (-1142 "SRAGG.spad" 1958287 1958298 1963160 1963165) (-1141 "SQMATRIX.spad" 1955903 1955921 1956819 1956906) (-1140 "SPLTREE.spad" 1950455 1950468 1955339 1955366) (-1139 "SPLNODE.spad" 1947043 1947056 1950445 1950450) (-1138 "SPFCAT.spad" 1945820 1945829 1947033 1947038) (-1137 "SPECOUT.spad" 1944370 1944379 1945810 1945815) (-1136 "SPADXPT.spad" 1936509 1936518 1944360 1944365) (-1135 "spad-parser.spad" 1935974 1935983 1936499 1936504) (-1134 "SPADAST.spad" 1935675 1935684 1935964 1935969) (-1133 "SPACEC.spad" 1919688 1919699 1935665 1935670) (-1132 "SPACE3.spad" 1919464 1919475 1919678 1919683) (-1131 "SORTPAK.spad" 1919009 1919022 1919420 1919425) (-1130 "SOLVETRA.spad" 1916766 1916777 1918999 1919004) (-1129 "SOLVESER.spad" 1915286 1915297 1916756 1916761) (-1128 "SOLVERAD.spad" 1911296 1911307 1915276 1915281) (-1127 "SOLVEFOR.spad" 1909716 1909734 1911286 1911291) (-1126 "SNTSCAT.spad" 1909316 1909333 1909684 1909711) (-1125 "SMTS.spad" 1907576 1907602 1908881 1908978) (-1124 "SMP.spad" 1905051 1905071 1905441 1905568) (-1123 "SMITH.spad" 1903894 1903919 1905041 1905046) (-1122 "SMATCAT.spad" 1902004 1902034 1903838 1903889) (-1121 "SMATCAT.spad" 1900046 1900078 1901882 1901887) (-1120 "SKAGG.spad" 1899007 1899018 1900014 1900041) (-1119 "SINT.spad" 1897833 1897842 1898873 1899002) (-1118 "SIMPAN.spad" 1897561 1897570 1897823 1897828) (-1117 "SIG.spad" 1896889 1896898 1897551 1897556) (-1116 "SIGNRF.spad" 1895997 1896008 1896879 1896884) (-1115 "SIGNEF.spad" 1895266 1895283 1895987 1895992) (-1114 "SIGAST.spad" 1894647 1894656 1895256 1895261) (-1113 "SHP.spad" 1892565 1892580 1894603 1894608) (-1112 "SHDP.spad" 1882276 1882303 1882785 1882916) (-1111 "SGROUP.spad" 1881884 1881893 1882266 1882271) (-1110 "SGROUP.spad" 1881490 1881501 1881874 1881879) (-1109 "SGCF.spad" 1874371 1874380 1881480 1881485) (-1108 "SFRTCAT.spad" 1873299 1873316 1874339 1874366) (-1107 "SFRGCD.spad" 1872362 1872382 1873289 1873294) (-1106 "SFQCMPK.spad" 1866999 1867019 1872352 1872357) (-1105 "SFORT.spad" 1866434 1866448 1866989 1866994) (-1104 "SEXOF.spad" 1866277 1866317 1866424 1866429) (-1103 "SEX.spad" 1866169 1866178 1866267 1866272) (-1102 "SEXCAT.spad" 1863720 1863760 1866159 1866164) (-1101 "SET.spad" 1862020 1862031 1863141 1863180) (-1100 "SETMN.spad" 1860454 1860471 1862010 1862015) (-1099 "SETCAT.spad" 1859776 1859785 1860444 1860449) (-1098 "SETCAT.spad" 1859096 1859107 1859766 1859771) (-1097 "SETAGG.spad" 1855617 1855628 1859076 1859091) (-1096 "SETAGG.spad" 1852146 1852159 1855607 1855612) (-1095 "SEQAST.spad" 1851849 1851858 1852136 1852141) (-1094 "SEGXCAT.spad" 1850971 1850984 1851839 1851844) (-1093 "SEG.spad" 1850784 1850795 1850890 1850895) (-1092 "SEGCAT.spad" 1849691 1849702 1850774 1850779) (-1091 "SEGBIND.spad" 1848763 1848774 1849646 1849651) (-1090 "SEGBIND2.spad" 1848459 1848472 1848753 1848758) (-1089 "SEGAST.spad" 1848173 1848182 1848449 1848454) (-1088 "SEG2.spad" 1847598 1847611 1848129 1848134) (-1087 "SDVAR.spad" 1846874 1846885 1847588 1847593) (-1086 "SDPOL.spad" 1844300 1844311 1844591 1844718) (-1085 "SCPKG.spad" 1842379 1842390 1844290 1844295) (-1084 "SCOPE.spad" 1841528 1841537 1842369 1842374) (-1083 "SCACHE.spad" 1840210 1840221 1841518 1841523) (-1082 "SASTCAT.spad" 1840119 1840128 1840200 1840205) (-1081 "SAOS.spad" 1839991 1840000 1840109 1840114) (-1080 "SAERFFC.spad" 1839704 1839724 1839981 1839986) (-1079 "SAE.spad" 1837879 1837895 1838490 1838625) (-1078 "SAEFACT.spad" 1837580 1837600 1837869 1837874) (-1077 "RURPK.spad" 1835221 1835237 1837570 1837575) (-1076 "RULESET.spad" 1834662 1834686 1835211 1835216) (-1075 "RULE.spad" 1832866 1832890 1834652 1834657) (-1074 "RULECOLD.spad" 1832718 1832731 1832856 1832861) (-1073 "RTVALUE.spad" 1832451 1832460 1832708 1832713) (-1072 "RSTRCAST.spad" 1832168 1832177 1832441 1832446) (-1071 "RSETGCD.spad" 1828546 1828566 1832158 1832163) (-1070 "RSETCAT.spad" 1818330 1818347 1828514 1828541) (-1069 "RSETCAT.spad" 1808134 1808153 1818320 1818325) (-1068 "RSDCMPK.spad" 1806586 1806606 1808124 1808129) (-1067 "RRCC.spad" 1804970 1805000 1806576 1806581) (-1066 "RRCC.spad" 1803352 1803384 1804960 1804965) (-1065 "RPTAST.spad" 1803054 1803063 1803342 1803347) (-1064 "RPOLCAT.spad" 1782414 1782429 1802922 1803049) (-1063 "RPOLCAT.spad" 1761488 1761505 1781998 1782003) (-1062 "ROUTINE.spad" 1757351 1757360 1760135 1760162) (-1061 "ROMAN.spad" 1756679 1756688 1757217 1757346) (-1060 "ROIRC.spad" 1755759 1755791 1756669 1756674) (-1059 "RNS.spad" 1754662 1754671 1755661 1755754) (-1058 "RNS.spad" 1753651 1753662 1754652 1754657) (-1057 "RNG.spad" 1753386 1753395 1753641 1753646) (-1056 "RMODULE.spad" 1753151 1753162 1753376 1753381) (-1055 "RMCAT2.spad" 1752559 1752616 1753141 1753146) (-1054 "RMATRIX.spad" 1751383 1751402 1751726 1751765) (-1053 "RMATCAT.spad" 1746916 1746947 1751339 1751378) (-1052 "RMATCAT.spad" 1742339 1742372 1746764 1746769) (-1051 "RLINSET.spad" 1741733 1741744 1742329 1742334) (-1050 "RINTERP.spad" 1741621 1741641 1741723 1741728) (-1049 "RING.spad" 1741091 1741100 1741601 1741616) (-1048 "RING.spad" 1740569 1740580 1741081 1741086) (-1047 "RIDIST.spad" 1739953 1739962 1740559 1740564) (-1046 "RGCHAIN.spad" 1738532 1738548 1739438 1739465) (-1045 "RGBCSPC.spad" 1738313 1738325 1738522 1738527) (-1044 "RGBCMDL.spad" 1737843 1737855 1738303 1738308) (-1043 "RF.spad" 1735457 1735468 1737833 1737838) (-1042 "RFFACTOR.spad" 1734919 1734930 1735447 1735452) (-1041 "RFFACT.spad" 1734654 1734666 1734909 1734914) (-1040 "RFDIST.spad" 1733642 1733651 1734644 1734649) (-1039 "RETSOL.spad" 1733059 1733072 1733632 1733637) (-1038 "RETRACT.spad" 1732487 1732498 1733049 1733054) (-1037 "RETRACT.spad" 1731913 1731926 1732477 1732482) (-1036 "RETAST.spad" 1731725 1731734 1731903 1731908) (-1035 "RESULT.spad" 1729785 1729794 1730372 1730399) (-1034 "RESRING.spad" 1729132 1729179 1729723 1729780) (-1033 "RESLATC.spad" 1728456 1728467 1729122 1729127) (-1032 "REPSQ.spad" 1728185 1728196 1728446 1728451) (-1031 "REP.spad" 1725737 1725746 1728175 1728180) (-1030 "REPDB.spad" 1725442 1725453 1725727 1725732) (-1029 "REP2.spad" 1715014 1715025 1725284 1725289) (-1028 "REP1.spad" 1709004 1709015 1714964 1714969) (-1027 "REGSET.spad" 1706801 1706818 1708650 1708677) (-1026 "REF.spad" 1706130 1706141 1706756 1706761) (-1025 "REDORDER.spad" 1705306 1705323 1706120 1706125) (-1024 "RECLOS.spad" 1704089 1704109 1704793 1704886) (-1023 "REALSOLV.spad" 1703221 1703230 1704079 1704084) (-1022 "REAL.spad" 1703093 1703102 1703211 1703216) (-1021 "REAL0Q.spad" 1700375 1700390 1703083 1703088) (-1020 "REAL0.spad" 1697203 1697218 1700365 1700370) (-1019 "RDUCEAST.spad" 1696924 1696933 1697193 1697198) (-1018 "RDIV.spad" 1696575 1696600 1696914 1696919) (-1017 "RDIST.spad" 1696138 1696149 1696565 1696570) (-1016 "RDETRS.spad" 1694934 1694952 1696128 1696133) (-1015 "RDETR.spad" 1693041 1693059 1694924 1694929) (-1014 "RDEEFS.spad" 1692114 1692131 1693031 1693036) (-1013 "RDEEF.spad" 1691110 1691127 1692104 1692109) (-1012 "RCFIELD.spad" 1688296 1688305 1691012 1691105) (-1011 "RCFIELD.spad" 