aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase644
1 files changed, 322 insertions, 322 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index d2f1df71..5066fa82 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2266417 . 3485084669)
+(2266184 . 3485328466)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -56,7 +56,7 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1385)
+(-32 R -2968)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))
@@ -88,11 +88,11 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1385 UP UPUP -3808)
+(-40 -2968 UP UPUP -3777)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4445 |has| (-413 |#2|) (-368)) (-4450 |has| (-413 |#2|) (-368)) (-4444 |has| (-413 |#2|) (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-2811 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-2811 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-2811 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-2811 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))))
-(-41 R -1385)
+((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-3684 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-3684 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-3684 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-3684 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))))
+(-41 R -2968)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -436) (|devaluate| |#1|)))))
@@ -111,7 +111,7 @@ NIL
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4452 . T) (-4453 . T))
-((-2811 (-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|))))))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|)))))))
+((-3684 (-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|))))))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1385)
+(-54 |Base| R -2968)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -167,64 +167,64 @@ NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-61 -2058)
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+(-61 -1800)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2058)
+(-62 -1800)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2058)
+(-63 -1800)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2058)
+(-64 -1800)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2058)
+(-65 -1800)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2058)
+(-66 -1800)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2058)
+(-67 -1800)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2058)
+(-68 -1800)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2058)
+(-69 -1800)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2058)
+(-70 -1800)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2058)
+(-71 -1800)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2058)
+(-72 -1800)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2058)
+(-73 -1800)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2058)
+(-74 -1800)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2058)
+(-77 -1800)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2058)
+(-78 -1800)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2058)
+(-79 -1800)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2058)
+(-80 -1800)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2058)
+(-81 -1800)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2058)
+(-82 -1800)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2058)
+(-83 -1800)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2058)
+(-84 -1800)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2058)
+(-85 -1800)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2058)
+(-86 -1800)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2058)
+(-87 -1800)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2058)
+(-88 -1800)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2058)
+(-89 -1800)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -295,7 +295,7 @@ NIL
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -343,7 +343,7 @@ NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
@@ -363,7 +363,7 @@ NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-2811 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
+((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-3684 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -392,7 +392,7 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-116 -1385 UP)
+(-116 -2968 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
@@ -403,7 +403,7 @@ NIL
(-118 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-117 |#1|) (QUOTE (-916))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-117 |#1|) (QUOTE (-1031))) (|HasCategory| (-117 |#1|) (QUOTE (-826))) (-2811 (|HasCategory| (-117 |#1|) (QUOTE (-826))) (|HasCategory| (-117 |#1|) (QUOTE (-856)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (QUOTE (-1161))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (QUOTE (-235))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -313) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-311))) (|HasCategory| (-117 |#1|) (QUOTE (-551))) (|HasCategory| (-117 |#1|) (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-916)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
+((|HasCategory| (-117 |#1|) (QUOTE (-916))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-117 |#1|) (QUOTE (-1031))) (|HasCategory| (-117 |#1|) (QUOTE (-826))) (-3684 (|HasCategory| (-117 |#1|) (QUOTE (-826))) (|HasCategory| (-117 |#1|) (QUOTE (-856)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (QUOTE (-1161))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-117 |#1|) (QUOTE (-235))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -313) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-311))) (|HasCategory| (-117 |#1|) (QUOTE (-551))) (|HasCategory| (-117 |#1|) (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-916)))) (|HasCategory| (-117 |#1|) (QUOTE (-146)))))
(-119 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -419,7 +419,7 @@ NIL
(-122 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-123 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
@@ -439,15 +439,15 @@ NIL
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-129)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130)))))) (-2811 (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-130) (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-130) (QUOTE (-1109)))) (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))))
+((-3684 (-12 (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130)))))) (-3684 (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-130) (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-130) (QUOTE (-1109)))) (|HasCategory| (-130) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-130) (QUOTE (-1109))) (|HasCategory| (-130) (LIST (QUOTE -313) (QUOTE (-130))))))
(-130)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -472,11 +472,11 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
(((-4454 "*") . T))
NIL
-(-136 |minix| -2183 S T$)
+(-136 |minix| -2795 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -2183 R)
+(-137 |minix| -2795 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -499,7 +499,7 @@ NIL
(-142)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
((-4452 . T) (-4442 . T) (-4453 . T))
-((-2811 (-12 (|HasCategory| (-145) (QUOTE (-373))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-145) (QUOTE (-373))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
+((-3684 (-12 (|HasCategory| (-145) (QUOTE (-373))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-145) (QUOTE (-373))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
(-143 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -524,7 +524,7 @@ NIL
((|constructor| (NIL "Rings of Characteristic Zero.")))
((-4449 . T))
NIL
-(-149 -1385 UP UPUP)
+(-149 -2968 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -564,7 +564,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-159 R -1385)
+(-159 R -2968)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -598,7 +598,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-1011))) (|HasCategory| |#2| (QUOTE (-1212))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4448)) (|HasAttribute| |#2| (QUOTE -4451)) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-562))))
(-167 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4445 -2811 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4448 |has| |#1| (-6 -4448)) (-4451 |has| |#1| (-6 -4451)) (-3545 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4445 -3684 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4448 |has| |#1| (-6 -4448)) (-4451 |has| |#1| (-6 -4451)) (-3420 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-168 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4445 -2811 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4448 |has| |#1| (-6 -4448)) (-4451 |has| |#1| (-6 -4451)) (-3545 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-235))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1212)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-235))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasAttribute| |#1| (QUOTE -4448)) (|HasAttribute| |#1| (QUOTE -4451)) (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-354)))))
+((-4445 -3684 (|has| |#1| (-562)) (-12 (|has| |#1| (-311)) (|has| |#1| (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4448 |has| |#1| (-6 -4448)) (-4451 |has| |#1| (-6 -4451)) (-3420 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-235))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-373)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-834)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-1212)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-916))))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-235))) (-12 (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasAttribute| |#1| (QUOTE -4448)) (|HasAttribute| |#1| (QUOTE -4451)) (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-354)))))
(-172 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -688,7 +688,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-190 R -1385)
+(-190 R -2968)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -796,23 +796,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-217 -1385 UP UPUP R)
+(-217 -2968 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-218 -1385 FP)
+(-218 -2968 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-219)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-2811 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
+((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-3684 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
(-220)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-221 R -1385)
+(-221 R -2968)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -827,18 +827,18 @@ NIL
(-224 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-225 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
((-4449 . T))
NIL
-(-226 R -1385)
+(-226 R -2968)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-227)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3535 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-3412 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-228)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -847,7 +847,7 @@ NIL
(-229 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-230 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
@@ -884,22 +884,22 @@ NIL
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-239 S -2183 R)
+(-239 S -2795 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
((|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854))) (|HasAttribute| |#3| (QUOTE -4449)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-1109))))
-(-240 -2183 R)
+(-240 -2795 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T))
NIL
-(-241 -2183 A B)
+(-241 -2795 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-242 -2183 R)
+(-242 -2795 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2811 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2811 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
+((-3684 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-3684 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3684 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
(-243)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -919,7 +919,7 @@ NIL
(-247 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-248 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
@@ -927,7 +927,7 @@ NIL
(-249 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
+((|HasCategory| |#2| (QUOTE (-916))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-250)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -942,12 +942,12 @@ NIL
NIL
(-253 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4449 -2811 (-2115 (|has| |#4| (-1058)) (|has| |#4| (-235))) (-2115 (|has| |#4| (-1058)) (|has| |#4| (-907 (-1186)))) (|has| |#4| (-6 -4449)) (-2115 (|has| |#4| (-1058)) (|has| |#4| (-645 (-570))))) (-4446 |has| |#4| (-1058)) (-4447 |has| |#4| (-1058)) ((-4454 "*") |has| |#4| (-174)) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-368))) (-2811 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (QUOTE (-1058)))) (-2811 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368)))) (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-799))) (-2811 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (QUOTE (-854)))) (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (QUOTE (-732))) (-2811 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2811 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-235)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-373)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-732)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-799)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-854)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109))))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-2811 (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-732))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2811 (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109)))) (-2811 (|HasAttribute| |#4| (QUOTE -4449)) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))))
+((-4449 -3684 (-3163 (|has| |#4| (-1058)) (|has| |#4| (-235))) (-3163 (|has| |#4| (-1058)) (|has| |#4| (-907 (-1186)))) (|has| |#4| (-6 -4449)) (-3163 (|has| |#4| (-1058)) (|has| |#4| (-645 (-570))))) (-4446 |has| |#4| (-1058)) (-4447 |has| |#4| (-1058)) ((-4454 "*") |has| |#4| (-174)) (-4452 . T))
+((-3684 (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-368))) (-3684 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (QUOTE (-1058)))) (-3684 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-368)))) (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-799))) (-3684 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (QUOTE (-854)))) (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (QUOTE (-732))) (-3684 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3684 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-235)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-373)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-732)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-799)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-854)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109))))) (-3684 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-373))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-732))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-799))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-854))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-3684 (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (|HasCategory| |#4| (QUOTE (-732))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570))))) (-3684 (|HasCategory| |#4| (QUOTE (-1058))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#4| (QUOTE (-1109)))) (-3684 (|HasAttribute| |#4| (QUOTE -4449)) (-12 (|HasCategory| |#4| (QUOTE (-235))) (|HasCategory| |#4| (QUOTE (-1058)))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#4| (QUOTE (-1058))) (|HasCategory| |#4| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#4| (QUOTE (-1109))) (|HasCategory| |#4| (LIST (QUOTE -313) (|devaluate| |#4|)))))
(-254 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4449 -2811 (-2115 (|has| |#3| (-1058)) (|has| |#3| (-235))) (-2115 (|has| |#3| (-1058)) (|has| |#3| (-907 (-1186)))) (|has| |#3| (-6 -4449)) (-2115 (|has| |#3| (-1058)) (|has| |#3| (-645 (-570))))) (-4446 |has| |#3| (-1058)) (-4447 |has| |#3| (-1058)) ((-4454 "*") |has| |#3| (-174)) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-368))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-2811 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2811 (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-732))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2811 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-2811 (|HasAttribute| |#3| (QUOTE -4449)) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))))
+((-4449 -3684 (-3163 (|has| |#3| (-1058)) (|has| |#3| (-235))) (-3163 (|has| |#3| (-1058)) (|has| |#3| (-907 (-1186)))) (|has| |#3| (-6 -4449)) (-3163 (|has| |#3| (-1058)) (|has| |#3| (-645 (-570))))) (-4446 |has| |#3| (-1058)) (-4447 |has| |#3| (-1058)) ((-4454 "*") |has| |#3| (-174)) (-4452 . T))
+((-3684 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-368))) (-3684 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3684 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-3684 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-3684 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3684 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-3684 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3684 (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-732))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-3684 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-3684 (|HasAttribute| |#3| (QUOTE -4449)) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))))
(-255 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
@@ -999,7 +999,7 @@ NIL
(-267 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#3| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#3| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-268 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1044,11 +1044,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-279 R -1385)
+(-279 R -2968)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-280 R -1385)
+(-280 R -2968)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1100,7 +1100,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-293 S R |Mod| -1576 -2523 |exactQuo|)
+(-293 S R |Mod| -2228 -3055 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
@@ -1122,21 +1122,21 @@ NIL
NIL
(-298 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4449 -2811 (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4446 |has| |#1| (-1058)) (-4447 |has| |#1| (-1058)))
-((|HasCategory| |#1| (QUOTE (-368))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2811 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732)))) (|HasCategory| |#1| (QUOTE (-479))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2811 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-306))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-479)))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732)))) (-2811 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-732))))
+((-4449 -3684 (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4446 |has| |#1| (-1058)) (-4447 |has| |#1| (-1058)))
+((|HasCategory| |#1| (QUOTE (-368))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3684 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732)))) (|HasCategory| |#1| (QUOTE (-479))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-1109)))) (-3684 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-306))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-479)))) (-3684 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732)))) (-3684 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-732))))
(-299 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|)))))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
(-300)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-301 -1385 S)
+(-301 -2968 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-302 E -1385)
+(-302 E -2968)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -1184,7 +1184,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-314 -1385)
+(-314 -2968)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1199,7 +1199,7 @@ NIL
(-317 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-1031))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-826))) (-2811 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-826))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-856)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-1161))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-235))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -313) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -290) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-551))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-856))) (-12 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| $ (QUOTE (-146)))) (-2811 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| $ (QUOTE (-146))))))
+((|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-1031))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-826))) (-3684 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-826))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-856)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-1161))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-235))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -313) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (LIST (QUOTE -290) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1263) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-311))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-551))) (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-856))) (-12 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| $ (QUOTE (-146)))) (-3684 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1263 |#1| |#2| |#3| |#4|) (QUOTE (-916))) (|HasCategory| $ (QUOTE (-146))))))
(-318 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1210,9 +1210,9 @@ NIL
NIL
(-320 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4449 -2811 (-2115 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-12 (|has| |#1| (-562)) (-2811 (-2115 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (|has| |#1| (-1058)) (|has| |#1| (-479)))) (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) ((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-562)) (-4444 |has| |#1| (-562)))
-((-2811 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (-2811 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-2811 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-2811 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-2811 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-321 R -1385)
+((-4449 -3684 (-3163 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (-12 (|has| |#1| (-562)) (-3684 (-3163 (|has| |#1| (-1058)) (|has| |#1| (-645 (-570)))) (|has| |#1| (-1058)) (|has| |#1| (-479)))) (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) ((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-562)) (-4444 |has| |#1| (-562)))
+((-3684 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (-3684 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (QUOTE (-21))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-1058)))) (-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3684 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-3684 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3684 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))))) (-3684 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#1| (QUOTE (-1058)))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| $ (QUOTE (-1058))) (|HasCategory| $ (LIST (QUOTE -1047) (QUOTE (-570)))))
+(-321 R -2968)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1223,7 +1223,7 @@ NIL
(-323 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
(-324 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1255,12 +1255,12 @@ NIL
(-331 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
-(-332 S -1385)
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+(-332 S -2968)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-373))))
-(-333 -1385)
+(-333 -2968)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
@@ -1284,15 +1284,15 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-339 S -1385 UP UPUP R)
+(-339 S -2968 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-340 -1385 UP UPUP R)
+(-340 -2968 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-341 -1385 UP UPUP R)
+(-341 -2968 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1312,26 +1312,26 @@ NIL
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-346 S -1385 UP UPUP)
+(-346 S -2968 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-368))))
-(-347 -1385 UP UPUP)
+(-347 -2968 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
((-4445 |has| (-413 |#2|) (-368)) (-4450 |has| (-413 |#2|) (-368)) (-4444 |has| (-413 |#2|) (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-348 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
+((-3684 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
(-349 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
+((-3684 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
(-350 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
+((-3684 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
(-351 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1348,31 +1348,31 @@ NIL
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
-(-355 R UP -1385)
+(-355 R UP -2968)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-356 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
+((-3684 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
(-357 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
+((-3684 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
(-358 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
+((-3684 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
(-359 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
+((-3684 (|HasCategory| (-917 |#1|) (QUOTE (-146))) (|HasCategory| (-917 |#1|) (QUOTE (-373)))) (|HasCategory| (-917 |#1|) (QUOTE (-148))) (|HasCategory| (-917 |#1|) (QUOTE (-373))) (|HasCategory| (-917 |#1|) (QUOTE (-146))))
(-360 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
-(-361 -1385 GF)
+((-3684 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
+(-361 -2968 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1380,14 +1380,14 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-363 -1385 FP FPP)
+(-363 -2968 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-364 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
+((-3684 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-146))))
(-365 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
@@ -1466,7 +1466,7 @@ NIL
NIL
(-384)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4435 . T) (-4443 . T) (-3535 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-4435 . T) (-4443 . T) (-3412 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-385 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1520,7 +1520,7 @@ NIL
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-398 -1385 UP UPUP R)
+(-398 -2968 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1544,11 +1544,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-404 -2058 |returnType| -4038 |symbols|)
+(-404 -1800 |returnType| -4170 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-405 -1385 UP)
+(-405 -2968 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1570,7 +1570,7 @@ NIL
((|HasAttribute| |#1| (QUOTE -4435)) (|HasAttribute| |#1| (QUOTE -4443)))
(-410)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3535 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-3412 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-411 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1583,7 +1583,7 @@ NIL
(-413 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
((-4439 -12 (|has| |#1| (-6 -4450)) (|has| |#1| (-458)) (|has| |#1| (-6 -4439))) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-826))) (-2811 (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-856)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-551))) (-12 (|HasAttribute| |#1| (QUOTE -4450)) (|HasAttribute| |#1| (QUOTE -4439)) (|HasCategory| |#1| (QUOTE (-458)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-826))) (-3684 (|HasCategory| |#1| (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-856)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834))))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-834)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-551))) (-12 (|HasAttribute| |#1| (QUOTE -4450)) (|HasAttribute| |#1| (QUOTE -4439)) (|HasCategory| |#1| (QUOTE (-458)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-414 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
@@ -1604,11 +1604,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-419 R -1385 UP A)
+(-419 R -2968 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
((-4449 . T))
NIL
-(-420 R -1385 UP A |ibasis|)
+(-420 R -2968 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1047) (|devaluate| |#2|))))
@@ -1627,7 +1627,7 @@ NIL
(-424 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -313) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-1231))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-1231)))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-458))))
+((|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -313) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-1231))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-1231)))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (QUOTE $) (QUOTE $)))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-458))))
(-425 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
@@ -1656,7 +1656,7 @@ NIL
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
((-4452 . T) (-4442 . T) (-4453 . T))
NIL
-(-432 R -1385)
+(-432 R -2968)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
@@ -1664,7 +1664,7 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
((-4439 -12 (|has| |#1| (-6 -4439)) (|has| |#2| (-6 -4439))) (-4446 . T) (-4447 . T) (-4449 . T))
((-12 (|HasAttribute| |#1| (QUOTE -4439)) (|HasAttribute| |#2| (QUOTE -4439))))
-(-434 R -1385)
+(-434 R -2968)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1674,17 +1674,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))))
(-436 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4449 -2811 (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) ((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-562)) (-4444 |has| |#1| (-562)))
+((-4449 -3684 (|has| |#1| (-1058)) (|has| |#1| (-479))) (-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) ((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-562)) (-4444 |has| |#1| (-562)))
NIL
-(-437 R -1385)
+(-437 R -2968)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-438 R -1385)
+(-438 R -2968)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-439 R -1385)
+(-439 R -2968)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1692,7 +1692,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-441 R -1385 UP)
+(-441 R -2968 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-48)))))
@@ -1724,7 +1724,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-449 R UP -1385)
+(-449 R UP -2968)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1771,7 +1771,7 @@ NIL
(-460 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
+((|HasCategory| |#2| (QUOTE (-916))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-461 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1836,7 +1836,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-477 |lv| -1385 R)
+(-477 |lv| -2968 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1851,11 +1851,11 @@ NIL
(-480 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
(-481 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))))
+((-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|)))))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))))
(-482 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4453 . T) (-4452 . T))
@@ -1871,7 +1871,7 @@ NIL
(-485 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|)))))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
(-486)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
@@ -1879,11 +1879,11 @@ NIL
(-487 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-488 -2183 S)
+((|HasCategory| |#2| (QUOTE (-916))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
+(-488 -2795 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2811 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2811 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
+((-3684 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-3684 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3684 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
(-489)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
@@ -1891,8 +1891,8 @@ NIL
(-490 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-491 -1385 UP UPUP R)
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+(-491 -2968 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1903,7 +1903,7 @@ NIL
(-493)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-2811 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
+((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-3684 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
(-494 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1928,7 +1928,7 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-500 -1385 UP |AlExt| |AlPol|)
+(-500 -2968 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
@@ -1939,16 +1939,16 @@ NIL
(-502 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-503 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-504 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-505 R UP -1385)
+(-505 R UP -2968)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