1685568 1685579 1688286 1688291) (-1010 "RCAGG.spad" 1683480 1683491 1685558 1685563) (-1009 "RCAGG.spad" 1681319 1681332 1683399 1683404) (-1008 "RATRET.spad" 1680679 1680690 1681309 1681314) (-1007 "RATFACT.spad" 1680371 1680383 1680669 1680674) (-1006 "RANDSRC.spad" 1679690 1679699 1680361 1680366) (-1005 "RADUTIL.spad" 1679444 1679453 1679680 1679685) (-1004 "RADIX.spad" 1676345 1676359 1677911 1678004) (-1003 "RADFF.spad" 1674758 1674795 1674877 1675033) (-1002 "RADCAT.spad" 1674351 1674360 1674748 1674753) (-1001 "RADCAT.spad" 1673942 1673953 1674341 1674346) (-1000 "QUEUE.spad" 1673284 1673295 1673549 1673576) (-999 "QUAT.spad" 1671866 1671876 1672208 1672273) (-998 "QUATCT2.spad" 1671485 1671503 1671856 1671861) (-997 "QUATCAT.spad" 1669650 1669660 1671415 1671480) (-996 "QUATCAT.spad" 1667566 1667578 1669333 1669338) (-995 "QUAGG.spad" 1666392 1666402 1667534 1667561) (-994 "QQUTAST.spad" 1666161 1666169 1666382 1666387) (-993 "QFORM.spad" 1665624 1665638 1666151 1666156) (-992 "QFCAT.spad" 1664327 1664337 1665526 1665619) (-991 "QFCAT.spad" 1662621 1662633 1663822 1663827) (-990 "QFCAT2.spad" 1662312 1662328 1662611 1662616) (-989 "QEQUAT.spad" 1661869 1661877 1662302 1662307) (-988 "QCMPACK.spad" 1656616 1656635 1661859 1661864) (-987 "QALGSET.spad" 1652691 1652723 1656530 1656535) (-986 "QALGSET2.spad" 1650687 1650705 1652681 1652686) (-985 "PWFFINTB.spad" 1647997 1648018 1650677 1650682) (-984 "PUSHVAR.spad" 1647326 1647345 1647987 1647992) (-983 "PTRANFN.spad" 1643452 1643462 1647316 1647321) (-982 "PTPACK.spad" 1640540 1640550 1643442 1643447) (-981 "PTFUNC2.spad" 1640361 1640375 1640530 1640535) (-980 "PTCAT.spad" 1639610 1639620 1640329 1640356) (-979 "PSQFR.spad" 1638917 1638941 1639600 1639605) (-978 "PSEUDLIN.spad" 1637775 1637785 1638907 1638912) (-977 "PSETPK.spad" 1623208 1623224 1637653 1637658) (-976 "PSETCAT.spad" 1617128 1617151 1623188 1623203) (-975 "PSETCAT.spad" 1611022 1611047 1617084 1617089) (-974 "PSCURVE.spad" 1610005 1610013 1611012 1611017) (-973 "PSCAT.spad" 1608772 1608801 1609903 1610000) (-972 "PSCAT.spad" 1607629 1607660 1608762 1608767) (-971 "PRTITION.spad" 1606574 1606582 1607619 1607624) (-970 "PRTDAST.spad" 1606293 1606301 1606564 1606569) (-969 "PRS.spad" 1595855 1595872 1606249 1606254) (-968 "PRQAGG.spad" 1595286 1595296 1595823 1595850) (-967 "PROPLOG.spad" 1594581 1594589 1595276 1595281) (-966 "PROPFRML.spad" 1593389 1593400 1594571 1594576) (-965 "PROPERTY.spad" 1592875 1592883 1593379 1593384) (-964 "PRODUCT.spad" 1590555 1590567 1590841 1590896) (-963 "PR.spad" 1588941 1588953 1589646 1589773) (-962 "PRINT.spad" 1588693 1588701 1588931 1588936) (-961 "PRIMES.spad" 1586944 1586954 1588683 1588688) (-960 "PRIMELT.spad" 1584925 1584939 1586934 1586939) (-959 "PRIMCAT.spad" 1584548 1584556 1584915 1584920) (-958 "PRIMARR.spad" 1583553 1583563 1583731 1583758) (-957 "PRIMARR2.spad" 1582276 1582288 1583543 1583548) (-956 "PREASSOC.spad" 1581648 1581660 1582266 1582271) (-955 "PPCURVE.spad" 1580785 1580793 1581638 1581643) (-954 "PORTNUM.spad" 1580560 1580568 1580775 1580780) (-953 "POLYROOT.spad" 1579389 1579411 1580516 1580521) (-952 "POLY.spad" 1576722 1576732 1577239 1577366) (-951 "POLYLIFT.spad" 1575983 1576006 1576712 1576717) (-950 "POLYCATQ.spad" 1574085 1574107 1575973 1575978) (-949 "POLYCAT.spad" 1567491 1567512 1573953 1574080) (-948 "POLYCAT.spad" 1560235 1560258 1566699 1566704) (-947 "POLY2UP.spad" 1559683 1559697 1560225 1560230) (-946 "POLY2.spad" 1559278 1559290 1559673 1559678) (-945 "POLUTIL.spad" 1558219 1558248 1559234 1559239) (-944 "POLTOPOL.spad" 1556967 1556982 1558209 1558214) (-943 "POINT.spad" 1555805 1555815 1555892 1555919) (-942 "PNTHEORY.spad" 1552471 1552479 1555795 1555800) (-941 "PMTOOLS.spad" 1551228 1551242 1552461 1552466) (-940 "PMSYM.spad" 1550773 1550783 1551218 1551223) (-939 "PMQFCAT.spad" 1550360 1550374 1550763 1550768) (-938 "PMPRED.spad" 1549829 1549843 1550350 1550355) (-937 "PMPREDFS.spad" 1549273 1549295 1549819 1549824) (-936 "PMPLCAT.spad" 1548343 1548361 1549205 1549210) (-935 "PMLSAGG.spad" 1547924 1547938 1548333 1548338) (-934 "PMKERNEL.spad" 1547491 1547503 1547914 1547919) (-933 "PMINS.spad" 1547067 1547077 1547481 1547486) (-932 "PMFS.spad" 1546640 1546658 1547057 1547062) (-931 "PMDOWN.spad" 1545926 1545940 1546630 1546635) (-930 "PMASS.spad" 1544934 1544942 1545916 1545921) (-929 "PMASSFS.spad" 1543899 1543915 1544924 1544929) (-928 "PLOTTOOL.spad" 1543679 1543687 1543889 1543894) (-927 "PLOT.spad" 1538510 1538518 1543669 1543674) (-926 "PLOT3D.spad" 1534930 1534938 1538500 1538505) (-925 "PLOT1.spad" 1534071 1534081 1534920 1534925) (-924 "PLEQN.spad" 1521287 1521314 1534061 1534066) (-923 "PINTERP.spad" 1520903 1520922 1521277 1521282) (-922 "PINTERPA.spad" 1520685 1520701 1520893 1520898) (-921 "PI.spad" 1520292 1520300 1520659 1520680) (-920 "PID.spad" 1519248 1519256 1520218 1520287) (-919 "PICOERCE.spad" 1518905 1518915 1519238 1519243) (-918 "PGROEB.spad" 1517502 1517516 1518895 1518900) (-917 "PGE.spad" 1508755 1508763 1517492 1517497) (-916 "PGCD.spad" 1507637 1507654 1508745 1508750) (-915 "PFRPAC.spad" 1506780 1506790 1507627 1507632) (-914 "PFR.spad" 1503437 1503447 1506682 1506775) (-913 "PFOTOOLS.spad" 1502695 1502711 1503427 1503432) (-912 "PFOQ.spad" 1502065 1502083 1502685 1502690) (-911 "PFO.spad" 1501484 1501511 1502055 1502060) (-910 "PF.spad" 1501058 1501070 1501289 1501382) (-909 "PFECAT.spad" 1498724 1498732 1500984 1501053) (-908 "PFECAT.spad" 1496418 1496428 1498680 1498685) (-907 "PFBRU.spad" 1494288 1494300 1496408 1496413) (-906 "PFBR.spad" 1491826 1491849 1494278 1494283) (-905 "PERM.spad" 1487507 1487517 1491656 1491671) (-904 "PERMGRP.spad" 1482243 1482253 1487497 1487502) (-903 "PERMCAT.spad" 1480795 1480805 1482223 1482238) (-902 "PERMAN.spad" 1479327 1479341 1480785 1480790) (-901 "PENDTREE.spad" 1478666 1478676 1478956 1478961) (-900 "PDRING.spad" 1477157 1477167 1478646 1478661) (-899 "PDRING.spad" 1475656 1475668 1477147 1477152) (-898 "PDEPROB.spad" 1474671 1474679 1475646 1475651) (-897 "PDEPACK.spad" 1468673 1468681 1474661 1474666) (-896 "PDECOMP.spad" 1468135 1468152 1468663 1468668) (-895 "PDECAT.spad" 1466489 1466497 1468125 1468130) (-894 "PCOMP.spad" 1466340 1466353 1466479 1466484) (-893 "PBWLB.spad" 1464922 1464939 1466330 1466335) (-892 "PATTERN.spad" 1459353 1459363 1464912 1464917) (-891 "PATTERN2.spad" 1459089 1459101 1459343 1459348) (-890 "PATTERN1.spad" 1457391 1457407 1459079 1459084) (-889 "PATRES.spad" 1454938 1454950 1457381 1457386) (-888 "PATRES2.spad" 1454600 1454614 1454928 1454933) (-887 "PATMATCH.spad" 1452757 1452788 1454308 1454313) (-886 "PATMAB.spad" 1452182 1452192 1452747 1452752) (-885 "PATLRES.spad" 1451266 1451280 1452172 1452177) (-884 "PATAB.spad" 1451030 1451040 1451256 1451261) (-883 "PARTPERM.spad" 1448392 1448400 1451020 1451025) (-882 "PARSURF.spad" 1447820 1447848 1448382 1448387) (-881 "PARSU2.spad" 1447615 1447631 1447810 1447815) (-880 "script-parser.spad" 1447135 1447143 1447605 1447610) (-879 "PARSCURV.spad" 1446563 1446591 1447125 