@@ -1968,7 +1968,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-510 -1385 |Expon| |VarSet| |DPoly|)
+(-510 -2968 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-1186)))))
@@ -2019,7 +2019,7 @@ NIL
(-522 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-523)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
@@ -2027,15 +2027,15 @@ NIL
(-524 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| (-587 |#1|) (QUOTE (-146))) (|HasCategory| (-587 |#1|) (QUOTE (-373)))) (|HasCategory| (-587 |#1|) (QUOTE (-148))) (|HasCategory| (-587 |#1|) (QUOTE (-373))) (|HasCategory| (-587 |#1|) (QUOTE (-146))))
+((-3684 (|HasCategory| (-587 |#1|) (QUOTE (-146))) (|HasCategory| (-587 |#1|) (QUOTE (-373)))) (|HasCategory| (-587 |#1|) (QUOTE (-148))) (|HasCategory| (-587 |#1|) (QUOTE (-373))) (|HasCategory| (-587 |#1|) (QUOTE (-146))))
(-525 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-526 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-527 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
@@ -2047,7 +2047,7 @@ NIL
(-529 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-530)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2080,7 +2080,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-538 K -1385 |Par|)
+(-538 K -2968 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2104,7 +2104,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-544 K -1385 |Par|)
+(-544 K -2968 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2155,12 +2155,12 @@ NIL
(-556 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
-(-557 R -1385)
+((-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|)))))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
+(-557 R -2968)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-558 R0 -1385 UP UPUP R)
+(-558 R0 -2968 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2170,7 +2170,7 @@ NIL
NIL
(-560 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3535 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-3412 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-561 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2180,7 +2180,7 @@ NIL
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
((-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
-(-563 R -1385)
+(-563 R -2968)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2192,7 +2192,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-566 R -1385 L)
+(-566 R -2968 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -662) (|devaluate| |#2|))))
@@ -2200,11 +2200,11 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-568 -1385 UP UPUP R)
+(-568 -2968 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-569 -1385 UP)
+(-569 -2968 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
@@ -2216,15 +2216,15 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-572 R -1385 L)
+(-572 R -2968 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -662) (|devaluate| |#2|))))
-(-573 R -1385)
+(-573 R -2968)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1148)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-635)))))
-(-574 -1385 UP)
+(-574 -2968 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2232,27 +2232,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-576 -1385)
+(-576 -2968)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-577 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3535 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-3412 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-578)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-579 R -1385)
+(-579 R -2968)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-288))) (|HasCategory| |#2| (QUOTE (-635))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-288)))) (|HasCategory| |#1| (QUOTE (-562))))
-(-580 -1385 UP)
+(-580 -2968 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-581 R -1385)
+(-581 R -2968)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2284,11 +2284,11 @@ NIL
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-589 R -1385)
+(-589 R -2968)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-590 E -1385)
+(-590 E -2968)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
@@ -2296,7 +2296,7 @@ NIL
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-592 -1385)
+(-592 -2968)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
((-4447 . T) (-4446 . T))
((|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-1186)))))
@@ -2327,7 +2327,7 @@ NIL
(-599 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (-2811 (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109)))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
+((-3684 (-12 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (-3684 (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109)))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
(-600 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
@@ -2335,7 +2335,7 @@ NIL
(-601 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))) (|HasCategory| (-570) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))) (|HasCategory| (-570) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))))
(-602 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
(((-4454 "*") |has| |#1| (-562)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
@@ -2352,7 +2352,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-606 R -1385 FG)
+(-606 R -2968 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2363,7 +2363,7 @@ NIL
(-608 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-609 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2382,12 +2382,12 @@ NIL
NIL
(-613 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4449 -2811 (-2115 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T))
-((-2811 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))))
+((-4449 -3684 (-3163 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T))
+((-3684 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))))
(-614 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))))
(-615 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
@@ -2412,7 +2412,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-621 -1385 UP)
+(-621 -2968 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2440,7 +2440,7 @@ NIL
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
((-4446 . T) (-4447 . T) (-4449 . T))
((|HasCategory| |#1| (QUOTE (-854))))
-(-628 R -1385)
+(-628 R -2968)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
@@ -2472,18 +2472,18 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-636 R -1385)
+(-636 R -2968)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-637 |lv| -1385)
+(-637 |lv| -2968)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-638)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -1409) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-1168) (QUOTE (-856))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 (-52))) (QUOTE (-1109))))
+((-12 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -3117) (QUOTE (-52))))))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-1168) (QUOTE (-856))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 (-52))) (QUOTE (-1109))))
(-639 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
@@ -2494,8 +2494,8 @@ NIL
NIL
(-641 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4449 -2811 (-2115 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T))
-((-2811 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))))
+((-4449 -3684 (-3163 (|has| |#2| (-372 |#1|)) (|has| |#1| (-562))) (-12 (|has| |#2| (-423 |#1|)) (|has| |#1| (-562)))) (-4447 . T) (-4446 . T))
+((-3684 (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (LIST (QUOTE -423) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -372) (|devaluate| |#1|))))
(-642 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
@@ -2507,7 +2507,7 @@ NIL
(-644 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2104 (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-368))))
+((-3152 (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-368))))
(-645 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
((-4449 . T))
@@ -2531,7 +2531,7 @@ NIL
(-650 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-834))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-651 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2543,7 +2543,7 @@ NIL
(-653 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-654 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
@@ -2560,7 +2560,7 @@ NIL
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-658 R -1385 L)
+(-658 R -2968 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -2580,11 +2580,11 @@ NIL
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
((-4446 . T) (-4447 . T) (-4449 . T))
NIL
-(-663 -1385 UP)
+(-663 -2968 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-664 A -3757)
+(-664 A -1498)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4446 . T) (-4447 . T) (-4449 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368))))
@@ -2620,11 +2620,11 @@ NIL
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
((-4453 . T) (-4452 . T))
NIL
-(-673 -1385)
+(-673 -2968)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-674 -1385 |Row| |Col| M)
+(-674 -2968 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2635,7 +2635,7 @@ NIL
(-676 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
((-4449 . T) (-4452 . T) (-4446 . T) (-4447 . T))
-((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-562))) (-2811 (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-562))) (-3684 (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
(-677)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2655,7 +2655,7 @@ NIL
(-681 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (QUOTE (-1058))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-682)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2711,7 +2711,7 @@ NIL
(-695 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
((-4452 . T) (-4453 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-562))) (|HasAttribute| |#1| (QUOTE (-4454 "*"))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-696 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2720,7 +2720,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-698 S -1385 FLAF FLAS)
+(-698 S -2968 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2730,8 +2730,8 @@ NIL
NIL
(-700)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4445 . T) (-4450 |has| (-705) (-368)) (-4444 |has| (-705) (-368)) (-3545 . T) (-4451 |has| (-705) (-6 -4451)) (-4448 |has| (-705) (-6 -4448)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-705) (QUOTE (-148))) (|HasCategory| (-705) (QUOTE (-146))) (|HasCategory| (-705) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-705) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-705) (QUOTE (-373))) (|HasCategory| (-705) (QUOTE (-368))) (-2811 (|HasCategory| (-705) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-705) (QUOTE (-368)))) (|HasCategory| (-705) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-705) (QUOTE (-235))) (-2811 (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-354)))) (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (LIST (QUOTE -290) (QUOTE (-705)) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -313) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-705) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-705) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-705) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (-2811 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-354)))) (|HasCategory| (-705) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-705) (QUOTE (-1031))) (|HasCategory| (-705) (QUOTE (-1212))) (-12 (|HasCategory| (-705) (QUOTE (-1011))) (|HasCategory| (-705) (QUOTE (-1212)))) (-2811 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-368))) (-12 (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (QUOTE (-916))))) (-2811 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (-12 (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-916)))) (-12 (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (QUOTE (-916))))) (|HasCategory| (-705) (QUOTE (-551))) (-12 (|HasCategory| (-705) (QUOTE (-1069))) (|HasCategory| (-705) (QUOTE (-1212)))) (|HasCategory| (-705) (QUOTE (-1069))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916))) (-2811 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-368)))) (-2811 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-562)))) (-12 (|HasCategory| (-705) (QUOTE (-235))) (|HasCategory| (-705) (QUOTE (-368)))) (-12 (|HasCategory| (-705) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-705) (QUOTE (-368)))) (|HasCategory| (-705) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-705) (QUOTE (-562))) (|HasAttribute| (-705) (QUOTE -4451)) (|HasAttribute| (-705) (QUOTE -4448)) (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-146)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-354)))))
+((-4445 . T) (-4450 |has| (-705) (-368)) (-4444 |has| (-705) (-368)) (-3420 . T) (-4451 |has| (-705) (-6 -4451)) (-4448 |has| (-705) (-6 -4448)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((|HasCategory| (-705) (QUOTE (-148))) (|HasCategory| (-705) (QUOTE (-146))) (|HasCategory| (-705) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-705) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-705) (QUOTE (-373))) (|HasCategory| (-705) (QUOTE (-368))) (-3684 (|HasCategory| (-705) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-705) (QUOTE (-368)))) (|HasCategory| (-705) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-705) (QUOTE (-235))) (-3684 (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-354)))) (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (LIST (QUOTE -290) (QUOTE (-705)) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -313) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-705)))) (|HasCategory| (-705) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-705) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-705) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-705) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (-3684 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-354)))) (|HasCategory| (-705) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-705) (QUOTE (-1031))) (|HasCategory| (-705) (QUOTE (-1212))) (-12 (|HasCategory| (-705) (QUOTE (-1011))) (|HasCategory| (-705) (QUOTE (-1212)))) (-3684 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-368))) (-12 (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (QUOTE (-916))))) (-3684 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (-12 (|HasCategory| (-705) (QUOTE (-368))) (|HasCategory| (-705) (QUOTE (-916)))) (-12 (|HasCategory| (-705) (QUOTE (-354))) (|HasCategory| (-705) (QUOTE (-916))))) (|HasCategory| (-705) (QUOTE (-551))) (-12 (|HasCategory| (-705) (QUOTE (-1069))) (|HasCategory| (-705) (QUOTE (-1212)))) (|HasCategory| (-705) (QUOTE (-1069))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916))) (-3684 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-368)))) (-3684 (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-562)))) (-12 (|HasCategory| (-705) (QUOTE (-235))) (|HasCategory| (-705) (QUOTE (-368)))) (-12 (|HasCategory| (-705) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-705) (QUOTE (-368)))) (|HasCategory| (-705) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-705) (QUOTE (-562))) (|HasAttribute| (-705) (QUOTE -4451)) (|HasAttribute| (-705) (QUOTE -4448)) (-12 (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-146)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-705) (QUOTE (-311))) (|HasCategory| (-705) (QUOTE (-916)))) (|HasCategory| (-705) (QUOTE (-354)))))
(-701 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
((-4453 . T))
@@ -2744,13 +2744,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-704 OV E -1385 PG)
+(-704 OV E -2968 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-705)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3535 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
+((-3412 . T) (-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-706 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2776,7 +2776,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-712 S -3651 I)
+(-712 S -3347 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2796,14 +2796,14 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-717 R |Mod| -1576 -2523 |exactQuo|)
+(-717 R |Mod| -2228 -3055 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-718 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4448 |has| |#1| (-368)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-719 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
@@ -2812,7 +2812,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4447 |has| |#1| (-174)) (-4446 |has| |#1| (-174)) (-4449 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-721 R |Mod| -1576 -2523 |exactQuo|)
+(-721 R |Mod| -2228 -3055 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4449 . T))
NIL
@@ -2824,7 +2824,7 @@ NIL
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
((-4447 . T) (-4446 . T))
NIL
-(-724 -1385)
+(-724 -2968)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
((-4449 . T))
NIL
@@ -2860,7 +2860,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-733 -1385 UP)
+(-733 -2968 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2879,7 +2879,7 @@ NIL
(-737 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
+((|HasCategory| |#2| (QUOTE (-916))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-870 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-738 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -3012,11 +3012,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-771 -1385)
+(-771 -2968)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-772 P -1385)
+(-772 P -2968)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -3024,7 +3024,7 @@ NIL
NIL
NIL
NIL
-(-774 UP -1385)
+(-774 UP -2968)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3040,7 +3040,7 @@ NIL
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
(((-4454 "*") . T))
NIL
-(-778 R -1385)
+(-778 R -2968)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3060,7 +3060,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-783 -1385 |ExtF| |SUEx| |ExtP| |n|)
+(-783 -2968 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3075,7 +3075,7 @@ NIL
(-786 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-2104 (|HasCategory| |#1| (QUOTE (-551)))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570))))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -1001) (QUOTE (-570))))))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-3152 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-3152 (|HasCategory| |#1| (QUOTE (-551)))) (-3152 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-3152 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-570))))) (-3152 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-1186)))) (-3152 (|HasCategory| |#1| (LIST (QUOTE -1001) (QUOTE (-570))))))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-787 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -3083,7 +3083,7 @@ NIL
(-788 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4448 |has| |#1| (-368)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-789 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
@@ -3144,23 +3144,23 @@ NIL
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
((-4446 . T) (-4447 . T) (-4449 . T))
NIL
-(-804 -2811 R OS S)
+(-804 -3684 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-805 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
((-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (-2811 (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2811 (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (-3684 (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3684 (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1008 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))))
(-806)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-807 R -1385 L)
+(-807 R -2968 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-808 R -1385)
+(-808 R -2968)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3168,7 +3168,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-810 R -1385)
+(-810 R -2968)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3176,11 +3176,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-812 -1385 UP UPUP R)
+(-812 -2968 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-813 -1385 UP L LQ)
+(-813 -2968 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3188,38 +3188,38 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-815 -1385 UP L LQ)
+(-815 -2968 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-816 -1385 UP)
+(-816 -2968 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-817 -1385 L UP A LO)
+(-817 -2968 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-818 -1385 UP)
+(-818 -2968 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-819 -1385 LO)
+(-819 -2968 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-820 -1385 LODO)
+(-820 -2968 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-821 -2183 S |f|)
+(-821 -2795 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4446 |has| |#2| (-1058)) (-4447 |has| |#2| (-1058)) (-4449 |has| |#2| (-6 -4449)) ((-4454 "*") |has| |#2| (-174)) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-2811 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2811 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
+((-3684 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-368))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-799))) (-3684 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854)))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-732))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1058)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (|HasCategory| |#2| (QUOTE (-235))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasCategory| |#2| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-235)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-373)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-854)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-732))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-799))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-854))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (QUOTE (-1058)))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3684 (|HasCategory| |#2| (QUOTE (-1058))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-1109)))) (|HasAttribute| |#2| (QUOTE -4449)) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))))
(-822 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-824 (-1186)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-823 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
(((-4454 "*") |has| |#2| (-368)) (-4445 |has| |#2| (-368)) (-4450 |has| |#2| (-368)) (-4444 |has| |#2| (-368)) (-4449 . T) (-4447 . T) (-4446 . T))
@@ -3287,7 +3287,7 @@ NIL
(-839 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
((-4449 |has| |#1| (-854)))
-((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-854)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2811 (|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-551))))
+((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-21))) (-3684 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-854)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3684 (|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-551))))
(-840 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
@@ -3327,12 +3327,12 @@ NIL
(-849 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
((-4449 |has| |#1| (-854)))
-((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-21))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-854)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2811 (|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-551))))
+((|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (QUOTE (-21))) (-3684 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-854)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3684 (|HasCategory| |#1| (QUOTE (-854))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-551))))
(-850)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-851 -2183 S)
+(-851 -2795 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3368,11 +3368,11 @@ NIL
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562))))
-(-860 R |sigma| -2227)
+(-860 R |sigma| -3502)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
((-4446 . T) (-4447 . T) (-4449 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-368))))
-(-861 |x| R |sigma| -2227)
+(-861 |x| R |sigma| -3502)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
((-4446 . T) (-4447 . T) (-4449 . T))
((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-368))))
@@ -3439,15 +3439,15 @@ NIL
(-877 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-876 |#1|) (QUOTE (-916))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-876 |#1|) (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-148))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-876 |#1|) (QUOTE (-1031))) (|HasCategory| (-876 |#1|) (QUOTE (-826))) (-2811 (|HasCategory| (-876 |#1|) (QUOTE (-826))) (|HasCategory| (-876 |#1|) (QUOTE (-856)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (QUOTE (-1161))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (QUOTE (-235))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -313) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -876) (|devaluate| |#1|)) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (QUOTE (-311))) (|HasCategory| (-876 |#1|) (QUOTE (-551))) (|HasCategory| (-876 |#1|) (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-916)))) (|HasCategory| (-876 |#1|) (QUOTE (-146)))))
+((|HasCategory| (-876 |#1|) (QUOTE (-916))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-876 |#1|) (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-148))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-876 |#1|) (QUOTE (-1031))) (|HasCategory| (-876 |#1|) (QUOTE (-826))) (-3684 (|HasCategory| (-876 |#1|) (QUOTE (-826))) (|HasCategory| (-876 |#1|) (QUOTE (-856)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (QUOTE (-1161))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| (-876 |#1|) (QUOTE (-235))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -313) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (LIST (QUOTE -290) (LIST (QUOTE -876) (|devaluate| |#1|)) (LIST (QUOTE -876) (|devaluate| |#1|)))) (|HasCategory| (-876 |#1|) (QUOTE (-311))) (|HasCategory| (-876 |#1|) (QUOTE (-551))) (|HasCategory| (-876 |#1|) (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-876 |#1|) (QUOTE (-916)))) (|HasCategory| (-876 |#1|) (QUOTE (-146)))))
(-878 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-826))) (-2811 (|HasCategory| |#2| (QUOTE (-826))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1161))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
+((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-826))) (-3684 (|HasCategory| |#2| (QUOTE (-826))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-1161))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-551))) (|HasCategory| |#2| (QUOTE (-856))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-879 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))))
(-880)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3507,7 +3507,7 @@ NIL
(-894 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2104 (|HasCategory| |#2| (QUOTE (-1058)))) (-2104 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (-2104 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))
+((-12 (-3152 (|HasCategory| |#2| (QUOTE (-1058)))) (-3152 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#2| (QUOTE (-1058))) (-3152 (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))
(-895 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3516,7 +3516,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-897 R -3651)
+(-897 R -3347)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3540,7 +3540,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-903 UP -1385)
+(-903 UP -2968)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3563,23 +3563,23 @@ NIL
(-908 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-909 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-910 S)
-((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
+((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
((-4449 . T))
NIL
(-911 S)
-((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
+((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
(-912 S)
-((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
+((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
((-4449 . T))
-((-2811 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-856))))
+((-3684 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-856)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-856))))
(-913 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3600,7 +3600,7 @@ NIL
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-373))))
-(-918 R0 -1385 UP UPUP R)
+(-918 R0 -2968 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3628,7 +3628,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-925 -1385)
+(-925 -2968)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3644,11 +3644,11 @@ NIL
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
(((-4454 "*") . T))
NIL
-(-929 -1385 P)
+(-929 -2968 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-930 |xx| -1385)
+(-930 |xx| -2968)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
@@ -3672,7 +3672,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-936 R -1385)
+(-936 R -2968)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3684,7 +3684,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-939 S R -1385)
+(-939 S R -2968)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3704,11 +3704,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -893) (|devaluate| |#1|))))
-(-944 R -1385 -3651)
+(-944 R -2968 -3347)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-945 -3651)
+(-945 -3347)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3731,7 +3731,7 @@ NIL
(-950 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-951 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3756,7 +3756,7 @@ NIL
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
NIL
-(-957 E V R P -1385)
+(-957 E V R P -2968)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3767,8 +3767,8 @@ NIL
(-959 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-960 E V R P -1385)
+((|HasCategory| |#1| (QUOTE (-916))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1186) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-960 E V R P -2968)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-458))))
@@ -3791,12 +3791,12 @@ NIL
(-965 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-966)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-967 -1385)
+(-967 -2968)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3811,11 +3811,11 @@ NIL
(-970 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4450)))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4450)))
(-971 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
((-4449 -12 (|has| |#2| (-479)) (|has| |#1| (-479))))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-856))))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-373)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-856)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799)))) (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-856))))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732))))) (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-373)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-479))) (|HasCategory| |#2| (QUOTE (-479)))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| |#2| (QUOTE (-799))))) (-12 (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#2| (QUOTE (-732)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-856)))))
(-972)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3904,7 +3904,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-994 K R UP -1385)
+(-994 K R UP -2968)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -3963,11 +3963,11 @@ NIL
(-1008 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
((-4445 |has| |#1| (-294)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (|HasCategory| |#1| (QUOTE (-294))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-294))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-551))))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368))) (-3684 (|HasCategory| |#1| (QUOTE (-294))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-294))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -290) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-551))))
(-1009 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-1010 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3976,14 +3976,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1012 -1385 UP UPUP |radicnd| |n|)
+(-1012 -2968 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
((-4445 |has| (-413 |#2|) (-368)) (-4450 |has| (-413 |#2|) (-368)) (-4444 |has| (-413 |#2|) (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-2811 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-2811 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-2811 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-2811 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))))
+((|HasCategory| (-413 |#2|) (QUOTE (-146))) (|HasCategory| (-413 |#2|) (QUOTE (-148))) (|HasCategory| (-413 |#2|) (QUOTE (-354))) (-3684 (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (|HasCategory| (-413 |#2|) (QUOTE (-368))) (|HasCategory| (-413 |#2|) (QUOTE (-373))) (-3684 (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (QUOTE (-354)))) (-3684 (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-354))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -645) (QUOTE (-570)))) (-3684 (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 |#2|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-12 (|HasCategory| (-413 |#2|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))) (-12 (|HasCategory| (-413 |#2|) (QUOTE (-235))) (|HasCategory| (-413 |#2|) (QUOTE (-368)))))
(-1013 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-2811 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