1447130) (-878 "PARSC2.spad" 1446352 1446368 1446553 1446558) (-877 "PARPCURV.spad" 1445810 1445838 1446342 1446347) (-876 "PARPC2.spad" 1445599 1445615 1445800 1445805) (-875 "PAN2EXPR.spad" 1445011 1445019 1445589 1445594) (-874 "PALETTE.spad" 1443981 1443989 1445001 1445006) (-873 "PAIR.spad" 1442964 1442977 1443569 1443574) (-872 "PADICRC.spad" 1440294 1440312 1441469 1441562) (-871 "PADICRAT.spad" 1438309 1438321 1438530 1438623) (-870 "PADIC.spad" 1438004 1438016 1438235 1438304) (-869 "PADICCT.spad" 1436545 1436557 1437930 1437999) (-868 "PADEPAC.spad" 1435224 1435243 1436535 1436540) (-867 "PADE.spad" 1433964 1433980 1435214 1435219) (-866 "OWP.spad" 1433204 1433234 1433822 1433889) (-865 "OVERSET.spad" 1432777 1432785 1433194 1433199) (-864 "OVAR.spad" 1432558 1432581 1432767 1432772) (-863 "OUT.spad" 1431642 1431650 1432548 1432553) (-862 "OUTFORM.spad" 1420938 1420946 1431632 1431637) (-861 "OUTBFILE.spad" 1420356 1420364 1420928 1420933) (-860 "OUTBCON.spad" 1419354 1419362 1420346 1420351) (-859 "OUTBCON.spad" 1418350 1418360 1419344 1419349) (-858 "OSI.spad" 1417825 1417833 1418340 1418345) (-857 "OSGROUP.spad" 1417743 1417751 1417815 1417820) (-856 "ORTHPOL.spad" 1416204 1416214 1417660 1417665) (-855 "OREUP.spad" 1415657 1415685 1415884 1415923) (-854 "ORESUP.spad" 1414956 1414980 1415337 1415376) (-853 "OREPCTO.spad" 1412775 1412787 1414876 1414881) (-852 "OREPCAT.spad" 1406832 1406842 1412731 1412770) (-851 "OREPCAT.spad" 1400779 1400791 1406680 1406685) (-850 "ORDSET.spad" 1399945 1399953 1400769 1400774) (-849 "ORDSET.spad" 1399109 1399119 1399935 1399940) (-848 "ORDRING.spad" 1398499 1398507 1399089 1399104) (-847 "ORDRING.spad" 1397897 1397907 1398489 1398494) (-846 "ORDMON.spad" 1397752 1397760 1397887 1397892) (-845 "ORDFUNS.spad" 1396878 1396894 1397742 1397747) (-844 "ORDFIN.spad" 1396698 1396706 1396868 1396873) (-843 "ORDCOMP.spad" 1395163 1395173 1396245 1396274) (-842 "ORDCOMP2.spad" 1394448 1394460 1395153 1395158) (-841 "OPTPROB.spad" 1393086 1393094 1394438 1394443) (-840 "OPTPACK.spad" 1385471 1385479 1393076 1393081) (-839 "OPTCAT.spad" 1383146 1383154 1385461 1385466) (-838 "OPSIG.spad" 1382798 1382806 1383136 1383141) (-837 "OPQUERY.spad" 1382347 1382355 1382788 1382793) (-836 "OP.spad" 1382089 1382099 1382169 1382236) (-835 "OPERCAT.spad" 1381553 1381563 1382079 1382084) (-834 "OPERCAT.spad" 1381015 1381027 1381543 1381548) (-833 "ONECOMP.spad" 1379760 1379770 1380562 1380591) (-832 "ONECOMP2.spad" 1379178 1379190 1379750 1379755) (-831 "OMSERVER.spad" 1378180 1378188 1379168 1379173) (-830 "OMSAGG.spad" 1377968 1377978 1378136 1378175) (-829 "OMPKG.spad" 1376580 1376588 1377958 1377963) (-828 "OM.spad" 1375545 1375553 1376570 1376575) (-827 "OMLO.spad" 1374970 1374982 1375431 1375470) (-826 "OMEXPR.spad" 1374804 1374814 1374960 1374965) (-825 "OMERR.spad" 1374347 1374355 1374794 1374799) (-824 "OMERRK.spad" 1373381 1373389 1374337 1374342) (-823 "OMENC.spad" 1372725 1372733 1373371 1373376) (-822 "OMDEV.spad" 1367014 1367022 1372715 1372720) (-821 "OMCONN.spad" 1366423 1366431 1367004 1367009) (-820 "OINTDOM.spad" 1366186 1366194 1366349 1366418) (-819 "OFMONOID.spad" 1362373 1362383 1366176 1366181) (-818 "ODVAR.spad" 1361634 1361644 1362363 1362368) (-817 "ODR.spad" 1361278 1361304 1361446 1361595) (-816 "ODPOL.spad" 1358660 1358670 1359000 1359127) (-815 "ODP.spad" 1348507 1348527 1348880 1349011) (-814 "ODETOOLS.spad" 1347090 1347109 1348497 1348502) (-813 "ODESYS.spad" 1344740 1344757 1347080 1347085) (-812 "ODERTRIC.spad" 1340681 1340698 1344697 1344702) (-811 "ODERED.spad" 1340068 1340092 1340671 1340676) (-810 "ODERAT.spad" 1337619 1337636 1340058 1340063) (-809 "ODEPRRIC.spad" 1334510 1334532 1337609 1337614) (-808 "ODEPROB.spad" 1333767 1333775 1334500 1334505) (-807 "ODEPRIM.spad" 1331041 1331063 1333757 1333762) (-806 "ODEPAL.spad" 1330417 1330441 1331031 1331036) (-805 "ODEPACK.spad" 1317019 1317027 1330407 1330412) (-804 "ODEINT.spad" 1316450 1316466 1317009 1317014) (-803 "ODEIFTBL.spad" 1313845 1313853 1316440 1316445) (-802 "ODEEF.spad" 1309212 1309228 1313835 1313840) (-801 "ODECONST.spad" 1308731 1308749 1309202 1309207) (-800 "ODECAT.spad" 1307327 1307335 1308721 1308726) (-799 "OCT.spad" 1305465 1305475 1306181 1306220) (-798 "OCTCT2.spad" 1305109 1305130 1305455 1305460) (-797 "OC.spad" 1302883 1302893 1305065 1305104) (-796 "OC.spad" 1300382 1300394 1302566 1302571) (-795 "OCAMON.spad" 1300230 1300238 1300372 1300377) (-794 "OASGP.spad" 1300045 1300053 1300220 1300225) (-793 "OAMONS.spad" 1299565 1299573 1300035 1300040) (-792 "OAMON.spad" 1299426 1299434 1299555 1299560) (-791 "OAGROUP.spad" 1299288 1299296 1299416 1299421) (-790 "NUMTUBE.spad" 1298875 1298891 1299278 1299283) (-789 "NUMQUAD.spad" 1286737 1286745 1298865 1298870) (-788 "NUMODE.spad" 1277873 1277881 1286727 1286732) (-787 "NUMINT.spad" 1275431 1275439 1277863 1277868) (-786 "NUMFMT.spad" 1274271 1274279 1275421 1275426) (-785 "NUMERIC.spad" 1266343 1266353 1274076 1274081) (-784 "NTSCAT.spad" 1264845 1264861 1266311 1266338) (-783 "NTPOLFN.spad" 1264390 1264400 1264762 1264767) (-782 "NSUP.spad" 1257436 1257446 1261976 1262129) (-781 "NSUP2.spad" 1256828 1256840 1257426 1257431) (-780 "NSMP.spad" 1253059 1253078 1253367 1253494) (-779 "NREP.spad" 1251431 1251445 1253049 1253054) (-778 "NPCOEF.spad" 1250677 1250697 1251421 1251426) (-777 "NORMRETR.spad" 1250275 1250314 1250667 1250672) (-776 "NORMPK.spad" 1248177 1248196 1250265 1250270) (-775 "NORMMA.spad" 1247865 1247891 1248167 1248172) (-774 "NONE.spad" 1247606 1247614 1247855 1247860) (-773 "NONE1.spad" 1247282 1247292 1247596 1247601) (-772 "NODE1.spad" 1246751 1246767 1247272 1247277) (-771 "NNI.spad" 1245638 1245646 1246725 1246746) (-770 "NLINSOL.spad" 1244260 1244270 1245628 1245633) (-769 "NIPROB.spad" 1242801 1242809 1244250 1244255) (-768 "NFINTBAS.spad" 1240261 1240278 1242791 1242796) (-767 "NETCLT.spad" 1240235 1240246 1240251 1240256) (-766 "NCODIV.spad" 1238433 1238449 1240225 1240230) (-765 "NCNTFRAC.spad" 1238075 1238089 1238423 1238428) (-764 "NCEP.spad" 1236235 1236249 1238065 1238070) (-763 "NASRING.spad" 1235831 1235839 1236225 1236230) (-762 "NASRING.spad" 1235425 1235435 1235821 1235826) (-761 "NARNG.spad" 1234769 1234777 1235415 1235420) (-760 "NARNG.spad" 1234111 1234121 1234759 1234764) (-759 "NAGSP.spad" 1233184 1233192 1234101 1234106) (-758 "NAGS.spad" 1222709 1222717 1233174 1233179) (-757 "NAGF07.spad" 1221102 1221110 1222699 1222704) (-756 "NAGF04.spad" 1215334 1215342 1221092 1221097) (-755 "NAGF02.spad" 1209143 1209151 1215324 1215329) (-754 "NAGF01.spad" 1204746 1204754 1209133 1209138) (-753 "NAGE04.spad" 1198206 1198214 1204736 1204741) (-752 "NAGE02.spad" 1188548 1188556 1198196 1198201) (-751 "NAGE01.spad" 1184432 1184440 1188538 1188543) (-750 "NAGD03.spad" 1182352 1182360 1184422 1184427) (-749 "NAGD02.spad" 1174883 1174891 1182342 1182347) (-748 "NAGD01.spad" 1168996 1169004 1174873 1174878) (-747 "NAGC06.spad" 1164783 1164791 1168986 1168991) (-746 "NAGC05.spad" 1163252 1163260 1164773 1164778) (-745 "NAGC02.spad" 1162507 1162515 1163242 1163247) (-744 "NAALG.spad" 1162042 1162052 1162475 1162502) (-743 "NAALG.spad" 1161597 1161609 1162032 1162037) (-742 "MULTSQFR.spad" 1158555 1158572 1161587 1161592) (-741 "MULTFACT.spad" 1157938 1157955 1158545 1158550) (-740 "MTSCAT.spad" 1155972 1155993 1157836 1157933) (-739 "MTHING.spad" 1155629 1155639 1155962 1155967) (-738 "MSYSCMD.spad" 1155063 1155071 1155619 1155624) (-737 "MSET.spad" 1153005 1153015 1154769 1154808) (-736 "MSETAGG.spad" 1152850 1152860 1152973 1153000) (-735 "MRING.spad" 1149821 1149833 1152558 1152625) (-734 "MRF2.spad" 1149389 1149403 1149811 1149816) (-733 "MRATFAC.spad" 1148935 1148952 1149379 1149384) (-732 "MPRFF.spad" 1146965 1146984 1148925 1148930) (-731 "MPOLY.spad" 1144436 1144451 1144795 1144922) (-730 "MPCPF.spad" 1143700 1143719 1144426 1144431) (-729 "MPC3.spad" 1143515 1143555 1143690 1143695) (-728 "MPC2.spad" 1143157 1143190 1143505 1143510) (-727 "MONOTOOL.spad" 1141492 1141509 1143147 1143152) (-726 "MONOID.spad" 1140811 1140819 1141482 1141487) (-725 "MONOID.spad" 1140128 1140138 1140801 1140806) (-724 "MONOGEN.spad" 1138874 1138887 1139988 1140123) (-723 "MONOGEN.spad" 1137642 1137657 1138758 1138763) (-722 "MONADWU.spad" 1135656 1135664 1137632 1137637) (-721 "MONADWU.spad" 1133668 1133678 1135646 1135651) (-720 "MONAD.spad" 1132812 1132820 1133658 1133663) (-719 "MONAD.spad" 1131954 1131964 1132802 1132807) (-718 "MOEBIUS.spad" 1130640 1130654 1131934 1131949) (-717 "MODULE.spad" 1130510 1130520 1130608 1130635) (-716 "MODULE.spad" 1130400 1130412 1130500 1130505) (-715 "MODRING.spad" 1129731 1129770 1130380 1130395) (-714 "MODOP.spad" 1128390 1128402 1129553 1129620) (-713 "MODMONOM.spad" 1128119 1128137 1128380 1128385) (-712 "MODMON.spad" 1124914 1124930 1125633 1125786) (-711 "MODFIELD.spad" 1124272 1124311 1124816 1124909) (-710 "MMLFORM.spad" 1123132 1123140 1124262 1124267) (-709 "MMAP.spad" 1122872 1122906 1123122 1123127) (-708 "MLO.spad" 1121299 1121309 1122828 1122867) (-707 "MLIFT.spad" 1119871 1119888 1121289 1121294) (-706 "MKUCFUNC.spad" 1119404 1119422 1119861 1119866) (-705 "MKRECORD.spad" 1119006 1119019 1119394 1119399) (-704 "MKFUNC.spad" 1118387 1118397 1118996 1119001) (-703 "MKFLCFN.spad" 1117343 1117353 1118377 1118382) (-702 "MKBCFUNC.spad" 1116828 1116846 1117333 1117338) (-701 "MINT.spad" 1116267 1116275 1116730 1116823) (-700 "MHROWRED.spad" 1114768 1114778 1116257 1116262) (-699 "MFLOAT.spad" 1113284 1113292 1114658 1114763) (-698 "MFINFACT.spad" 1112684 1112706 1113274 1113279) (-697 "MESH.spad" 1110416 1110424 1112674 1112679) (-696 "MDDFACT.spad" 1108609 1108619 1110406 1110411) (-695 "MDAGG.spad" 1107896 1107906 1108589 1108604) (-694 "MCMPLX.spad" 1103907 1103915 1104521 1104722) (-693 "MCDEN.spad" 1103115 1103127 1103897 1103902) (-692 "MCALCFN.spad" 1100217 1100243 1103105 1103110) (-691 "MAYBE.spad" 1099501 1099512 1100207 1100212) (-690 "MATSTOR.spad" 1096777 1096787 1099491 1099496) (-689 "MATRIX.spad" 1095481 1095491 1095965 1095992) (-688 "MATLIN.spad" 1092807 1092831 1095365 1095370) (-687 "MATCAT.spad" 1084392 1084414 1092775 1092802) (-686 "MATCAT.spad" 1075849 1075873 1084234 1084239) (-685 "MATCAT2.spad" 1075117 1075165 1075839 1075844) (-684 "MAPPKG3.spad" 1074016 1074030 1075107 1075112) (-683 "MAPPKG2.spad" 1073350 1073362 1074006 1074011) (-682 "MAPPKG1.spad" 1072168 1072178 1073340 1073345) (-681 "MAPPAST.spad" 1071481 1071489 1072158 1072163) (-680 "MAPHACK3.spad" 1071289 1071303 1071471 1071476) (-679 "MAPHACK2.spad" 1071054 1071066 1071279 1071284) (-678 "MAPHACK1.spad" 1070684 1070694 1071044 1071049) (-677 "MAGMA.spad" 1068474 1068491 1070674 1070679) (-676 "MACROAST.spad" 1068053 1068061 1068464 1068469) (-675 "M3D.spad" 1065749 1065759 1067431 1067436) (-674 "LZSTAGG.spad" 1062977 1062987 1065739 1065744) (-673 "LZSTAGG.spad" 1060203 1060215 1062967 1062972) (-672 "LWORD.spad" 1056908 1056925 1060193 1060198) (-671 "LSTAST.spad" 1056692 1056700 1056898 1056903) (-670 "LSQM.spad" 1054918 1054932 1055316 1055367) (-669 "LSPP.spad" 1054451 1054468 1054908 1054913) (-668 "LSMP.spad" 1053291 1053319 1054441 1054446) (-667 "LSMP1.spad" 1051095 1051109 1053281 1053286) (-666 "LSAGG.spad" 1050764 1050774 1051063 1051090) (-665 "LSAGG.spad" 1050453 1050465 1050754 1050759) (-664 "LPOLY.spad" 1049407 1049426 1050309 1050378) (-663 "LPEFRAC.spad" 1048664 1048674 1049397 1049402) (-662 "LO.spad" 1048065 1048079 1048598 1048625) (-661 "LOGIC.spad" 1047667 1047675 1048055 1048060) (-660 "LOGIC.spad" 1047267 1047277 1047657 1047662) (-659 "LODOOPS.spad" 1046185 1046197 1047257 1047262) (-658 "LODO.spad" 1045569 1045585 1045865 1045904) (-657 "LODOF.spad" 1044613 1044630 1045526 1045531) (-656 "LODOCAT.spad" 1043271 1043281 1044569 1044608) (-655 "LODOCAT.spad" 1041927 1041939 1043227 1043232) (-654 "LODO2.spad" 1041200 1041212 1041607 1041646) (-653 "LODO1.spad" 1040600 1040610 1040880 1040919) (-652 "LODEEF.spad" 1039372 1039390 1040590 1040595) (-651 "LNAGG.spad" 1035174 1035184 1039362 1039367) (-650 "LNAGG.spad" 1030940 1030952 1035130 1035135) (-649 "LMOPS.spad" 1027676 1027693 1030930 1030935) (-648 "LMODULE.spad" 1027444 1027454 1027666 1027671) (-647 "LMDICT.spad" 1026727 1026737 1026995 1027022) (-646 "LLINSET.spad" 1026124 1026134 1026717 1026722) (-645 "LITERAL.spad" 1026030 1026041 1026114 1026119) (-644 "LIST.spad" 1023748 1023758 1025177 1025204) (-643 "LIST3.spad" 1023039 1023053 1023738 1023743) (-642 "LIST2.spad" 1021679 1021691 1023029 1023034) (-641 "LIST2MAP.spad" 1018556 1018568 1021669 1021674) (-640 "LINSET.spad" 1018178 1018188 1018546 1018551) (-639 "LINEXP.spad" 1017610 1017620 1018158 1018173) (-638 "LINDEP.spad" 1016387 1016399 1017522 1017527) (-637 "LIMITRF.spad" 1014301 1014311 1016377 1016382) (-636 "LIMITPS.spad" 1013184 1013197 1014291 1014296) (-635 "LIE.spad" 1011198 1011210 1012474 1012619) (-634 "LIECAT.spad" 1010674 1010684 1011124 1011193) (-633 "LIECAT.spad" 1010178 1010190 1010630 1010635) (-632 "LIB.spad" 1008226 1008234 1008837 1008852) (-631 "LGROBP.spad" 1005579 1005598 1008216 1008221) (-630 "LF.spad" 1004498 1004514 1005569 1005574) (-629 "LFCAT.spad" 1003517 1003525 1004488 1004493) (-628 "LEXTRIPK.spad" 999020 999035 1003507 1003512) (-627 "LEXP.spad" 997023 997050 999000 999015) (-626 "LETAST.spad" 996722 996730 997013 997018) (-625 "LEADCDET.spad" 995106 995123 996712 996717) (-624 "LAZM3PK.spad" 993810 993832 995096 995101) (-623 "LAUPOL.spad" 992499 992512 993403 993472) (-622 "LAPLACE.spad" 992072 992088 992489 992494) (-621 "LA.spad" 991512 991526 991994 992033) (-620 "LALG.spad" 991288 991298 991492 991507) (-619 "LALG.spad" 991072 991084 991278 991283) (-618 "KVTFROM.spad" 990807 990817 991062 991067) (-617 "KTVLOGIC.spad" 990319 990327 990797 990802) (-616 "KRCFROM.spad" 990057 990067 990309 990314) (-615 "KOVACIC.spad" 988770 988787 990047 990052) (-614 "KONVERT.spad" 988492 988502 988760 988765) (-613 "KOERCE.spad" 988229 988239 988482 988487) (-612 "KERNEL.spad" 986848 986858 988013 988018) (-611 "KERNEL2.spad" 986551 986563 986838 986843) (-610 "KDAGG.spad" 