+((|HasCategory| (-570) (QUOTE (-916))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| (-570) (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-148))) (|HasCategory| (-570) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-1031))) (|HasCategory| (-570) (QUOTE (-826))) (-3684 (|HasCategory| (-570) (QUOTE (-826))) (|HasCategory| (-570) (QUOTE (-856)))) (|HasCategory| (-570) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-1161))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| (-570) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| (-570) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| (-570) (QUOTE (-235))) (|HasCategory| (-570) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| (-570) (LIST (QUOTE -520) (QUOTE (-1186)) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -313) (QUOTE (-570)))) (|HasCategory| (-570) (LIST (QUOTE -290) (QUOTE (-570)) (QUOTE (-570)))) (|HasCategory| (-570) (QUOTE (-311))) (|HasCategory| (-570) (QUOTE (-551))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-570) (LIST (QUOTE -645) (QUOTE (-570)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-570) (QUOTE (-916)))) (|HasCategory| (-570) (QUOTE (-146)))))
(-1014)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -4016,19 +4016,19 @@ NIL
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
((-4445 . T) (-4450 . T) (-4444 . T) (-4447 . T) (-4446 . T) ((-4454 "*") . T) (-4449 . T))
NIL
-(-1022 R -1385)
+(-1022 R -2968)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1023 R -1385)
+(-1023 R -2968)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1024 -1385 UP)
+(-1024 -2968 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1025 -1385 UP)
+(-1025 -2968 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4063,8 +4063,8 @@ NIL
(-1033 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
((-4445 . T) (-4450 . T) (-4444 . T) (-4447 . T) (-4446 . T) ((-4454 "*") . T) (-4449 . T))
-((-2811 (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (QUOTE (-570)))))
-(-1034 -1385 L)
+((-3684 (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-413 (-570)) (LIST (QUOTE -1047) (QUOTE (-570)))))
+(-1034 -2968 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -4100,14 +4100,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1043 -1385 |Expon| |VarSet| |FPol| |LFPol|)
+(-1043 -2968 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
(((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
(-1044)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -1409) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -3117) (QUOTE (-52))))))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))))
(-1045)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4164,7 +4164,7 @@ NIL
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
((-4449 . T))
NIL
-(-1059 |xx| -1385)
+(-1059 |xx| -2968)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4183,7 +4183,7 @@ NIL
(-1063 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
((-4452 . T) (-4447 . T) (-4446 . T))
-((|HasCategory| |#3| (QUOTE (-174))) (-2811 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-562))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))))
+((|HasCategory| |#3| (QUOTE (-174))) (-3684 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (QUOTE (-311))) (|HasCategory| |#3| (QUOTE (-562))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))))
(-1064 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4219,7 +4219,7 @@ NIL
(-1072)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -1409) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 (-1186)) (|:| -1409 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (QUOTE (-1186))) (LIST (QUOTE |:|) (QUOTE -3117) (QUOTE (-52))))))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-52) (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| (-52) (QUOTE (-1109))) (|HasCategory| (-52) (LIST (QUOTE -313) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (QUOTE (-1109))) (|HasCategory| (-1186) (QUOTE (-856))) (|HasCategory| (-52) (QUOTE (-1109))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-52) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 (-1186)) (|:| -3117 (-52))) (LIST (QUOTE -619) (QUOTE (-868)))))
(-1073 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
@@ -4268,11 +4268,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1085 |Base| R -1385)
+(-1085 |Base| R -2968)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1086 |Base| R -1385)
+(-1086 |Base| R -2968)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
@@ -4287,7 +4287,7 @@ NIL
(-1089 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
((-4445 |has| |#1| (-368)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-354)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-354))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-354)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-373))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-354)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-354))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))))
(-1090 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4315,7 +4315,7 @@ NIL
(-1096 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1097 (-1186)) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-235))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1097 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4375,7 +4375,7 @@ NIL
(-1111 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
((-4452 . T) (-4442 . T) (-4453 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-373))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-1112 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -4419,7 +4419,7 @@ NIL
(-1122 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4446 |has| |#3| (-1058)) (-4447 |has| |#3| (-1058)) (-4449 |has| |#3| (-6 -4449)) ((-4454 "*") |has| |#3| (-174)) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#3| (QUOTE (-368))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-2811 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-2811 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-1109)))) (|HasCategory| |#3| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-2811 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (|HasAttribute| |#3| (QUOTE -4449)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))))
+((-3684 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3684 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#3| (QUOTE (-368))) (-3684 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3684 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-368)))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-799))) (-3684 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854)))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-732))) (-3684 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (-3684 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3684 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3684 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-1058)))) (-3684 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (|HasCategory| |#3| (QUOTE (-235))) (-3684 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (QUOTE (-1109)))) (|HasCategory| |#3| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-235)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-373)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-732)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-799)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-854)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109))))) (-3684 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-373))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-732))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-799))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-854))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (|HasCategory| (-570) (QUOTE (-856))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (QUOTE (-235))) (|HasCategory| |#3| (QUOTE (-1058)))) (-12 (|HasCategory| |#3| (QUOTE (-1058))) (|HasCategory| |#3| (LIST (QUOTE -907) (QUOTE (-1186))))) (-3684 (|HasCategory| |#3| (QUOTE (-1058))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570)))))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#3| (QUOTE (-1109)))) (|HasAttribute| |#3| (QUOTE -4449)) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#3| (QUOTE (-1109))) (|HasCategory| |#3| (LIST (QUOTE -313) (|devaluate| |#3|)))))
(-1123 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4428,7 +4428,7 @@ NIL
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1125 R -1385)
+(-1125 R -2968)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4467,16 +4467,16 @@ NIL
(-1134 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1135 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))))
(-1136 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
((-4453 . T) (-4452 . T))
NIL
-(-1137 UP -1385)
+(-1137 UP -2968)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4531,11 +4531,11 @@ NIL
(-1150 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -313) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109))) (-2811 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -313) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109))))) (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -313) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109))) (-3684 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -313) (LIST (QUOTE -1149) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1149 |#1| |#2|) (QUOTE (-1109))))) (|HasCategory| (-1149 |#1| |#2|) (LIST (QUOTE -619) (QUOTE (-868)))))
(-1151 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
((-4449 . T) (-4441 |has| |#2| (-6 (-4454 "*"))) (-4452 . T) (-4446 . T) (-4447 . T))
-((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-368))) (-2811 (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
+((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (-12 (|HasCategory| |#2| (QUOTE (-235))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (QUOTE (-311))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-368))) (-3684 (|HasAttribute| |#2| (QUOTE (-4454 "*"))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174))))
(-1152 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
@@ -4555,7 +4555,7 @@ NIL
(-1156 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-1157 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4567,7 +4567,7 @@ NIL
(-1159 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))))
+((-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|)))))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-856))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))))
(-1160)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
@@ -4595,7 +4595,7 @@ NIL
(-1166 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
((-4453 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-1167)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
((-4453 . T) (-4452 . T))
@@ -4603,11 +4603,11 @@ NIL
(-1168)
NIL
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
+((-3684 (-12 (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| (-145) (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| (-145) (QUOTE (-1109))) (|HasCategory| (-145) (LIST (QUOTE -313) (QUOTE (-145))))))
(-1169 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#1|)))))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 (-1168)) (|:| -1409 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (QUOTE (-1168))) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#1|)))))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (QUOTE (-1109))) (|HasCategory| (-1168) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 (-1168)) (|:| -3117 |#1|)) (LIST (QUOTE -619) (QUOTE (-868)))))
(-1170 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
@@ -4638,9 +4638,9 @@ NIL
NIL
(-1177 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4454 "*") -2811 (-2115 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-2115 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4445 -2811 (-2115 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-2115 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))))
-(-1178 R -1385)
+(((-4454 "*") -3684 (-3163 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-3163 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4445 -3684 (-3163 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-3163 (|has| |#1| (-368)) (|has| (-1184 |#1| |#2| |#3|) (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
+((-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1184) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1184 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(-1178 R -2968)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4659,15 +4659,15 @@ NIL
(-1182 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4448 |has| |#1| (-368)) (-4450 |has| |#1| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#1| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1161))) (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-235))) (|HasAttribute| |#1| (QUOTE -4450)) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1183 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
(-1184 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
(-1185)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4683,7 +4683,7 @@ NIL
(-1188 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-6 -4450)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| (-980) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasAttribute| |#1| (QUOTE -4450)))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-458))) (-12 (|HasCategory| (-980) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasAttribute| |#1| (QUOTE -4450)))
(-1189)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4727,7 +4727,7 @@ NIL
(-1199 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
((-4452 . T) (-4453 . T))
-((-12 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3679) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1409) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-2811 (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -3679 |#1|) (|:| -1409 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -313) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4111) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3117) (|devaluate| |#2|)))))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#2| (QUOTE (-1109)))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -620) (QUOTE (-542)))) (-12 (|HasCategory| |#2| (QUOTE (-1109))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#2| (QUOTE (-1109))) (-3684 (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-868)))) (|HasCategory| (-2 (|:| -4111 |#1|) (|:| -3117 |#2|)) (LIST (QUOTE -619) (QUOTE (-868)))))
(-1200 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
@@ -4783,7 +4783,7 @@ NIL
(-1213 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
((-4453 . T) (-4452 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1109))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
(-1214 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4792,7 +4792,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1216 R -1385)
+(-1216 R -2968)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4800,7 +4800,7 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1218 R -1385)
+(-1218 R -2968)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -620) (LIST (QUOTE -899) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -893) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -893) (|devaluate| |#1|)))))
@@ -4815,7 +4815,7 @@ NIL
(-1221 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-368))))
(-1222 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4828,7 +4828,7 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))))
-(-1225 -1385)
+(-1225 -2968)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
@@ -4891,11 +4891,11 @@ NIL
(-1240 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-146))))) (-2811 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-148))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-916))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-146))))))
+((-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-146))))) (-3684 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-148))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-235)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856))))) (-3684 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-826)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1031)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-1186)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -290) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -313) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -520) (QUOTE (-1186)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-856)))) (|HasCategory| |#2| (QUOTE (-916))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-551)))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-311)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-146))))))