985654 985676 986531 986546) (-609 "KDAGG.spad" 984765 984789 985644 985649) (-608 "KAFILE.spad" 983728 983744 983963 983990) (-607 "JORDAN.spad" 981555 981567 983018 983163) (-606 "JOINAST.spad" 981249 981257 981545 981550) (-605 "JAVACODE.spad" 981115 981123 981239 981244) (-604 "IXAGG.spad" 979238 979262 981105 981110) (-603 "IXAGG.spad" 977216 977242 979085 979090) (-602 "IVECTOR.spad" 975986 976001 976141 976168) (-601 "ITUPLE.spad" 975131 975141 975976 975981) (-600 "ITRIGMNP.spad" 973942 973961 975121 975126) (-599 "ITFUN3.spad" 973436 973450 973932 973937) (-598 "ITFUN2.spad" 973166 973178 973426 973431) (-597 "ITAYLOR.spad" 970958 970973 973002 973127) (-596 "ISUPS.spad" 963369 963384 969932 970029) (-595 "ISUMP.spad" 962866 962882 963359 963364) (-594 "ISTRING.spad" 961869 961882 962035 962062) (-593 "ISAST.spad" 961588 961596 961859 961864) (-592 "IRURPK.spad" 960301 960320 961578 961583) (-591 "IRSN.spad" 958261 958269 960291 960296) (-590 "IRRF2F.spad" 956736 956746 958217 958222) (-589 "IRREDFFX.spad" 956337 956348 956726 956731) (-588 "IROOT.spad" 954668 954678 956327 956332) (-587 "IR.spad" 952457 952471 954523 954550) (-586 "IR2.spad" 951477 951493 952447 952452) (-585 "IR2F.spad" 950677 950693 951467 951472) (-584 "IPRNTPK.spad" 950437 950445 950667 950672) (-583 "IPF.spad" 950002 950014 950242 950335) (-582 "IPADIC.spad" 949763 949789 949928 949997) (-581 "IP4ADDR.spad" 949320 949328 949753 949758) (-580 "IOMODE.spad" 948941 948949 949310 949315) (-579 "IOBFILE.spad" 948302 948310 948931 948936) (-578 "IOBCON.spad" 948167 948175 948292 948297) (-577 "INVLAPLA.spad" 947812 947828 948157 948162) (-576 "INTTR.spad" 941058 941075 947802 947807) (-575 "INTTOOLS.spad" 938769 938785 940632 940637) (-574 "INTSLPE.spad" 938075 938083 938759 938764) (-573 "INTRVL.spad" 937641 937651 937989 938070) (-572 "INTRF.spad" 936005 936019 937631 937636) (-571 "INTRET.spad" 935437 935447 935995 936000) (-570 "INTRAT.spad" 934112 934129 935427 935432) (-569 "INTPM.spad" 932475 932491 933755 933760) (-568 "INTPAF.spad" 930243 930261 932407 932412) (-567 "INTPACK.spad" 920553 920561 930233 930238) (-566 "INT.spad" 919914 919922 920407 920548) (-565 "INTHERTR.spad" 919180 919197 919904 919909) (-564 "INTHERAL.spad" 918846 918870 919170 919175) (-563 "INTHEORY.spad" 915259 915267 918836 918841) (-562 "INTG0.spad" 908722 908740 915191 915196) (-561 "INTFTBL.spad" 902751 902759 908712 908717) (-560 "INTFACT.spad" 901810 901820 902741 902746) (-559 "INTEF.spad" 900125 900141 901800 901805) (-558 "INTDOM.spad" 898740 898748 900051 900120) (-557 "INTDOM.spad" 897417 897427 898730 898735) (-556 "INTCAT.spad" 895670 895680 897331 897412) (-555 "INTBIT.spad" 895173 895181 895660 895665) (-554 "INTALG.spad" 894355 894382 895163 895168) (-553 "INTAF.spad" 893847 893863 894345 894350) (-552 "INTABL.spad" 892365 892396 892528 892555) (-551 "INT8.spad" 892245 892253 892355 892360) (-550 "INT64.spad" 892124 892132 892235 892240) (-549 "INT32.spad" 892003 892011 892114 892119) (-548 "INT16.spad" 891882 891890 891993 891998) (-547 "INS.spad" 889349 889357 891784 891877) (-546 "INS.spad" 886902 886912 889339 889344) (-545 "INPSIGN.spad" 886336 886349 886892 886897) (-544 "INPRODPF.spad" 885402 885421 886326 886331) (-543 "INPRODFF.spad" 884460 884484 885392 885397) (-542 "INNMFACT.spad" 883431 883448 884450 884455) (-541 "INMODGCD.spad" 882915 882945 883421 883426) (-540 "INFSP.spad" 881200 881222 882905 882910) (-539 "INFPROD0.spad" 880250 880269 881190 881195) (-538 "INFORM.spad" 877411 877419 880240 880245) (-537 "INFORM1.spad" 877036 877046 877401 877406) (-536 "INFINITY.spad" 876588 876596 877026 877031) (-535 "INETCLTS.spad" 876565 876573 876578 876583) (-534 "INEP.spad" 875097 875119 876555 876560) (-533 "INDE.spad" 874826 874843 875087 875092) (-532 "INCRMAPS.spad" 874247 874257 874816 874821) (-531 "INBFILE.spad" 873319 873327 874237 874242) (-530 "INBFF.spad" 869089 869100 873309 873314) (-529 "INBCON.spad" 867377 867385 869079 869084) (-528 "INBCON.spad" 865663 865673 867367 867372) (-527 "INAST.spad" 865324 865332 865653 865658) (-526 "IMPTAST.spad" 865032 865040 865314 865319) (-525 "IMATRIX.spad" 863977 864003 864489 864516) (-524 "IMATQF.spad" 863071 863115 863933 863938) (-523 "IMATLIN.spad" 861676 861700 863027 863032) (-522 "ILIST.spad" 860332 860347 860859 860886) (-521 "IIARRAY2.spad" 859720 859758 859939 859966) (-520 "IFF.spad" 859130 859146 859401 859494) (-519 "IFAST.spad" 858744 858752 859120 859125) (-518 "IFARRAY.spad" 856231 856246 857927 857954) (-517 "IFAMON.spad" 856093 856110 856187 856192) (-516 "IEVALAB.spad" 855482 855494 856083 856088) (-515 "IEVALAB.spad" 854869 854883 855472 855477) (-514 "IDPO.spad" 854667 854679 854859 854864) (-513 "IDPOAMS.spad" 854423 854435 854657 854662) (-512 "IDPOAM.spad" 854143 854155 854413 854418) (-511 "IDPC.spad" 853077 853089 854133 854138) (-510 "IDPAM.spad" 852822 852834 853067 853072) (-509 "IDPAG.spad" 852569 852581 852812 852817) (-508 "IDENT.spad" 852219 852227 852559 852564) (-507 "IDECOMP.spad" 849456 849474 852209 852214) (-506 "IDEAL.spad" 844379 844418 849391 849396) (-505 "ICDEN.spad" 843530 843546 844369 844374) (-504 "ICARD.spad" 842719 842727 843520 843525) (-503 "IBPTOOLS.spad" 841312 841329 842709 842714) (-502 "IBITS.spad" 840511 840524 840948 840975) (-501 "IBATOOL.spad" 837386 837405 840501 840506) (-500 "IBACHIN.spad" 835873 835888 837376 837381) (-499 "IARRAY2.spad" 834861 834887 835480 835507) (-498 "IARRAY1.spad" 833906 833921 834044 834071) (-497 "IAN.spad" 832119 832127 833722 833815) (-496 "IALGFACT.spad" 831720 831753 832109 832114) (-495 "HYPCAT.spad" 831144 831152 831710 831715) (-494 "HYPCAT.spad" 830566 830576 831134 831139) (-493 "HOSTNAME.spad" 830374 830382 830556 830561) (-492 "HOMOTOP.spad" 830117 830127 830364 830369) (-491 "HOAGG.spad" 827385 827395 830107 830112) (-490 "HOAGG.spad" 824428 824440 827152 827157) (-489 "HEXADEC.spad" 822530 822538 822895 822988) (-488 "HEUGCD.spad" 821545 821556 822520 822525) (-487 "HELLFDIV.spad" 821135 821159 821535 821540) (-486 "HEAP.spad" 820527 820537 820742 820769) (-485 "HEADAST.spad" 820058 820066 820517 820522) (-484 "HDP.spad" 809901 809917 810278 810409) (-483 "HDMP.spad" 807113 807128 807731 807858) (-482 "HB.spad" 805350 805358 807103 807108) (-481 "HASHTBL.spad" 803820 803851 804031 804058) (-480 "HASAST.spad" 803536 803544 803810 803815) (-479 "HACKPI.spad" 803019 803027 803438 803531) (-478 "GTSET.spad" 801958 801974 802665 802692) (-477 "GSTBL.spad" 800477 800512 800651 800666) (-476 "GSERIES.spad" 797644 797671 798609 798758) (-475 "GROUP.spad" 796913 796921 797624 797639) (-474 "GROUP.spad" 796190 796200 796903 796908) (-473 "GROEBSOL.spad" 794678 794699 796180 796185) (-472 "GRMOD.spad" 793249 793261 794668 794673) (-471 "GRMOD.spad" 791818 791832 793239 793244) (-470 "GRIMAGE.spad" 784423 784431 791808 791813) (-469 "GRDEF.spad" 782802 782810 784413 784418) (-468 "GRAY.spad" 781261 781269 782792 782797) (-467 "GRALG.spad" 780308 780320 781251 781256) (-466 "GRALG.spad" 779353 779367 780298 780303) (-465 "GPOLSET.spad" 778807 778830 779035 779062) (-464 "GOSPER.spad" 778072 778090 778797 778802) (-463 "GMODPOL.spad" 777210 777237 778040 778067) (-462 "GHENSEL.spad" 776279 776293 777200 777205) (-461 "GENUPS.spad" 772380 772393 776269 776274) (-460 "GENUFACT.spad" 771957 771967 772370 772375) (-459 "GENPGCD.spad" 771541 771558 771947 771952) (-458 "GENMFACT.spad" 770993 771012 771531 771536) (-457 "GENEEZ.spad" 768932 768945 770983 770988) (-456 "GDMP.spad" 765986 766003 766762 766889) (-455 "GCNAALG.spad" 759881 759908 765780 765847) (-454 "GCDDOM.spad" 759053 759061 759807 759876) (-453 "GCDDOM.spad" 758287 758297 759043 759048) (-452 "GB.spad" 755805 755843 758243 758248) (-451 "GBINTERN.spad" 751825 751863 755795 755800) (-450 "GBF.spad" 747582 747620 751815 751820) (-449 "GBEUCLID.spad" 745456 745494 747572 747577) (-448 "GAUSSFAC.spad" 744753 744761 745446 745451) (-447 "GALUTIL.spad" 743075 743085 744709 744714) (-446 "GALPOLYU.spad" 741521 741534 743065 743070) (-445 "GALFACTU.spad" 739686 739705 741511 741516) (-444 "GALFACT.spad" 729819 729830 739676 739681) (-443 "FVFUN.spad" 726842 726850 729809 729814) (-442 "FVC.spad" 725894 725902 726832 726837) (-441 "FUNDESC.spad" 725572 725580 725884 725889) (-440 "FUNCTION.spad" 725421 725433 725562 725567) (-439 "FT.spad" 723714 723722 725411 725416) (-438 "FTEM.spad" 722877 722885 723704 723709) (-437 "FSUPFACT.spad" 721777 721796 722813 722818) (-436 "FST.spad" 719863 719871 721767 721772) (-435 "FSRED.spad" 719341 719357 719853 719858) (-434 "FSPRMELT.spad" 718165 718181 719298 719303) (-433 "FSPECF.spad" 716242 716258 718155 718160) (-432 "FS.spad" 710304 710314 716017 716237) (-431 "FS.spad" 704144 704156 709859 709864) (-430 "FSINT.spad" 703802 703818 704134 704139) (-429 "FSERIES.spad" 702989 703001 703622 703721) (-428 "FSCINT.spad" 702302 702318 702979 702984) (-427 "FSAGG.spad" 701419 701429 702258 702297) (-426 "FSAGG.spad" 700498 700510 701339 701344) (-425 "FSAGG2.spad" 699197 699213 700488 700493) (-424 "FS2UPS.spad" 693680 693714 699187 699192) (-423 "FS2.spad" 693325 693341 693670 693675) (-422 "FS2EXPXP.spad" 692448 692471 693315 693320) (-421 "FRUTIL.spad" 691390 691400 692438 692443) (-420 "FR.spad" 685084 685094 690414 690483) (-419 "FRNAALG.spad" 680171 680181 685026 685079) (-418 "FRNAALG.spad" 675270 675282 680127 680132) (-417 "FRNAAF2.spad" 674724 674742 675260 675265) (-416 "FRMOD.spad" 674118 674148 674655 674660) (-415 "FRIDEAL.spad" 673313 673334 674098 674113) (-414 "FRIDEAL2.spad" 672915 672947 673303 673308) (-413 "FRETRCT.spad" 672426 672436 672905 672910) (-412 "FRETRCT.spad" 671803 671815 672284 672289) (-411 "FRAMALG.spad" 670131 670144 671759 671798) (-410 "FRAMALG.spad" 668491 668506 670121 670126) (-409 "FRAC.spad" 665590 665600 665993 666166) (-408 "FRAC2.spad" 665193 665205 665580 665585) (-407 "FR2.spad" 664527 664539 665183 665188) (-406 "FPS.spad" 661336 661344 664417 664522) (-405 "FPS.spad" 658173 658183 661256 661261) (-404 "FPC.spad" 657215 657223 658075 658168) (-403 "FPC.spad" 656343 656353 657205 657210) (-402 "FPATMAB.spad" 656105 656115 656333 656338) (-401 "FPARFRAC.spad" 654578 654595 656095 656100) (-400 "FORTRAN.spad" 653084 653127 654568 654573) (-399 "FORT.spad" 652013 652021 653074 653079) (-398 "FORTFN.spad" 649183 649191 652003 652008) (-397 "FORTCAT.spad" 648867 648875 649173 649178) (-396 "FORMULA.spad" 646331 646339 648857 648862) (-395 "FORMULA1.spad" 645810 645820 646321 646326) (-394 "FORDER.spad" 645501 645525 645800 645805) (-393 "FOP.spad" 644702 644710 645491 645496) (-392 "FNLA.spad" 644126 644148 644670 644697) (-391 "FNCAT.spad" 642713 642721 644116 644121) (-390 "FNAME.spad" 642605 642613 642703 642708) (-389 "FMTC.spad" 642403 642411 642531 642600) (-388 "FMONOID.spad" 639458 639468 642359 642364) (-387 "FM.spad" 639153 639165 639392 639419) (-386 "FMFUN.spad" 636183 636191 639143 639148) (-385 "FMC.spad" 635235 635243 636173 636178) (-384 "FMCAT.spad" 632889 632907 635203 635230) (-383 "FM1.spad" 632246 632258 632823 632850) (-382 "FLOATRP.spad" 629967 629981 632236 632241) (-381 "FLOAT.spad" 623255 623263 629833 629962) (-380 "FLOATCP.spad" 620672 620686 623245 623250) (-379 "FLINEXP.spad" 620384 620394 620652 620667) (-378 "FLINEXP.spad" 620050 620062 620320 620325) (-377 "FLASORT.spad" 619370 619382 620040 620045) (-376 "FLALG.spad" 617016 617035 619296 619365) (-375 "FLAGG.spad" 614034 614044 616996 617011) (-374 "FLAGG.spad" 610953 610965 613917 613922) (-373 "FLAGG2.spad" 609634 609650 610943 610948) (-372 "FINRALG.spad" 607663 607676 609590 609629) (-371 "FINRALG.spad" 605618 605633 607547 607552) (-370 "FINITE.spad" 604770 604778 605608 605613) (-369 "FINAALG.spad" 593751 593761 604712 604765) (-368 "FINAALG.spad" 582744 582756 593707 593712) (-367 "FILE.spad" 582327 582337 582734 582739) (-366 "FILECAT.spad" 580845 580862 582317 582322) (-365 "FIELD.spad" 580251 580259 580747 580840) (-364 "FIELD.spad" 579743 579753 580241 580246) (-363 "FGROUP.spad" 578352 578362 579723 579738) (-362 "FGLMICPK.spad" 577139 577154 578342 578347) (-361 "FFX.spad" 576514 576529 576855 576948) (-360 "FFSLPE.spad" 576003 576024 576504 576509) (-359 "FFPOLY.spad" 567255 567266 575993 575998) (-358 "FFPOLY2.spad" 566315 566332 567245 567250) (-357 "FFP.spad" 565712 565732 566031 566124) (-356 "FF.spad" 565160 565176 565393 565486) (-355 "FFNBX.spad" 563672 563692 564876 564969) (-354 "FFNBP.spad" 562185 562202 563388 563481) (-353 "FFNB.spad" 560650 560671 561866 561959) (-352 "FFINTBAS.spad" 558064 558083 560640 560645) (-351 "FFIELDC.spad" 555639 555647 557966 558059) (-350 "FFIELDC.spad" 553300 553310 555629 555634) (-349 "FFHOM.spad" 552048 552065 553290 553295) (-348 "FFF.spad" 549483 549494 552038 552043) (-347 "FFCGX.spad" 548330 548350 549199 549292) (-346 "FFCGP.spad" 547219 547239 548046 548139) (-345 "FFCG.spad" 546011 546032 546900 546993) (-344 "FFCAT.spad" 539038 539060 545850 546006) (-343 "FFCAT.spad" 532144 532168 538958 538963) (-342 "FFCAT2.spad" 531889 531929 532134 532139) (-341 "FEXPR.spad" 523598 523644 531645 531684) (-340 "FEVALAB.spad" 523304 523314 523588 523593) (-339 "FEVALAB.spad" 522795 522807 523081 523086) (-338 "FDIV.spad" 522237 522261 522785 522790) (-337 "FDIVCAT.spad" 520279 520303 522227 522232) (-336 "FDIVCAT.spad" 518319 518345 520269 520274) (-335 "FDIV2.spad" 517973 518013 518309 518314) (-334 "FCTRDATA.spad" 516981 516989 517963 517968) (-333 "FCPAK1.spad" 515534 515542 516971 516976) (-332 "FCOMP.spad" 514913 514923 515524 515529) (-331 "FC.spad" 504828 504836 514903 514908) (-330 "FAXF.spad" 497763 497777 504730 504823) (-329 "FAXF.spad" 490750 490766 497719 497724) (-328 "FARRAY.spad" 488896 488906 489933 489960) (-327 "FAMR.spad" 487016 487028 488794 488891) (-326 "FAMR.spad" 485120 485134 486900 486905) (-325 "FAMONOID.spad" 484770 484780 485074 485079) (-324 "FAMONC.spad" 482992 483004 484760 484765) (-323 "FAGROUP.spad" 482598 482608 482888 482915) (-322 "FACUTIL.spad" 480794 480811 482588 482593) (-321 "FACTFUNC.spad" 479970 479980 480784 480789) (-320 "EXPUPXS.spad" 476803 476826 478102 478251) (-319 "EXPRTUBE.spad" 474031 474039 476793 476798) (-318 "EXPRODE.spad" 470903 470919 474021 474026) (-317 "EXPR.spad" 466178 466188 466892 467299) (-316 "EXPR2UPS.spad" 462270 462283 466168 466173) (-315 "EXPR2.spad" 461973 461985 462260 462265) (-314 "EXPEXPAN.spad" 458911 458936 459545 459638) (-313 "EXIT.spad" 458582 458590 458901 458906) (-312 "EXITAST.spad" 458318 458326 458572 458577) (-311 "EVALCYC.spad" 457776 457790 458308 458313) (-310 "EVALAB.spad" 457340 457350 457766 457771) (-309 "EVALAB.spad" 456902 456914 457330 457335) (-308 "EUCDOM.spad" 454444 454452 456828 456897) (-307 "EUCDOM.spad" 452048 452058 454434 454439) (-306 "ESTOOLS.spad" 443888 443896 452038 452043) (-305 "ESTOOLS2.spad" 443489 443503 443878 443883) (-304 "ESTOOLS1.spad" 443174 443185 443479 443484) (-303 "ES.spad" 435721 435729 443164 443169) (-302 "ES.spad" 428174 428184 435619 435624) (-301 "ESCONT.spad" 424947 424955 428164 428169) (-300 "ESCONT1.spad" 424696 424708 424937 424942) (-299 "ES2.spad" 424191 424207 424686 424691) (-298 "ES1.spad" 423757 423773 424181 424186) (-297 "ERROR.spad" 421078 421086 423747 423752) (-296 "EQTBL.spad" 419550 419572 419759 419786) (-295 "EQ.spad" 414343 414353 417142 417254) (-294 "EQ2.spad" 414059 414071 414333 414338) (-293 "EP.spad" 410373 410383 414049 414054) (-292 "ENV.spad" 409025 409033 410363 410368) (-291 "ENTIRER.spad" 408693 408701 408969 409020) (-290 "EMR.spad" 407894 407935 408619 408688) (-289 "ELTAGG.spad" 406134 406153 407884 407889) (-288 "ELTAGG.spad" 404338 404359 406090 406095) (-287 "ELTAB.spad" 403785 403803 404328 404333) (-286 "ELFUTS.spad" 403164 403183 403775 403780) (-285 "ELEMFUN.spad" 402853 402861 403154 403159) (-284 "ELEMFUN.spad" 402540 402550 402843 402848) (-283 "ELAGG.spad" 400483 400493 402520 402535) (-282 "ELAGG.spad" 398363 398375 400402 400407) (-281 "ELABEXPR.spad" 397295 397303 398353 398358) (-280 "EFUPXS.spad" 394071 394101 397251 397256) (-279 "EFULS.spad" 390907 390930 394027 394032) (-278 "EFSTRUC.spad" 388862 388878 390897 390902) (-277 "EF.spad" 383628 383644 388852 388857) (-276 "EAB.spad" 381904 381912 383618 383623) (-275 "E04UCFA.spad" 381440 381448 381894 381899) (-274 "E04NAFA.spad" 381017 381025 381430 381435) (-273 "E04MBFA.spad" 380597 380605 381007 381012) (-272 "E04JAFA.spad" 380133 380141 380587 380592) (-271 "E04GCFA.spad" 379669 379677 380123 380128) (-270 "E04FDFA.spad" 379205 379213 379659 379664) (-269 "E04DGFA.spad" 378741 378749 379195 379200) (-268 "E04AGNT.spad" 374583 374591 378731 378736) (-267 "DVARCAT.spad" 371268 371278 374573 374578) (-266 "DVARCAT.spad" 367951 367963 371258 371263) (-265 "DSMP.spad" 365418 365432 365723 365850) (-264 "DROPT.spad" 359363 359371 365408 365413) (-263 "DROPT1.spad" 359026 359036 359353 359358) (-262 "DROPT0.spad" 353853 353861 359016 359021) (-261 "DRAWPT.spad" 352008 352016 353843 353848) (-260 "DRAW.spad" 344608 344621 351998 352003) (-259 "DRAWHACK.spad" 343916 343926 344598 344603) (-258 "DRAWCX.spad" 341358 341366 343906 343911) (-257 "DRAWCURV.spad" 340895 340910 341348 341353) (-256 "DRAWCFUN.spad" 330067 330075 340885 340890) (-255 "DQAGG.spad" 328235 328245 330035 330062) (-254 "DPOLCAT.spad" 323576 323592 328103 328230) (-253 "DPOLCAT.spad" 319003 319021 323532 323537) (-252 "DPMO.spad" 311229 311245 311367 311668) (-251 "DPMM.spad" 303468 303486 303593 303894) (-250 "DOMTMPLT.spad" 303128 303136 303458 303463) (-249 "DOMCTOR.spad" 302883 302891 303118 303123) (-248 "DOMAIN.spad" 301970 301978 302873 302878) (-247 "DMP.spad" 299228 299243 299800 299927) (-246 "DLP.spad" 298576 298586 299218 299223) (-245 "DLIST.spad" 297155 297165 297759 297786) (-244 "DLAGG.spad" 295566 295576 297145 297150) (-243 "DIVRING.spad" 295108 295116 295510 295561) (-242 "DIVRING.spad" 294694 294704 295098 295103) (-241 "DISPLAY.spad" 292874 292882 294684 294689) (-240 "DIRPROD.spad" 282454 282470 283094 283225) (-239 "DIRPROD2.spad" 281262 281280 282444 282449) (-238 "DIRPCAT.spad" 280204 280220 281126 281257) (-237 "DIRPCAT.spad" 278875 278893 279799 279804) (-236 "DIOSP.spad" 277700 277708 278865 278870) (-235 "DIOPS.spad" 276684 276694 277680 277695) (-234 "DIOPS.spad" 275642 275654 276640 276645) (-233 "DIFRING.spad" 274934 274942 275622 275637) (-232 "DIFRING.spad" 274234 274244 274924 274929) (-231 "DIFEXT.spad" 273393 273403 274214 274229) (-230 "DIFEXT.spad" 272469 272481 273292 273297) (-229 "DIAGG.spad" 272099 272109 272449 272464) (-228 "DIAGG.spad" 271737 271749 272089 272094) (-227 "DHMATRIX.spad" 270041 270051 271194 271221) (-226 "DFSFUN.spad" 263449 263457 270031 270036) (-225 "DFLOAT.spad" 260170 260178 263339 263444) (-224 "DFINTTLS.spad" 258379 258395 260160 260165) (-223 "DERHAM.spad" 256289 256321 258359 258374) (-222 "DEQUEUE.spad" 255607 255617 255896 255923) (-221 "DEGRED.spad" 255222 255236 255597 255602) (-220 "DEFINTRF.spad" 252747 252757 255212 255217) (-219 "DEFINTEF.spad" 251243 251259 252737 252742) (-218 "DEFAST.spad" 250611 250619 251233 251238) (-217 "DECIMAL.spad" 248717 248725 249078 249171) (-216 "DDFACT.spad" 246516 246533 248707 248712) (-215 "DBLRESP.spad" 246114 246138 246506 246511) (-214 "DBASE.spad" 244768 244778 246104 246109) (-213 "DATAARY.spad" 244230 244243 244758 244763) (-212 "D03FAFA.spad" 244058 244066 244220 244225) (-211 "D03EEFA.spad" 243878 243886 244048 244053) (-210 "D03AGNT.spad" 242958 242966 243868 243873) (-209 "D02EJFA.spad" 242420 242428 242948 242953) (-208 "D02CJFA.spad" 241898 241906 242410 242415) (-207 "D02BHFA.spad" 241388 241396 241888 241893) (-206 "D02BBFA.spad" 240878 240886 241378 241383) (-205 "D02AGNT.spad" 235682 235690 240868 240873) (-204 "D01WGTS.spad" 234001 234009 235672 235677) (-203 "D01TRNS.spad" 233978 233986 233991 233996) (-202 "D01GBFA.spad" 233500 233508 233968 233973) (-201 "D01FCFA.spad" 233022 233030 233490 233495) (-200 "D01ASFA.spad" 232490 232498 233012 233017) (-199 "D01AQFA.spad" 231936 231944 232480 232485) (-198 "D01APFA.spad" 231360 231368 231926 231931) (-197 "D01ANFA.spad" 230854 230862 231350 231355) (-196 "D01AMFA.spad" 230364 230372 230844 230849) (-195 "D01ALFA.spad" 229904 229912 230354 230359) (-194 "D01AKFA.spad" 229430 229438 229894 229899) (-193 "D01AJFA.spad" 228953 228961 229420 229425) (-192 "D01AGNT.spad" 225012 225020 228943 228948) (-191 "CYCLOTOM.spad" 224518 224526 225002 225007) (-190 "CYCLES.spad" 221350 221358 224508 224513) (-189 "CVMP.spad" 220767 220777 221340 221345) (-188 "CTRIGMNP.spad" 219257 219273 220757 220762) (-187 "CTOR.spad" 218948 218956 219247 219252) (-186 "CTORKIND.spad" 218551 218559 218938 218943) (-185 "CTORCAT.spad" 217800 217808 218541 218546) (-184 "CTORCAT.spad" 217047 217057 217790 217795) (-183 "CTORCALL.spad" 216636 216646 217037 217042) (-182 "CSTTOOLS.spad" 215879 215892 216626 216631) (-181 "CRFP.spad" 209583 209596 215869 215874) (-180 "CRCEAST.spad" 209303 209311 209573 209578) (-179 "CRAPACK.spad" 208346 208356 209293 209298) (-178 "CPMATCH.spad" 207846 207861 208271 208276) (-177 "CPIMA.spad" 207551 207570 207836 207841) (-176 "COORDSYS.spad" 202444 202454 207541 207546) (-175 "CONTOUR.spad" 201851 201859 202434 202439) (-174 "CONTFRAC.spad" 197463 197473 201753 201846) (-173 "CONDUIT.spad" 197221 197229 197453 197458) (-172 "COMRING.spad" 196895 196903 197159 197216) (-171 "COMPPROP.spad" 196409 196417 196885 196890) (-170 "COMPLPAT.spad" 196176 196191 196399 196404) (-169 "COMPLEX.spad" 190313 190323 190557 190818) (-168 "COMPLEX2.spad" 190026 190038 190303 190308) (-167 "COMPFACT.spad" 189628 189642 190016 190021) (-166 "COMPCAT.spad" 187696 187706 189362 189623) (-165 "COMPCAT.spad" 185492 185504 187160 187165) (-164 "COMMUPC.spad" 185238 185256 185482 185487) (-163 "COMMONOP.spad" 184771 184779 185228 185233) (-162 "COMM.spad" 184580 184588 184761 184766) (-161 "COMMAAST.spad" 184343 184351 184570 184575) (-160 "COMBOPC.spad" 183248 183256 184333 184338) (-159 "COMBINAT.spad" 181993 182003 183238 183243) (-158 "COMBF.spad" 179361 179377 181983 181988) (-157 "COLOR.spad" 178198 178206 179351 179356) (-156 "COLONAST.spad" 177864 177872 178188 178193) (-155 "CMPLXRT.spad" 177573 177590 177854 177859) (-154 "CLLCTAST.spad" 177235 177243 177563 177568) (-153 "CLIP.spad" 173327 173335 177225 177230) (-152 "CLIF.spad" 171966 171982 173283 173322) (-151 "CLAGG.spad" 168451 168461 171956 171961) (-150 "CLAGG.spad" 164807 164819 168314 168319) (-149 "CINTSLPE.spad" 164132 164145 164797 164802) (-148 "CHVAR.spad" 162210 162232 164122 164127) (-147 "CHARZ.spad" 162125 162133 162190 162205) (-146 "CHARPOL.spad" 161633 161643 162115 162120) (-145 "CHARNZ.spad" 161386 161394 161613 161628) (-144 "CHAR.spad" 159254 159262 161376 161381) (-143 "CFCAT.spad" 158570 158578 159244 159249) (-142 "CDEN.spad" 157728 157742 158560 158565) (-141 "CCLASS.spad" 155877 155885 157139 157178) (-140 "CATEGORY.spad" 154919 154927 155867 155872) (-139 "CATCTOR.spad" 154810 154818 154909 154914) (-138 "CATAST.spad" 154428 154436 154800 154805) (-137 "CASEAST.spad" 154142 154150 154418 154423) (-136 "CARTEN.spad" 149245 149269 154132 154137) (-135 "CARTEN2.spad" 148631 148658 149235 149240) (-134 "CARD.spad" 145920 145928 148605 148626) (-133 "CAPSLAST.spad" 145694 145702 145910 145915) (-132 "CACHSET.spad" 145316 145324 145684 145689) (-131 "CABMON.spad" 144869 144877 145306 145311) (-130 "BYTEORD.spad" 144544 144552 144859 144864) (-129 "BYTE.spad" 143969 143977 144534 144539) (-128 "BYTEBUF.spad" 141826 141834 143138 143165) (-127 "BTREE.spad" 140895 140905 141433 141460) (-126 "BTOURN.spad" 139898 139908 140502 140529) (-125 "BTCAT.spad" 139286 139296 139866 139893) (-124 "BTCAT.spad" 138694 138706 139276 139281) (-123 "BTAGG.spad" 137816 137824 138662 138689) (-122 "BTAGG.spad" 136958 136968 137806 137811) (-121 "BSTREE.spad" 135693 135703 136565 136592) (-120 "BRILL.spad" 133888 133899 135683 135688) (-119 "BRAGG.spad" 132812 132822 133878 133883) (-118 "BRAGG.spad" 131700 131712 132768 132773) (-117 "BPADICRT.spad" 129681 129693 129936 130029) (-116 "BPADIC.spad" 129345 129357 129607 129676) (-115 "BOUNDZRO.spad" 129001 129018 129335 129340) (-114 "BOP.spad" 124125 124133 128991 128996) (-113 "BOP1.spad" 121545 121555 124115 124120) (-112 "BOOLEAN.spad" 120977 120985 121535 121540) (-111 "BMODULE.spad" 120689 120701 120945 120972) (-110 "BITS.spad" 120108 120116 120325 120352) (-109 "BINDING.spad" 119519 119527 120098 120103) (-108 "BINARY.spad" 117630 117638 117986 118079) (-107 "BGAGG.spad" 116827 116837 117610 117625) (-106 "BGAGG.spad" 116032 116044 116817 116822) (-105 "BFUNCT.spad" 115596 115604 116012 116027) (-104 "BEZOUT.spad" 114730 114757 115546 115551) (-103 "BBTREE.spad" 111549 111559 114337 114364) (-102 "BASTYPE.spad" 111221 111229 111539 111544) (-101 "BASTYPE.spad" 110891 110901 111211 111216) (-100 "BALFACT.spad" 110330 110343 110881 110886) (-99 "AUTOMOR.spad" 109777 109786 110310 110325) (-98 "ATTREG.spad" 106496 106503 109529 109772) (-97 "ATTRBUT.spad" 102519 102526 106476 106491) (-96 "ATTRAST.spad" 102236 102243 102509 102514) (-95 "ATRIG.spad" 101706 101713 102226 102231) (-94 "ATRIG.spad" 101174 101183 101696 101701) (-93 "ASTCAT.spad" 101078 101085 101164 101169) (-92 "ASTCAT.spad" 100980 100989 101068 101073) (-91 "ASTACK.spad" 100313 100322 100587 100614) (-90 "ASSOCEQ.spad" 99113 99124 100269 100274) (-89 "ASP9.spad" 98194 98207 99103 99108) (-88 "ASP8.spad" 97237 97250 98184 98189) (-87 "ASP80.spad" 96559 96572 97227 97232) (-86 "ASP7.spad" 95719 95732 96549 96554) (-85 "ASP78.spad" 95170 95183 95709 95714) (-84 "ASP77.spad" 94539 94552 95160 95165) (-83 "ASP74.spad" 93631 93644 94529 94534) (-82 "ASP73.spad" 92902 92915 93621 93626) (-81 "ASP6.spad" 91769 91782 92892 92897) (-80 "ASP55.spad" 90278 90291 91759 91764) (-79 "ASP50.spad" 88095 88108 90268 90273) (-78 "ASP4.spad" 87390 87403 88085 88090) (-77 "ASP49.spad" 86389 86402 87380 87385) (-76 "ASP42.spad" 84796 84835 86379 86384) (-75 "ASP41.spad" 83375 83414 84786 84791) (-74 "ASP35.spad" 82363 82376 83365 83370) (-73 "ASP34.spad" 81664 81677 82353 82358) (-72 "ASP33.spad" 81224 81237 81654 81659) (-71 "ASP31.spad" 80364 80377 81214 81219) (-70 "ASP30.spad" 79256 79269 80354 80359) (-69 "ASP29.spad" 78722 78735 79246 79251) (-68 "ASP28.spad" 69995 70008 78712 78717) (-67 "ASP27.spad" 68892 68905 69985 69990) (-66 "ASP24.spad" 67979 67992 68882 68887) (-65 "ASP20.spad" 67443 67456 67969 67974) (-64 "ASP1.spad" 66824 66837 67433 67438) (-63 "ASP19.spad" 61510 61523 66814 66819) (-62 "ASP12.spad" 60924 60937 61500 61505) (-61 "ASP10.spad" 60195 60208 60914 60919) (-60 "ARRAY2.spad" 59555 59564 59802 59829) (-59 "ARRAY1.spad" 58390 58399 58738 58765) (-58 "ARRAY12.spad" 57059 57070 58380 58385) (-57 "ARR2CAT.spad" 52721 52742 57027 57054) (-56 "ARR2CAT.spad" 48403 48426 52711 52716) (-55 "ARITY.spad" 47775 47782 48393 48398) (-54 "APPRULE.spad" 47019 47041 47765 47770) (-53 "APPLYORE.spad" 46634 46647 47009 47014) (-52 "ANY.spad" 45491 45498 46624 46629) (-51 "ANY1.spad" 44562 44571 45481 45486) (-50 "ANTISYM.spad" 43001 43017 44542 44557) (-49 "ANON.spad" 42694 42701 42991 42996) (-48 "AN.spad" 40995 41002 42510 42603) (-47 "AMR.spad" 39174 39185 40893 40990) (-46 "AMR.spad" 37190 37203 38911 38916) (-45 "ALIST.spad" 34602 34623 34952 34979) (-44 "ALGSC.spad" 33725 33751 34474 34527) (-43 "ALGPKG.spad" 29434 29445 33681 33686) (-42 "ALGMFACT.spad" 28623 28637 29424 29429) (-41 "ALGMANIP.spad" 26079 26094 28456 28461) (-40 "ALGFF.spad" 24394 24421 24611 24767) (-39 "ALGFACT.spad" 23515 23525 24384 24389) (-38 "ALGEBRA.spad" 23348 23357 23471 23510) (-37 "ALGEBRA.spad" 23213 23224 23338 23343) (-36 "ALAGG.spad" 22723 22744 23181 23208) (-35 "AHYP.spad" 22104 22111 22713 22718) (-34 "AGG.spad" 20413 20420 22094 22099) (-33 "AGG.spad" 18686 18695 20369 20374) (-32 "AF.spad" 17111 17126 18621 18626) (-31 "ADDAST.spad" 16789 16796 17101 17106) (-30 "ACPLOT.spad" 15360 15367 16779 16784) (-29 "ACFS.spad" 13111 13120 15262 15355) (-28 "ACFS.spad" 10948 10959 13101 13106) (-27 "ACF.spad" 7550 7557 10850 10943) (-26 "ACF.spad" 4238 4247 7540 7545) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file