(-1241 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4454 "*") -2811 (-2115 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-2115 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-916)))) (-4445 -2811 (-2115 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-2115 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))))
+(((-4454 "*") -3684 (-3163 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-826))) (|has| |#1| (-174)) (-3163 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-916)))) (-4445 -3684 (-3163 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-826))) (|has| |#1| (-562)) (-3163 (|has| |#1| (-368)) (|has| (-1269 |#1| |#2| |#3|) (-916)))) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
+((-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|)))))) (-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-235))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-570)) (|devaluate| |#1|))))) (|HasCategory| (-570) (QUOTE (-1121))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-1186)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-368)))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368))))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-1161))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -290) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -313) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -520) (QUOTE (-1186)) (LIST (QUOTE -1269) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-570))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-551))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-311))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-826))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| (-1269 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1242 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4931,7 +4931,7 @@ NIL
(-1250 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
(((-4454 "*") |has| |#2| (-174)) (-4445 |has| |#2| (-562)) (-4448 |has| |#2| (-368)) (-4450 |has| |#2| (-6 -4450)) (-4447 . T) (-4446 . T) (-4449 . T))
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-2811 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
+((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-174))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-562)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-384)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-384))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -893) (QUOTE (-570)))) (|HasCategory| |#2| (LIST (QUOTE -893) (QUOTE (-570))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-384)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -620) (LIST (QUOTE -899) (QUOTE (-570)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -620) (QUOTE (-542)))) (|HasCategory| |#2| (LIST (QUOTE -620) (QUOTE (-542))))) (|HasCategory| |#2| (LIST (QUOTE -645) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (QUOTE (-570)))) (-3684 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| |#2| (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (-3684 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-562))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-458))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-1161))) (|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasCategory| |#2| (QUOTE (-235))) (|HasAttribute| |#2| (QUOTE -4450)) (|HasCategory| |#2| (QUOTE (-458))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (-3684 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-916)))) (|HasCategory| |#2| (QUOTE (-146)))))
(-1251 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
@@ -4947,7 +4947,7 @@ NIL
(-1254 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2940) (LIST (|devaluate| |#2|) (QUOTE (-1186))))))
+((|HasCategory| |#2| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2838) (LIST (|devaluate| |#2|) (QUOTE (-1186))))))
(-1255 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
@@ -4975,15 +4975,15 @@ NIL
(-1261 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))
+((|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))))
(-1262 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4450 |has| |#1| (-368)) (-4444 |has| |#1| (-368)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (|HasCategory| |#1| (QUOTE (-174))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570))) (|devaluate| |#1|)))) (|HasCategory| (-413 (-570)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-368))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-3684 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-562)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -413) (QUOTE (-570)))))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
(-1263 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
(((-4454 "*") |has| (-1262 |#2| |#3| |#4|) (-174)) (-4445 |has| (-1262 |#2| |#3| |#4|) (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-174))) (-2811 (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-368))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-458))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-562))))
+((|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-174))) (-3684 (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570)))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| (-1262 |#2| |#3| |#4|) (LIST (QUOTE -1047) (QUOTE (-570)))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-368))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-458))) (|HasCategory| (-1262 |#2| |#3| |#4|) (QUOTE (-562))))
(-1264 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
@@ -4999,7 +4999,7 @@ NIL
(-1267 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1212))) (|HasSignature| |#2| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3655) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#2| (QUOTE (-966))) (|HasCategory| |#2| (QUOTE (-1212))) (|HasSignature| |#2| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2502) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1186))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#2| (QUOTE (-368))))
(-1268 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
@@ -5007,12 +5007,12 @@ NIL
(-1269 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4454 "*") |has| |#1| (-174)) (-4445 |has| |#1| (-562)) (-4446 . T) (-4447 . T) (-4449 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-2811 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -2940) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -3655) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -2421) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasCategory| |#1| (QUOTE (-562))) (-3684 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-562)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -907) (QUOTE (-1186)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-777)) (|devaluate| |#1|)))) (|HasCategory| (-777) (QUOTE (-1121))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasSignature| |#1| (LIST (QUOTE -2838) (LIST (|devaluate| |#1|) (QUOTE (-1186)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-777))))) (|HasCategory| |#1| (QUOTE (-368))) (-3684 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-966))) (|HasCategory| |#1| (QUOTE (-1212))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -413) (QUOTE (-570))))) (|HasSignature| |#1| (LIST (QUOTE -2502) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1186))))) (|HasSignature| |#1| (LIST (QUOTE -1624) (LIST (LIST (QUOTE -650) (QUOTE (-1186))) (|devaluate| |#1|)))))))
(-1270 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1271 -1385 UP L UTS)
+(-1271 -2968 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-562))))
@@ -5039,7 +5039,7 @@ NIL
(-1277 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
((-4453 . T) (-4452 . T))
-((-2811 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-2811 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
+((-3684 (-12 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|))))) (-3684 (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868))))) (|HasCategory| |#1| (LIST (QUOTE -620) (QUOTE (-542)))) (-3684 (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109)))) (|HasCategory| |#1| (QUOTE (-856))) (|HasCategory| (-570) (QUOTE (-856))) (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-732))) (|HasCategory| |#1| (QUOTE (-1058))) (-12 (|HasCategory| |#1| (QUOTE (-1011))) (|HasCategory| |#1| (QUOTE (-1058)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-868)))) (-12 (|HasCategory| |#1| (QUOTE (-1109))) (|HasCategory| |#1| (LIST (QUOTE -313) (|devaluate| |#1|)))))
(-1278)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
@@ -5072,7 +5072,7 @@ NIL
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1286 K R UP -1385)
+(-1286 K R UP -2968)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -5108,11 +5108,11 @@ NIL
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
((-4445 |has| |#2| (-6 -4445)) (-4447 . T) (-4446 . T) (-4449 . T))
NIL
-(-1295 S -1385)
+(-1295 S -2968)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-373))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))))
-(-1296 -1385)
+(-1296 -2968)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
((-4444 . T) (-4450 . T) (-4445 . T) ((-4454 "*") . T) (-4446 . T) (-4447 . T) (-4449 . T))
NIL
@@ -5172,4 +5172,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2266397 2266402 2266407 2266412) (-2 NIL 2266377 2266382 2266387 2266392) (-1 NIL 2266357 2266362 2266367 2266372) (0 NIL 2266337 2266342 2266347 2266352) (-1306 "ZMOD.spad" 2266146 2266159 2266275 2266332) (-1305 "ZLINDEP.spad" 2265212 2265223 2266136 2266141) (-1304 "ZDSOLVE.spad" 2255157 2255179 2265202 2265207) (-1303 "YSTREAM.spad" 2254652 2254663 2255147 2255152) (-1302 "YDIAGRAM.spad" 2254286 2254295 2254642 2254647) (-1301 "XRPOLY.spad" 2253506 2253526 2254142 2254211) (-1300 "XPR.spad" 2251301 2251314 2253224 2253323) (-1299 "XPOLY.spad" 2250856 2250867 2251157 2251226) (-1298 "XPOLYC.spad" 2250175 2250191 2250782 2250851) (-1297 "XPBWPOLY.spad" 2248612 2248632 2249955 2250024) (-1296 "XF.spad" 2247075 2247090 2248514 2248607) (-1295 "XF.spad" 2245518 2245535 2246959 2246964) (-1294 "XFALG.spad" 2242566 2242582 2245444 2245513) (-1293 "XEXPPKG.spad" 2241817 2241843 2242556 2242561) (-1292 "XDPOLY.spad" 2241431 2241447 2241673 2241742) (-1291 "XALG.spad" 2241091 2241102 2241387 2241426) (-1290 "WUTSET.spad" 2236930 2236947 2240737 2240764) (-1289 "WP.spad" 2236129 2236173 2236788 2236855) (-1288 "WHILEAST.spad" 2235927 2235936 2236119 2236124) (-1287 "WHEREAST.spad" 2235598 2235607 2235917 2235922) (-1286 "WFFINTBS.spad" 2233261 2233283 2235588 2235593) (-1285 "WEIER.spad" 2231483 2231494 2233251 2233256) (-1284 "VSPACE.spad" 2231156 2231167 2231451 2231478) (-1283 "VSPACE.spad" 2230849 2230862 2231146 2231151) (-1282 "VOID.spad" 2230526 2230535 2230839 2230844) (-1281 "VIEW.spad" 2228206 2228215 2230516 2230521) (-1280 "VIEWDEF.spad" 2223407 2223416 2228196 2228201) (-1279 "VIEW3D.spad" 2207368 2207377 2223397 2223402) (-1278 "VIEW2D.spad" 2195259 2195268 2207358 2207363) (-1277 "VECTOR.spad" 2193933 2193944 2194184 2194211) (-1276 "VECTOR2.spad" 2192572 2192585 2193923 2193928) (-1275 "VECTCAT.spad" 2190476 2190487 2192540 2192567) (-1274 "VECTCAT.spad" 2188187 2188200 2190253 2190258) (-1273 "VARIABLE.spad" 2187967 2187982 2188177 2188182) (-1272 "UTYPE.spad" 2187611 2187620 2187957 2187962) (-1271 "UTSODETL.spad" 2186906 2186930 2187567 2187572) (-1270 "UTSODE.spad" 2185122 2185142 2186896 2186901) (-1269 "UTS.spad" 2179926 2179954 2183589 2183686) (-1268 "UTSCAT.spad" 2177405 2177421 2179824 2179921) (-1267 "UTSCAT.spad" 2174528 2174546 2176949 2176954) (-1266 "UTS2.spad" 2174123 2174158 2174518 2174523) (-1265 "URAGG.spad" 2168796 2168807 2174113 2174118) (-1264 "URAGG.spad" 2163433 2163446 2168752 2168757) (-1263 "UPXSSING.spad" 2161078 2161104 2162514 2162647) (-1262 "UPXS.spad" 2158232 2158260 2159210 2159359) (-1261 "UPXSCONS.spad" 2155991 2156011 2156364 2156513) (-1260 "UPXSCCA.spad" 2154562 2154582 2155837 2155986) (-1259 "UPXSCCA.spad" 2153275 2153297 2154552 2154557) (-1258 "UPXSCAT.spad" 2151864 2151880 2153121 2153270) (-1257 "UPXS2.spad" 2151407 2151460 2151854 2151859) (-1256 "UPSQFREE.spad" 2149821 2149835 2151397 2151402) (-1255 "UPSCAT.spad" 2147608 2147632 2149719 2149816) (-1254 "UPSCAT.spad" 2145101 2145127 2147214 2147219) (-1253 "UPOLYC.spad" 2140141 2140152 2144943 2145096) (-1252 "UPOLYC.spad" 2135073 2135086 2139877 2139882) (-1251 "UPOLYC2.spad" 2134544 2134563 2135063 2135068) (-1250 "UP.spad" 2131743 2131758 2132130 2132283) (-1249 "UPMP.spad" 2130643 2130656 2131733 2131738) (-1248 "UPDIVP.spad" 2130208 2130222 2130633 2130638) (-1247 "UPDECOMP.spad" 2128453 2128467 2130198 2130203) (-1246 "UPCDEN.spad" 2127662 2127678 2128443 2128448) (-1245 "UP2.spad" 2127026 2127047 2127652 2127657) (-1244 "UNISEG.spad" 2126379 2126390 2126945 2126950) (-1243 "UNISEG2.spad" 2125876 2125889 2126335 2126340) (-1242 "UNIFACT.spad" 2124979 2124991 2125866 2125871) (-1241 "ULS.spad" 2115537 2115565 2116624 2117053) (-1240 "ULSCONS.spad" 2107933 2107953 2108303 2108452) (-1239 "ULSCCAT.spad" 2105670 2105690 2107779 2107928) (-1238 "ULSCCAT.spad" 2103515 2103537 2105626 2105631) (-1237 "ULSCAT.spad" 2101747 2101763 2103361 2103510) (-1236 "ULS2.spad" 2101261 2101314 2101737 2101742) (-1235 "UINT8.spad" 2101138 2101147 2101251 2101256) (-1234 "UINT64.spad" 2101014 2101023 2101128 2101133) (-1233 "UINT32.spad" 2100890 2100899 2101004 2101009) (-1232 "UINT16.spad" 2100766 2100775 2100880 2100885) (-1231 "UFD.spad" 2099831 2099840 2100692 2100761) (-1230 "UFD.spad" 2098958 2098969 2099821 2099826) (-1229 "UDVO.spad" 2097839 2097848 2098948 2098953) (-1228 "UDPO.spad" 2095332 2095343 2097795 2097800) (-1227 "TYPE.spad" 2095264 2095273 2095322 2095327) (-1226 "TYPEAST.spad" 2095183 2095192 2095254 2095259) (-1225 "TWOFACT.spad" 2093835 2093850 2095173 2095178) (-1224 "TUPLE.spad" 2093321 2093332 2093734 2093739) (-1223 "TUBETOOL.spad" 2090188 2090197 2093311 2093316) (-1222 "TUBE.spad" 2088835 2088852 2090178 2090183) (-1221 "TS.spad" 2087434 2087450 2088400 2088497) (-1220 "TSETCAT.spad" 2074561 2074578 2087402 2087429) (-1219 "TSETCAT.spad" 2061674 2061693 2074517 2074522) (-1218 "TRMANIP.spad" 2056040 2056057 2061380 2061385) (-1217 "TRIMAT.spad" 2055003 2055028 2056030 2056035) (-1216 "TRIGMNIP.spad" 2053530 2053547 2054993 2054998) (-1215 "TRIGCAT.spad" 2053042 2053051 2053520 2053525) (-1214 "TRIGCAT.spad" 2052552 2052563 2053032 2053037) (-1213 "TREE.spad" 2051127 2051138 2052159 2052186) (-1212 "TRANFUN.spad" 2050966 2050975 2051117 2051122) (-1211 "TRANFUN.spad" 2050803 2050814 2050956 2050961) (-1210 "TOPSP.spad" 2050477 2050486 2050793 2050798) (-1209 "TOOLSIGN.spad" 2050140 2050151 2050467 2050472) (-1208 "TEXTFILE.spad" 2048701 2048710 2050130 2050135) (-1207 "TEX.spad" 2045847 2045856 2048691 2048696) (-1206 "TEX1.spad" 2045403 2045414 2045837 2045842) (-1205 "TEMUTL.spad" 2044958 2044967 2045393 2045398) (-1204 "TBCMPPK.spad" 2043051 2043074 2044948 2044953) (-1203 "TBAGG.spad" 2042101 2042124 2043031 2043046) (-1202 "TBAGG.spad" 2041159 2041184 2042091 2042096) (-1201 "TANEXP.spad" 2040567 2040578 2041149 2041154) (-1200 "TALGOP.spad" 2040291 2040302 2040557 2040562) (-1199 "TABLE.spad" 2038702 2038725 2038972 2038999) (-1198 "TABLEAU.spad" 2038183 2038194 2038692 2038697) (-1197 "TABLBUMP.spad" 2034986 2034997 2038173 2038178) (-1196 "SYSTEM.spad" 2034214 2034223 2034976 2034981) (-1195 "SYSSOLP.spad" 2031697 2031708 2034204 2034209) (-1194 "SYSPTR.spad" 2031596 2031605 2031687 2031692) (-1193 "SYSNNI.spad" 2030778 2030789 2031586 2031591) (-1192 "SYSINT.spad" 2030182 2030193 2030768 2030773) (-1191 "SYNTAX.spad" 2026388 2026397 2030172 2030177) (-1190 "SYMTAB.spad" 2024456 2024465 2026378 2026383) (-1189 "SYMS.spad" 2020479 2020488 2024446 2024451) (-1188 "SYMPOLY.spad" 2019486 2019497 2019568 2019695) (-1187 "SYMFUNC.spad" 2018987 2018998 2019476 2019481) (-1186 "SYMBOL.spad" 2016490 2016499 2018977 2018982) (-1185 "SWITCH.spad" 2013261 2013270 2016480 2016485) (-1184 "SUTS.spad" 2010166 2010194 2011728 2011825) (-1183 "SUPXS.spad" 2007307 2007335 2008298 2008447) (-1182 "SUP.spad" 2004120 2004131 2004893 2005046) (-1181 "SUPFRACF.spad" 2003225 2003243 2004110 2004115) (-1180 "SUP2.spad" 2002617 2002630 2003215 2003220) (-1179 "SUMRF.spad" 2001591 2001602 2002607 2002612) (-1178 "SUMFS.spad" 2001228 2001245 2001581 2001586) (-1177 "SULS.spad" 1991773 1991801 1992873 1993302) (-1176 "SUCHTAST.spad" 1991542 1991551 1991763 1991768) (-1175 "SUCH.spad" 1991224 1991239 1991532 1991537) (-1174 "SUBSPACE.spad" 1983339 1983354 1991214 1991219) (-1173 "SUBRESP.spad" 1982509 1982523 1983295 1983300) (-1172 "STTF.spad" 1978608 1978624 1982499 1982504) (-1171 "STTFNC.spad" 1975076 1975092 1978598 1978603) (-1170 "STTAYLOR.spad" 1967711 1967722 1974957 1974962) (-1169 "STRTBL.spad" 1966216 1966233 1966365 1966392) (-1168 "STRING.spad" 1965625 1965634 1965639 1965666) (-1167 "STRICAT.spad" 1965413 1965422 1965593 1965620) (-1166 "STREAM.spad" 1962331 1962342 1964938 1964953) (-1165 "STREAM3.spad" 1961904 1961919 1962321 1962326) (-1164 "STREAM2.spad" 1961032 1961045 1961894 1961899) (-1163 "STREAM1.spad" 1960738 1960749 1961022 1961027) (-1162 "STINPROD.spad" 1959674 1959690 1960728 1960733) (-1161 "STEP.spad" 1958875 1958884 1959664 1959669) (-1160 "STEPAST.spad" 1958109 1958118 1958865 1958870) (-1159 "STBL.spad" 1956635 1956663 1956802 1956817) (-1158 "STAGG.spad" 1955710 1955721 1956625 1956630) (-1157 "STAGG.spad" 1954783 1954796 1955700 1955705) (-1156 "STACK.spad" 1954140 1954151 1954390 1954417) (-1155 "SREGSET.spad" 1951844 1951861 1953786 1953813) (-1154 "SRDCMPK.spad" 1950405 1950425 1951834 1951839) (-1153 "SRAGG.spad" 1945548 1945557 1950373 1950400) (-1152 "SRAGG.spad" 1940711 1940722 1945538 1945543) (-1151 "SQMATRIX.spad" 1938327 1938345 1939243 1939330) (-1150 "SPLTREE.spad" 1932879 1932892 1937763 1937790) (-1149 "SPLNODE.spad" 1929467 1929480 1932869 1932874) (-1148 "SPFCAT.spad" 1928276 1928285 1929457 1929462) (-1147 "SPECOUT.spad" 1926828 1926837 1928266 1928271) (-1146 "SPADXPT.spad" 1918423 1918432 1926818 1926823) (-1145 "spad-parser.spad" 1917888 1917897 1918413 1918418) (-1144 "SPADAST.spad" 1917589 1917598 1917878 1917883) (-1143 "SPACEC.spad" 1901788 1901799 1917579 1917584) (-1142 "SPACE3.spad" 1901564 1901575 1901778 1901783) (-1141 "SORTPAK.spad" 1901113 1901126 1901520 1901525) (-1140 "SOLVETRA.spad" 1898876 1898887 1901103 1901108) (-1139 "SOLVESER.spad" 1897404 1897415 1898866 1898871) (-1138 "SOLVERAD.spad" 1893430 1893441 1897394 1897399) (-1137 "SOLVEFOR.spad" 1891892 1891910 1893420 1893425) (-1136 "SNTSCAT.spad" 1891492 1891509 1891860 1891887) (-1135 "SMTS.spad" 1889764 1889790 1891057 1891154) (-1134 "SMP.spad" 1887239 1887259 1887629 1887756) (-1133 "SMITH.spad" 1886084 1886109 1887229 1887234) (-1132 "SMATCAT.spad" 1884194 1884224 1886028 1886079) (-1131 "SMATCAT.spad" 1882236 1882268 1884072 1884077) (-1130 "SKAGG.spad" 1881199 1881210 1882204 1882231) (-1129 "SINT.spad" 1880139 1880148 1881065 1881194) (-1128 "SIMPAN.spad" 1879867 1879876 1880129 1880134) (-1127 "SIG.spad" 1879197 1879206 1879857 1879862) (-1126 "SIGNRF.spad" 1878315 1878326 1879187 1879192) (-1125 "SIGNEF.spad" 1877594 1877611 1878305 1878310) (-1124 "SIGAST.spad" 1876979 1876988 1877584 1877589) (-1123 "SHP.spad" 1874907 1874922 1876935 1876940) (-1122 "SHDP.spad" 1864618 1864645 1865127 1865258) (-1121 "SGROUP.spad" 1864226 1864235 1864608 1864613) (-1120 "SGROUP.spad" 1863832 1863843 1864216 1864221) (-1119 "SGCF.spad" 1856971 1856980 1863822 1863827) (-1118 "SFRTCAT.spad" 1855901 1855918 1856939 1856966) (-1117 "SFRGCD.spad" 1854964 1854984 1855891 1855896) (-1116 "SFQCMPK.spad" 1849601 1849621 1854954 1854959) (-1115 "SFORT.spad" 1849040 1849054 1849591 1849596) (-1114 "SEXOF.spad" 1848883 1848923 1849030 1849035) (-1113 "SEX.spad" 1848775 1848784 1848873 1848878) (-1112 "SEXCAT.spad" 1846556 1846596 1848765 1848770) (-1111 "SET.spad" 1844880 1844891 1845977 1846016) (-1110 "SETMN.spad" 1843330 1843347 1844870 1844875) (-1109 "SETCAT.spad" 1842652 1842661 1843320 1843325) (-1108 "SETCAT.spad" 1841972 1841983 1842642 1842647) (-1107 "SETAGG.spad" 1838521 1838532 1841952 1841967) (-1106 "SETAGG.spad" 1835078 1835091 1838511 1838516) (-1105 "SEQAST.spad" 1834781 1834790 1835068 1835073) (-1104 "SEGXCAT.spad" 1833937 1833950 1834771 1834776) (-1103 "SEG.spad" 1833750 1833761 1833856 1833861) (-1102 "SEGCAT.spad" 1832675 1832686 1833740 1833745) (-1101 "SEGBIND.spad" 1832433 1832444 1832622 1832627) (-1100 "SEGBIND2.spad" 1832131 1832144 1832423 1832428) (-1099 "SEGAST.spad" 1831845 1831854 1832121 1832126) (-1098 "SEG2.spad" 1831280 1831293 1831801 1831806) (-1097 "SDVAR.spad" 1830556 1830567 1831270 1831275) (-1096 "SDPOL.spad" 1827982 1827993 1828273 1828400) (-1095 "SCPKG.spad" 1826071 1826082 1827972 1827977) (-1094 "SCOPE.spad" 1825224 1825233 1826061 1826066) (-1093 "SCACHE.spad" 1823920 1823931 1825214 1825219) (-1092 "SASTCAT.spad" 1823829 1823838 1823910 1823915) (-1091 "SAOS.spad" 1823701 1823710 1823819 1823824) (-1090 "SAERFFC.spad" 1823414 1823434 1823691 1823696) (-1089 "SAE.spad" 1821589 1821605 1822200 1822335) (-1088 "SAEFACT.spad" 1821290 1821310 1821579 1821584) (-1087 "RURPK.spad" 1818949 1818965 1821280 1821285) (-1086 "RULESET.spad" 1818402 1818426 1818939 1818944) (-1085 "RULE.spad" 1816642 1816666 1818392 1818397) (-1084 "RULECOLD.spad" 1816494 1816507 1816632 1816637) (-1083 "RTVALUE.spad" 1816229 1816238 1816484 1816489) (-1082 "RSTRCAST.spad" 1815946 1815955 1816219 1816224) (-1081 "RSETGCD.spad" 1812324 1812344 1815936 1815941) (-1080 "RSETCAT.spad" 1802260 1802277 1812292 1812319) (-1079 "RSETCAT.spad" 1792216 1792235 1802250 1802255) (-1078 "RSDCMPK.spad" 1790668 1790688 1792206 1792211) (-1077 "RRCC.spad" 1789052 1789082 1790658 1790663) (-1076 "RRCC.spad" 1787434 1787466 1789042 1789047) (-1075 "RPTAST.spad" 1787136 1787145 1787424 1787429) (-1074 "RPOLCAT.spad" 1766496 1766511 1787004 1787131) (-1073 "RPOLCAT.spad" 1745569 1745586 1766079 1766084) (-1072 "ROUTINE.spad" 1741452 1741461 1744216 1744243) (-1071 "ROMAN.spad" 1740780 1740789 1741318 1741447) (-1070 "ROIRC.spad" 1739860 1739892 1740770 1740775) (-1069 "RNS.spad" 1738763 1738772 1739762 1739855) (-1068 "RNS.spad" 1737752 1737763 1738753 1738758) (-1067 "RNG.spad" 1737487 1737496 1737742 1737747) (-1066 "RNGBIND.spad" 1736647 1736661 1737442 1737447) (-1065 "RMODULE.spad" 1736412 1736423 1736637 1736642) (-1064 "RMCAT2.spad" 1735832 1735889 1736402 1736407) (-1063 "RMATRIX.spad" 1734656 1734675 1734999 1735038) (-1062 "RMATCAT.spad" 1730235 1730266 1734612 1734651) (-1061 "RMATCAT.spad" 1725704 1725737 1730083 1730088) (-1060 "RLINSET.spad" 1725098 1725109 1725694 1725699) (-1059 "RINTERP.spad" 1724986 1725006 1725088 1725093) (-1058 "RING.spad" 1724456 1724465 1724966 1724981) (-1057 "RING.spad" 1723934 1723945 1724446 1724451) (-1056 "RIDIST.spad" 1723326 1723335 1723924 1723929) (-1055 "RGCHAIN.spad" 1721909 1721925 1722811 1722838) (-1054 "RGBCSPC.spad" 1721690 1721702 1721899 1721904) (-1053 "RGBCMDL.spad" 1721220 1721232 1721680 1721685) (-1052 "RF.spad" 1718862 1718873 1721210 1721215) (-1051 "RFFACTOR.spad" 1718324 1718335 1718852 1718857) (-1050 "RFFACT.spad" 1718059 1718071 1718314 1718319) (-1049 "RFDIST.spad" 1717055 1717064 1718049 1718054) (-1048 "RETSOL.spad" 1716474 1716487 1717045 1717050) (-1047 "RETRACT.spad" 1715902 1715913 1716464 1716469) (-1046 "RETRACT.spad" 1715328 1715341 1715892 1715897) (-1045 "RETAST.spad" 1715140 1715149 1715318 1715323) (-1044 "RESULT.spad" 1713200 1713209 1713787 1713814) (-1043 "RESRING.spad" 1712547 1712594 1713138 1713195) (-1042 "RESLATC.spad" 1711871 1711882 1712537 1712542) (-1041 "REPSQ.spad" 1711602 1711613 1711861 1711866) (-1040 "REP.spad" 1709156 1709165 1711592 1711597) (-1039 "REPDB.spad" 1708863 1708874 1709146 1709151) (-1038 "REP2.spad" 1698521 1698532 1708705 1708710) (-1037 "REP1.spad" 1692717 1692728 1698471 1698476) (-1036 "REGSET.spad" 1690514 1690531 1692363 1692390) (-1035 "REF.spad" 1689849 1689860 1690469 1690474) (-1034 "REDORDER.spad" 1689055 1689072 1689839 1689844) (-1033 "RECLOS.spad" 1687838 1687858 1688542 1688635) (-1032 "REALSOLV.spad" 1686978 1686987 1687828 1687833) (-1031 "REAL.spad" 1686850 1686859 1686968 1686973) (-1030 "REAL0Q.spad" 1684148 1684163 1686840 1686845) (-1029 "REAL0.spad" 1680992 1681007 1684138 1684143) (-1028 "RDUCEAST.spad" 1680713 1680722 1680982 1680987) (-1027 "RDIV.spad" 1680368 1680393 1680703 1680708) (-1026 "RDIST.spad" 1679935 1679946 1680358 1680363) (-1025 "RDETRS.spad" 1678799 1678817 1679925 1679930) (-1024 "RDETR.spad" 1676938 1676956 1678789 1678794) (-1023 "RDEEFS.spad" 1676037 1676054 1676928 1676933) (-1022 "RDEEF.spad" 1675047 1675064 1676027 1676032) (-1021 "RCFIELD.spad" 1672233 1672242 1674949 1675042) (-1020 "RCFIELD.spad" 1669505 1669516 1672223 1672228) (-1019 "RCAGG.spad" 1667433 1667444 1669495 1669500) (-1018 "RCAGG.spad" 1665288 1665301 1667352 1667357) (-1017 "RATRET.spad" 1664648 1664659 1665278 1665283) (-1016 "RATFACT.spad" 1664340 1664352 1664638 1664643) (-1015 "RANDSRC.spad" 1663659 1663668 1664330 1664335) (-1014 "RADUTIL.spad" 1663415 1663424 1663649 1663654) (-1013 "RADIX.spad" 1660336 1660350 1661882 1661975) (-1012 "RADFF.spad" 1658749 1658786 1658868 1659024) (-1011 "RADCAT.spad" 1658344 1658353 1658739 1658744) (-1010 "RADCAT.spad" 1657937 1657948 1658334 1658339) (-1009 "QUEUE.spad" 1657285 1657296 1657544 1657571) (-1008 "QUAT.spad" 1655866 1655877 1656209 1656274) (-1007 "QUATCT2.spad" 1655486 1655505 1655856 1655861) (-1006 "QUATCAT.spad" 1653656 1653667 1655416 1655481) (-1005 "QUATCAT.spad" 1651577 1651590 1653339 1653344) (-1004 "QUAGG.spad" 1650404 1650415 1651545 1651572) (-1003 "QQUTAST.spad" 1650172 1650181 1650394 1650399) (-1002 "QFORM.spad" 1649790 1649805 1650162 1650167) (-1001 "QFCAT.spad" 1648492 1648503 1649692 1649785) (-1000 "QFCAT.spad" 1646785 1646798 1647987 1647992) (-999 "QFCAT2.spad" 1646478 1646494 1646775 1646780) (-998 "QEQUAT.spad" 1646037 1646045 1646468 1646473) (-997 "QCMPACK.spad" 1640784 1640803 1646027 1646032) (-996 "QALGSET.spad" 1636863 1636895 1640698 1640703) (-995 "QALGSET2.spad" 1634859 1634877 1636853 1636858) (-994 "PWFFINTB.spad" 1632275 1632296 1634849 1634854) (-993 "PUSHVAR.spad" 1631614 1631633 1632265 1632270) (-992 "PTRANFN.spad" 1627742 1627752 1631604 1631609) (-991 "PTPACK.spad" 1624830 1624840 1627732 1627737) (-990 "PTFUNC2.spad" 1624653 1624667 1624820 1624825) (-989 "PTCAT.spad" 1623908 1623918 1624621 1624648) (-988 "PSQFR.spad" 1623215 1623239 1623898 1623903) (-987 "PSEUDLIN.spad" 1622101 1622111 1623205 1623210) (-986 "PSETPK.spad" 1607534 1607550 1621979 1621984) (-985 "PSETCAT.spad" 1601454 1601477 1607514 1607529) (-984 "PSETCAT.spad" 1595348 1595373 1601410 1601415) (-983 "PSCURVE.spad" 1594331 1594339 1595338 1595343) (-982 "PSCAT.spad" 1593114 1593143 1594229 1594326) (-981 "PSCAT.spad" 1591987 1592018 1593104 1593109) (-980 "PRTITION.spad" 1590685 1590693 1591977 1591982) (-979 "PRTDAST.spad" 1590404 1590412 1590675 1590680) (-978 "PRS.spad" 1579966 1579983 1590360 1590365) (-977 "PRQAGG.spad" 1579401 1579411 1579934 1579961) (-976 "PROPLOG.spad" 1578973 1578981 1579391 1579396) (-975 "PROPFUN2.spad" 1578596 1578609 1578963 1578968) (-974 "PROPFUN1.spad" 1577994 1578005 1578586 1578591) (-973 "PROPFRML.spad" 1576562 1576573 1577984 1577989) (-972 "PROPERTY.spad" 1576050 1576058 1576552 1576557) (-971 "PRODUCT.spad" 1573732 1573744 1574016 1574071) (-970 "PR.spad" 1572124 1572136 1572823 1572950) (-969 "PRINT.spad" 1571876 1571884 1572114 1572119) (-968 "PRIMES.spad" 1570129 1570139 1571866 1571871) (-967 "PRIMELT.spad" 1568210 1568224 1570119 1570124) (-966 "PRIMCAT.spad" 1567837 1567845 1568200 1568205) (-965 "PRIMARR.spad" 1566842 1566852 1567020 1567047) (-964 "PRIMARR2.spad" 1565609 1565621 1566832 1566837) (-963 "PREASSOC.spad" 1564991 1565003 1565599 1565604) (-962 "PPCURVE.spad" 1564128 1564136 1564981 1564986) (-961 "PORTNUM.spad" 1563903 1563911 1564118 1564123) (-960 "POLYROOT.spad" 1562752 1562774 1563859 1563864) (-959 "POLY.spad" 1560087 1560097 1560602 1560729) (-958 "POLYLIFT.spad" 1559352 1559375 1560077 1560082) (-957 "POLYCATQ.spad" 1557470 1557492 1559342 1559347) (-956 "POLYCAT.spad" 1550940 1550961 1557338 1557465) (-955 "POLYCAT.spad" 1543748 1543771 1550148 1550153) (-954 "POLY2UP.spad" 1543200 1543214 1543738 1543743) (-953 "POLY2.spad" 1542797 1542809 1543190 1543195) (-952 "POLUTIL.spad" 1541738 1541767 1542753 1542758) (-951 "POLTOPOL.spad" 1540486 1540501 1541728 1541733) (-950 "POINT.spad" 1539324 1539334 1539411 1539438) (-949 "PNTHEORY.spad" 1536026 1536034 1539314 1539319) (-948 "PMTOOLS.spad" 1534801 1534815 1536016 1536021) (-947 "PMSYM.spad" 1534350 1534360 1534791 1534796) (-946 "PMQFCAT.spad" 1533941 1533955 1534340 1534345) (-945 "PMPRED.spad" 1533420 1533434 1533931 1533936) (-944 "PMPREDFS.spad" 1532874 1532896 1533410 1533415) (-943 "PMPLCAT.spad" 1531954 1531972 1532806 1532811) (-942 "PMLSAGG.spad" 1531539 1531553 1531944 1531949) (-941 "PMKERNEL.spad" 1531118 1531130 1531529 1531534) (-940 "PMINS.spad" 1530698 1530708 1531108 1531113) (-939 "PMFS.spad" 1530275 1530293 1530688 1530693) (-938 "PMDOWN.spad" 1529565 1529579 1530265 1530270) (-937 "PMASS.spad" 1528575 1528583 1529555 1529560) (-936 "PMASSFS.spad" 1527542 1527558 1528565 1528570) (-935 "PLOTTOOL.spad" 1527322 1527330 1527532 1527537) (-934 "PLOT.spad" 1522245 1522253 1527312 1527317) (-933 "PLOT3D.spad" 1518709 1518717 1522235 1522240) (-932 "PLOT1.spad" 1517866 1517876 1518699 1518704) (-931 "PLEQN.spad" 1505156 1505183 1517856 1517861) (-930 "PINTERP.spad" 1504778 1504797 1505146 1505151) (-929 "PINTERPA.spad" 1504562 1504578 1504768 1504773) (-928 "PI.spad" 1504171 1504179 1504536 1504557) (-927 "PID.spad" 1503141 1503149 1504097 1504166) (-926 "PICOERCE.spad" 1502798 1502808 1503131 1503136) (-925 "PGROEB.spad" 1501399 1501413 1502788 1502793) (-924 "PGE.spad" 1493016 1493024 1501389 1501394) (-923 "PGCD.spad" 1491906 1491923 1493006 1493011) (-922 "PFRPAC.spad" 1491055 1491065 1491896 1491901) (-921 "PFR.spad" 1487718 1487728 1490957 1491050) (-920 "PFOTOOLS.spad" 1486976 1486992 1487708 1487713) (-919 "PFOQ.spad" 1486346 1486364 1486966 1486971) (-918 "PFO.spad" 1485765 1485792 1486336 1486341) (-917 "PF.spad" 1485339 1485351 1485570 1485663) (-916 "PFECAT.spad" 1483021 1483029 1485265 1485334) (-915 "PFECAT.spad" 1480731 1480741 1482977 1482982) (-914 "PFBRU.spad" 1478619 1478631 1480721 1480726) (-913 "PFBR.spad" 1476179 1476202 1478609 1478614) (-912 "PERM.spad" 1471864 1471874 1476009 1476024) (-911 "PERMGRP.spad" 1466626 1466636 1471854 1471859) (-910 "PERMCAT.spad" 1465184 1465194 1466606 1466621) (-909 "PERMAN.spad" 1463716 1463730 1465174 1465179) (-908 "PENDTREE.spad" 1463057 1463067 1463345 1463350) (-907 "PDRING.spad" 1461608 1461618 1463037 1463052) (-906 "PDRING.spad" 1460167 1460179 1461598 1461603) (-905 "PDEPROB.spad" 1459182 1459190 1460157 1460162) (-904 "PDEPACK.spad" 1453222 1453230 1459172 1459177) (-903 "PDECOMP.spad" 1452692 1452709 1453212 1453217) (-902 "PDECAT.spad" 1451048 1451056 1452682 1452687) (-901 "PCOMP.spad" 1450901 1450914 1451038 1451043) (-900 "PBWLB.spad" 1449489 1449506 1450891 1450896) (-899 "PATTERN.spad" 1444028 1444038 1449479 1449484) (-898 "PATTERN2.spad" 1443766 1443778 1444018 1444023) (-897 "PATTERN1.spad" 1442102 1442118 1443756 1443761) (-896 "PATRES.spad" 1439677 1439689 1442092 1442097) (-895 "PATRES2.spad" 1439349 1439363 1439667 1439672) (-894 "PATMATCH.spad" 1437546 1437577 1439057 1439062) (-893 "PATMAB.spad" 1436975 1436985 1437536 1437541) (-892 "PATLRES.spad" 1436061 1436075 1436965 1436970) (-891 "PATAB.spad" 1435825 1435835 1436051 1436056) (-890 "PARTPERM.spad" 1433833 1433841 1435815 1435820) (-889 "PARSURF.spad" 1433267 1433295 1433823 1433828) (-888 "PARSU2.spad" 1433064 1433080 1433257 1433262) (-887 "script-parser.spad" 1432584 1432592 1433054 1433059) (-886 "PARSCURV.spad" 1432018 1432046 1432574 1432579) (-885 "PARSC2.spad" 1431809 1431825 1432008 1432013) (-884 "PARPCURV.spad" 1431271 1431299 1431799 1431804) (-883 "PARPC2.spad" 1431062 1431078 1431261 1431266) (-882 "PARAMAST.spad" 1430190 1430198 1431052 1431057) (-881 "PAN2EXPR.spad" 1429602 1429610 1430180 1430185) (-880 "PALETTE.spad" 1428572 1428580 1429592 1429597) (-879 "PAIR.spad" 1427559 1427572 1428160 1428165) (-878 "PADICRC.spad" 1424893 1424911 1426064 1426157) (-877 "PADICRAT.spad" 1422908 1422920 1423129 1423222) (-876 "PADIC.spad" 1422603 1422615 1422834 1422903) (-875 "PADICCT.spad" 1421152 1421164 1422529 1422598) (-874 "PADEPAC.spad" 1419841 1419860 1421142 1421147) (-873 "PADE.spad" 1418593 1418609 1419831 1419836) (-872 "OWP.spad" 1417833 1417863 1418451 1418518) (-871 "OVERSET.spad" 1417406 1417414 1417823 1417828) (-870 "OVAR.spad" 1417187 1417210 1417396 1417401) (-869 "OUT.spad" 1416273 1416281 1417177 1417182) (-868 "OUTFORM.spad" 1405665 1405673 1416263 1416268) (-867 "OUTBFILE.spad" 1405083 1405091 1405655 1405660) (-866 "OUTBCON.spad" 1404089 1404097 1405073 1405078) (-865 "OUTBCON.spad" 1403093 1403103 1404079 1404084) (-864 "OSI.spad" 1402568 1402576 1403083 1403088) (-863 "OSGROUP.spad" 1402486 1402494 1402558 1402563) (-862 "ORTHPOL.spad" 1400971 1400981 1402403 1402408) (-861 "OREUP.spad" 1400424 1400452 1400651 1400690) (-860 "ORESUP.spad" 1399725 1399749 1400104 1400143) (-859 "OREPCTO.spad" 1397582 1397594 1399645 1399650) (-858 "OREPCAT.spad" 1391729 1391739 1397538 1397577) (-857 "OREPCAT.spad" 1385766 1385778 1391577 1391582) (-856 "ORDSET.spad" 1384938 1384946 1385756 1385761) (-855 "ORDSET.spad" 1384108 1384118 1384928 1384933) (-854 "ORDRING.spad" 1383498 1383506 1384088 1384103) (-853 "ORDRING.spad" 1382896 1382906 1383488 1383493) (-852 "ORDMON.spad" 1382751 1382759 1382886 1382891) (-851 "ORDFUNS.spad" 1381883 1381899 1382741 1382746) (-850 "ORDFIN.spad" 1381703 1381711 1381873 1381878) (-849 "ORDCOMP.spad" 1380168 1380178 1381250 1381279) (-848 "ORDCOMP2.spad" 1379461 1379473 1380158 1380163) (-847 "OPTPROB.spad" 1378099 1378107 1379451 1379456) (-846 "OPTPACK.spad" 1370508 1370516 1378089 1378094) (-845 "OPTCAT.spad" 1368187 1368195 1370498 1370503) (-844 "OPSIG.spad" 1367841 1367849 1368177 1368182) (-843 "OPQUERY.spad" 1367390 1367398 1367831 1367836) (-842 "OP.spad" 1367132 1367142 1367212 1367279) (-841 "OPERCAT.spad" 1366598 1366608 1367122 1367127) (-840 "OPERCAT.spad" 1366062 1366074 1366588 1366593) (-839 "ONECOMP.spad" 1364807 1364817 1365609 1365638) (-838 "ONECOMP2.spad" 1364231 1364243 1364797 1364802) (-837 "OMSERVER.spad" 1363237 1363245 1364221 1364226) (-836 "OMSAGG.spad" 1363025 1363035 1363193 1363232) (-835 "OMPKG.spad" 1361641 1361649 1363015 1363020) (-834 "OM.spad" 1360614 1360622 1361631 1361636) (-833 "OMLO.spad" 1360039 1360051 1360500 1360539) (-832 "OMEXPR.spad" 1359873 1359883 1360029 1360034) (-831 "OMERR.spad" 1359418 1359426 1359863 1359868) (-830 "OMERRK.spad" 1358452 1358460 1359408 1359413) (-829 "OMENC.spad" 1357796 1357804 1358442 1358447) (-828 "OMDEV.spad" 1352105 1352113 1357786 1357791) (-827 "OMCONN.spad" 1351514 1351522 1352095 1352100) (-826 "OINTDOM.spad" 1351277 1351285 1351440 1351509) (-825 "OFMONOID.spad" 1349400 1349410 1351233 1351238) (-824 "ODVAR.spad" 1348661 1348671 1349390 1349395) (-823 "ODR.spad" 1348305 1348331 1348473 1348622) (-822 "ODPOL.spad" 1345687 1345697 1346027 1346154) (-821 "ODP.spad" 1335534 1335554 1335907 1336038) (-820 "ODETOOLS.spad" 1334183 1334202 1335524 1335529) (-819 "ODESYS.spad" 1331877 1331894 1334173 1334178) (-818 "ODERTRIC.spad" 1327886 1327903 1331834 1331839) (-817 "ODERED.spad" 1327285 1327309 1327876 1327881) (-816 "ODERAT.spad" 1324900 1324917 1327275 1327280) (-815 "ODEPRRIC.spad" 1321937 1321959 1324890 1324895) (-814 "ODEPROB.spad" 1321194 1321202 1321927 1321932) (-813 "ODEPRIM.spad" 1318528 1318550 1321184 1321189) (-812 "ODEPAL.spad" 1317914 1317938 1318518 1318523) (-811 "ODEPACK.spad" 1304580 1304588 1317904 1317909) (-810 "ODEINT.spad" 1304015 1304031 1304570 1304575) (-809 "ODEIFTBL.spad" 1301410 1301418 1304005 1304010) (-808 "ODEEF.spad" 1296901 1296917 1301400 1301405) (-807 "ODECONST.spad" 1296438 1296456 1296891 1296896) (-806 "ODECAT.spad" 1295036 1295044 1296428 1296433) (-805 "OCT.spad" 1293172 1293182 1293886 1293925) (-804 "OCTCT2.spad" 1292818 1292839 1293162 1293167) (-803 "OC.spad" 1290614 1290624 1292774 1292813) (-802 "OC.spad" 1288135 1288147 1290297 1290302) (-801 "OCAMON.spad" 1287983 1287991 1288125 1288130) (-800 "OASGP.spad" 1287798 1287806 1287973 1287978) (-799 "OAMONS.spad" 1287320 1287328 1287788 1287793) (-798 "OAMON.spad" 1287181 1287189 1287310 1287315) (-797 "OAGROUP.spad" 1287043 1287051 1287171 1287176) (-796 "NUMTUBE.spad" 1286634 1286650 1287033 1287038) (-795 "NUMQUAD.spad" 1274610 1274618 1286624 1286629) (-794 "NUMODE.spad" 1265964 1265972 1274600 1274605) (-793 "NUMINT.spad" 1263530 1263538 1265954 1265959) (-792 "NUMFMT.spad" 1262370 1262378 1263520 1263525) (-791 "NUMERIC.spad" 1254484 1254494 1262175 1262180) (-790 "NTSCAT.spad" 1252992 1253008 1254452 1254479) (-789 "NTPOLFN.spad" 1252543 1252553 1252909 1252914) (-788 "NSUP.spad" 1245589 1245599 1250129 1250282) (-787 "NSUP2.spad" 1244981 1244993 1245579 1245584) (-786 "NSMP.spad" 1241211 1241230 1241519 1241646) (-785 "NREP.spad" 1239589 1239603 1241201 1241206) (-784 "NPCOEF.spad" 1238835 1238855 1239579 1239584) (-783 "NORMRETR.spad" 1238433 1238472 1238825 1238830) (-782 "NORMPK.spad" 1236335 1236354 1238423 1238428) (-781 "NORMMA.spad" 1236023 1236049 1236325 1236330) (-780 "NONE.spad" 1235764 1235772 1236013 1236018) (-779 "NONE1.spad" 1235440 1235450 1235754 1235759) (-778 "NODE1.spad" 1234927 1234943 1235430 1235435) (-777 "NNI.spad" 1233822 1233830 1234901 1234922) (-776 "NLINSOL.spad" 1232448 1232458 1233812 1233817) (-775 "NIPROB.spad" 1230989 1230997 1232438 1232443) (-774 "NFINTBAS.spad" 1228549 1228566 1230979 1230984) (-773 "NETCLT.spad" 1228523 1228534 1228539 1228544) (-772 "NCODIV.spad" 1226739 1226755 1228513 1228518) (-771 "NCNTFRAC.spad" 1226381 1226395 1226729 1226734) (-770 "NCEP.spad" 1224547 1224561 1226371 1226376) (-769 "NASRING.spad" 1224143 1224151 1224537 1224542) (-768 "NASRING.spad" 1223737 1223747 1224133 1224138) (-767 "NARNG.spad" 1223089 1223097 1223727 1223732) (-766 "NARNG.spad" 1222439 1222449 1223079 1223084) (-765 "NAGSP.spad" 1221516 1221524 1222429 1222434) (-764 "NAGS.spad" 1211177 1211185 1221506 1221511) (-763 "NAGF07.spad" 1209608 1209616 1211167 1211172) (-762 "NAGF04.spad" 1204010 1204018 1209598 1209603) (-761 "NAGF02.spad" 1198079 1198087 1204000 1204005) (-760 "NAGF01.spad" 1193840 1193848 1198069 1198074) (-759 "NAGE04.spad" 1187540 1187548 1193830 1193835) (-758 "NAGE02.spad" 1178200 1178208 1187530 1187535) (-757 "NAGE01.spad" 1174202 1174210 1178190 1178195) (-756 "NAGD03.spad" 1172206 1172214 1174192 1174197) (-755 "NAGD02.spad" 1164953 1164961 1172196 1172201) (-754 "NAGD01.spad" 1159246 1159254 1164943 1164948) (-753 "NAGC06.spad" 1155121 1155129 1159236 1159241) (-752 "NAGC05.spad" 1153622 1153630 1155111 1155116) (-751 "NAGC02.spad" 1152889 1152897 1153612 1153617) (-750 "NAALG.spad" 1152430 1152440 1152857 1152884) (-749 "NAALG.spad" 1151991 1152003 1152420 1152425) (-748 "MULTSQFR.spad" 1148949 1148966 1151981 1151986) (-747 "MULTFACT.spad" 1148332 1148349 1148939 1148944) (-746 "MTSCAT.spad" 1146426 1146447 1148230 1148327) (-745 "MTHING.spad" 1146085 1146095 1146416 1146421) (-744 "MSYSCMD.spad" 1145519 1145527 1146075 1146080) (-743 "MSET.spad" 1143477 1143487 1145225 1145264) (-742 "MSETAGG.spad" 1143322 1143332 1143445 1143472) (-741 "MRING.spad" 1140299 1140311 1143030 1143097) (-740 "MRF2.spad" 1139869 1139883 1140289 1140294) (-739 "MRATFAC.spad" 1139415 1139432 1139859 1139864) (-738 "MPRFF.spad" 1137455 1137474 1139405 1139410) (-737 "MPOLY.spad" 1134926 1134941 1135285 1135412) (-736 "MPCPF.spad" 1134190 1134209 1134916 1134921) (-735 "MPC3.spad" 1134007 1134047 1134180 1134185) (-734 "MPC2.spad" 1133653 1133686 1133997 1134002) (-733 "MONOTOOL.spad" 1132004 1132021 1133643 1133648) (-732 "MONOID.spad" 1131323 1131331 1131994 1131999) (-731 "MONOID.spad" 1130640 1130650 1131313 1131318) (-730 "MONOGEN.spad" 1129388 1129401 1130500 1130635) (-729 "MONOGEN.spad" 1128158 1128173 1129272 1129277) (-728 "MONADWU.spad" 1126188 1126196 1128148 1128153) (-727 "MONADWU.spad" 1124216 1124226 1126178 1126183) (-726 "MONAD.spad" 1123376 1123384 1124206 1124211) (-725 "MONAD.spad" 1122534 1122544 1123366 1123371) (-724 "MOEBIUS.spad" 1121270 1121284 1122514 1122529) (-723 "MODULE.spad" 1121140 1121150 1121238 1121265) (-722 "MODULE.spad" 1121030 1121042 1121130 1121135) (-721 "MODRING.spad" 1120365 1120404 1121010 1121025) (-720 "MODOP.spad" 1119030 1119042 1120187 1120254) (-719 "MODMONOM.spad" 1118761 1118779 1119020 1119025) (-718 "MODMON.spad" 1115556 1115572 1116275 1116428) (-717 "MODFIELD.spad" 1114918 1114957 1115458 1115551) (-716 "MMLFORM.spad" 1113778 1113786 1114908 1114913) (-715 "MMAP.spad" 1113520 1113554 1113768 1113773) (-714 "MLO.spad" 1111979 1111989 1113476 1113515) (-713 "MLIFT.spad" 1110591 1110608 1111969 1111974) (-712 "MKUCFUNC.spad" 1110126 1110144 1110581 1110586) (-711 "MKRECORD.spad" 1109730 1109743 1110116 1110121) (-710 "MKFUNC.spad" 1109137 1109147 1109720 1109725) (-709 "MKFLCFN.spad" 1108105 1108115 1109127 1109132) (-708 "MKBCFUNC.spad" 1107600 1107618 1108095 1108100) (-707 "MINT.spad" 1107039 1107047 1107502 1107595) (-706 "MHROWRED.spad" 1105550 1105560 1107029 1107034) (-705 "MFLOAT.spad" 1104070 1104078 1105440 1105545) (-704 "MFINFACT.spad" 1103470 1103492 1104060 1104065) (-703 "MESH.spad" 1101252 1101260 1103460 1103465) (-702 "MDDFACT.spad" 1099463 1099473 1101242 1101247) (-701 "MDAGG.spad" 1098754 1098764 1099443 1099458) (-700 "MCMPLX.spad" 1094765 1094773 1095379 1095580) (-699 "MCDEN.spad" 1093975 1093987 1094755 1094760) (-698 "MCALCFN.spad" 1091097 1091123 1093965 1093970) (-697 "MAYBE.spad" 1090381 1090392 1091087 1091092) (-696 "MATSTOR.spad" 1087689 1087699 1090371 1090376) (-695 "MATRIX.spad" 1086393 1086403 1086877 1086904) (-694 "MATLIN.spad" 1083737 1083761 1086277 1086282) (-693 "MATCAT.spad" 1075466 1075488 1083705 1083732) (-692 "MATCAT.spad" 1067067 1067091 1075308 1075313) (-691 "MATCAT2.spad" 1066349 1066397 1067057 1067062) (-690 "MAPPKG3.spad" 1065264 1065278 1066339 1066344) (-689 "MAPPKG2.spad" 1064602 1064614 1065254 1065259) (-688 "MAPPKG1.spad" 1063430 1063440 1064592 1064597) (-687 "MAPPAST.spad" 1062745 1062753 1063420 1063425) (-686 "MAPHACK3.spad" 1062557 1062571 1062735 1062740) (-685 "MAPHACK2.spad" 1062326 1062338 1062547 1062552) (-684 "MAPHACK1.spad" 1061970 1061980 1062316 1062321) (-683 "MAGMA.spad" 1059760 1059777 1061960 1061965) (-682 "MACROAST.spad" 1059339 1059347 1059750 1059755) (-681 "M3D.spad" 1057059 1057069 1058717 1058722) (-680 "LZSTAGG.spad" 1054297 1054307 1057049 1057054) (-679 "LZSTAGG.spad" 1051533 1051545 1054287 1054292) (-678 "LWORD.spad" 1048238 1048255 1051523 1051528) (-677 "LSTAST.spad" 1048022 1048030 1048228 1048233) (-676 "LSQM.spad" 1046252 1046266 1046646 1046697) (-675 "LSPP.spad" 1045787 1045804 1046242 1046247) (-674 "LSMP.spad" 1044637 1044665 1045777 1045782) (-673 "LSMP1.spad" 1042455 1042469 1044627 1044632) (-672 "LSAGG.spad" 1042124 1042134 1042423 1042450) (-671 "LSAGG.spad" 1041813 1041825 1042114 1042119) (-670 "LPOLY.spad" 1040767 1040786 1041669 1041738) (-669 "LPEFRAC.spad" 1040038 1040048 1040757 1040762) (-668 "LO.spad" 1039439 1039453 1039972 1039999) (-667 "LOGIC.spad" 1039041 1039049 1039429 1039434) (-666 "LOGIC.spad" 1038641 1038651 1039031 1039036) (-665 "LODOOPS.spad" 1037571 1037583 1038631 1038636) (-664 "LODO.spad" 1036955 1036971 1037251 1037290) (-663 "LODOF.spad" 1036001 1036018 1036912 1036917) (-662 "LODOCAT.spad" 1034667 1034677 1035957 1035996) (-661 "LODOCAT.spad" 1033331 1033343 1034623 1034628) (-660 "LODO2.spad" 1032604 1032616 1033011 1033050) (-659 "LODO1.spad" 1032004 1032014 1032284 1032323) (-658 "LODEEF.spad" 1030806 1030824 1031994 1031999) (-657 "LNAGG.spad" 1026953 1026963 1030796 1030801) (-656 "LNAGG.spad" 1023064 1023076 1026909 1026914) (-655 "LMOPS.spad" 1019832 1019849 1023054 1023059) (-654 "LMODULE.spad" 1019600 1019610 1019822 1019827) (-653 "LMDICT.spad" 1018887 1018897 1019151 1019178) (-652 "LLINSET.spad" 1018284 1018294 1018877 1018882) (-651 "LITERAL.spad" 1018190 1018201 1018274 1018279) (-650 "LIST.spad" 1015925 1015935 1017337 1017364) (-649 "LIST3.spad" 1015236 1015250 1015915 1015920) (-648 "LIST2.spad" 1013938 1013950 1015226 1015231) (-647 "LIST2MAP.spad" 1010841 1010853 1013928 1013933) (-646 "LINSET.spad" 1010463 1010473 1010831 1010836) (-645 "LINEXP.spad" 1009897 1009907 1010443 1010458) (-644 "LINDEP.spad" 1008706 1008718 1009809 1009814) (-643 "LIMITRF.spad" 1006634 1006644 1008696 1008701) (-642 "LIMITPS.spad" 1005537 1005550 1006624 1006629) (-641 "LIE.spad" 1003553 1003565 1004827 1004972) (-640 "LIECAT.spad" 1003029 1003039 1003479 1003548) (-639 "LIECAT.spad" 1002533 1002545 1002985 1002990) (-638 "LIB.spad" 1000746 1000754 1001192 1001207) (-637 "LGROBP.spad" 998099 998118 1000736 1000741) (-636 "LF.spad" 997054 997070 998089 998094) (-635 "LFCAT.spad" 996113 996121 997044 997049) (-634 "LEXTRIPK.spad" 991616 991631 996103 996108) (-633 "LEXP.spad" 989619 989646 991596 991611) (-632 "LETAST.spad" 989318 989326 989609 989614) (-631 "LEADCDET.spad" 987716 987733 989308 989313) (-630 "LAZM3PK.spad" 986420 986442 987706 987711) (-629 "LAUPOL.spad" 985113 985126 986013 986082) (-628 "LAPLACE.spad" 984696 984712 985103 985108) (-627 "LA.spad" 984136 984150 984618 984657) (-626 "LALG.spad" 983912 983922 984116 984131) (-625 "LALG.spad" 983696 983708 983902 983907) (-624 "KVTFROM.spad" 983431 983441 983686 983691) (-623 "KTVLOGIC.spad" 982943 982951 983421 983426) (-622 "KRCFROM.spad" 982681 982691 982933 982938) (-621 "KOVACIC.spad" 981404 981421 982671 982676) (-620 "KONVERT.spad" 981126 981136 981394 981399) (-619 "KOERCE.spad" 980863 980873 981116 981121) (-618 "KERNEL.spad" 979518 979528 980647 980652) (-617 "KERNEL2.spad" 979221 979233 979508 979513) (-616 "KDAGG.spad" 978330 978352 979201 979216) (-615 "KDAGG.spad" 977447 977471 978320 978325) (-614 "KAFILE.spad" 976410 976426 976645 976672) (-613 "JORDAN.spad" 974239 974251 975700 975845) (-612 "JOINAST.spad" 973933 973941 974229 974234) (-611 "JAVACODE.spad" 973799 973807 973923 973928) (-610 "IXAGG.spad" 971932 971956 973789 973794) (-609 "IXAGG.spad" 969920 969946 971779 971784) (-608 "IVECTOR.spad" 968690 968705 968845 968872) (-607 "ITUPLE.spad" 967851 967861 968680 968685) (-606 "ITRIGMNP.spad" 966690 966709 967841 967846) (-605 "ITFUN3.spad" 966196 966210 966680 966685) (-604 "ITFUN2.spad" 965940 965952 966186 966191) (-603 "ITFORM.spad" 965295 965303 965930 965935) (-602 "ITAYLOR.spad" 963289 963304 965159 965256) (-601 "ISUPS.spad" 955726 955741 962263 962360) (-600 "ISUMP.spad" 955227 955243 955716 955721) (-599 "ISTRING.spad" 954315 954328 954396 954423) (-598 "ISAST.spad" 954034 954042 954305 954310) (-597 "IRURPK.spad" 952751 952770 954024 954029) (-596 "IRSN.spad" 950723 950731 952741 952746) (-595 "IRRF2F.spad" 949208 949218 950679 950684) (-594 "IRREDFFX.spad" 948809 948820 949198 949203) (-593 "IROOT.spad" 947148 947158 948799 948804) (-592 "IR.spad" 944949 944963 947003 947030) (-591 "IRFORM.spad" 944273 944281 944939 944944) (-590 "IR2.spad" 943301 943317 944263 944268) (-589 "IR2F.spad" 942507 942523 943291 943296) (-588 "IPRNTPK.spad" 942267 942275 942497 942502) (-587 "IPF.spad" 941832 941844 942072 942165) (-586 "IPADIC.spad" 941593 941619 941758 941827) (-585 "IP4ADDR.spad" 941150 941158 941583 941588) (-584 "IOMODE.spad" 940672 940680 941140 941145) (-583 "IOBFILE.spad" 940033 940041 940662 940667) (-582 "IOBCON.spad" 939898 939906 940023 940028) (-581 "INVLAPLA.spad" 939547 939563 939888 939893) (-580 "INTTR.spad" 932929 932946 939537 939542) (-579 "INTTOOLS.spad" 930684 930700 932503 932508) (-578 "INTSLPE.spad" 930004 930012 930674 930679) (-577 "INTRVL.spad" 929570 929580 929918 929999) (-576 "INTRF.spad" 927994 928008 929560 929565) (-575 "INTRET.spad" 927426 927436 927984 927989) (-574 "INTRAT.spad" 926153 926170 927416 927421) (-573 "INTPM.spad" 924538 924554 925796 925801) (-572 "INTPAF.spad" 922402 922420 924470 924475) (-571 "INTPACK.spad" 912776 912784 922392 922397) (-570 "INT.spad" 912224 912232 912630 912771) (-569 "INTHERTR.spad" 911498 911515 912214 912219) (-568 "INTHERAL.spad" 911168 911192 911488 911493) (-567 "INTHEORY.spad" 907607 907615 911158 911163) (-566 "INTG0.spad" 901340 901358 907539 907544) (-565 "INTFTBL.spad" 895369 895377 901330 901335) (-564 "INTFACT.spad" 894428 894438 895359 895364) (-563 "INTEF.spad" 892813 892829 894418 894423) (-562 "INTDOM.spad" 891436 891444 892739 892808) (-561 "INTDOM.spad" 890121 890131 891426 891431) (-560 "INTCAT.spad" 888380 888390 890035 890116) (-559 "INTBIT.spad" 887887 887895 888370 888375) (-558 "INTALG.spad" 887075 887102 887877 887882) (-557 "INTAF.spad" 886575 886591 887065 887070) (-556 "INTABL.spad" 885093 885124 885256 885283) (-555 "INT8.spad" 884973 884981 885083 885088) (-554 "INT64.spad" 884852 884860 884963 884968) (-553 "INT32.spad" 884731 884739 884842 884847) (-552 "INT16.spad" 884610 884618 884721 884726) (-551 "INS.spad" 882113 882121 884512 884605) (-550 "INS.spad" 879702 879712 882103 882108) (-549 "INPSIGN.spad" 879150 879163 879692 879697) (-548 "INPRODPF.spad" 878246 878265 879140 879145) (-547 "INPRODFF.spad" 877334 877358 878236 878241) (-546 "INNMFACT.spad" 876309 876326 877324 877329) (-545 "INMODGCD.spad" 875797 875827 876299 876304) (-544 "INFSP.spad" 874094 874116 875787 875792) (-543 "INFPROD0.spad" 873174 873193 874084 874089) (-542 "INFORM.spad" 870373 870381 873164 873169) (-541 "INFORM1.spad" 869998 870008 870363 870368) (-540 "INFINITY.spad" 869550 869558 869988 869993) (-539 "INETCLTS.spad" 869527 869535 869540 869545) (-538 "INEP.spad" 868065 868087 869517 869522) (-537 "INDE.spad" 867794 867811 868055 868060) (-536 "INCRMAPS.spad" 867215 867225 867784 867789) (-535 "INBFILE.spad" 866287 866295 867205 867210) (-534 "INBFF.spad" 862081 862092 866277 866282) (-533 "INBCON.spad" 860371 860379 862071 862076) (-532 "INBCON.spad" 858659 858669 860361 860366) (-531 "INAST.spad" 858320 858328 858649 858654) (-530 "IMPTAST.spad" 858028 858036 858310 858315) (-529 "IMATRIX.spad" 856973 856999 857485 857512) (-528 "IMATQF.spad" 856067 856111 856929 856934) (-527 "IMATLIN.spad" 854672 854696 856023 856028) (-526 "ILIST.spad" 853330 853345 853855 853882) (-525 "IIARRAY2.spad" 852718 852756 852937 852964) (-524 "IFF.spad" 852128 852144 852399 852492) (-523 "IFAST.spad" 851742 851750 852118 852123) (-522 "IFARRAY.spad" 849235 849250 850925 850952) (-521 "IFAMON.spad" 849097 849114 849191 849196) (-520 "IEVALAB.spad" 848502 848514 849087 849092) (-519 "IEVALAB.spad" 847905 847919 848492 848497) (-518 "IDPO.spad" 847703 847715 847895 847900) (-517 "IDPOAMS.spad" 847459 847471 847693 847698) (-516 "IDPOAM.spad" 847179 847191 847449 847454) (-515 "IDPC.spad" 846117 846129 847169 847174) (-514 "IDPAM.spad" 845862 845874 846107 846112) (-513 "IDPAG.spad" 845609 845621 845852 845857) (-512 "IDENT.spad" 845259 845267 845599 845604) (-511 "IDECOMP.spad" 842498 842516 845249 845254) (-510 "IDEAL.spad" 837447 837486 842433 842438) (-509 "ICDEN.spad" 836636 836652 837437 837442) (-508 "ICARD.spad" 835827 835835 836626 836631) (-507 "IBPTOOLS.spad" 834434 834451 835817 835822) (-506 "IBITS.spad" 833637 833650 834070 834097) (-505 "IBATOOL.spad" 830614 830633 833627 833632) (-504 "IBACHIN.spad" 829121 829136 830604 830609) (-503 "IARRAY2.spad" 828109 828135 828728 828755) (-502 "IARRAY1.spad" 827154 827169 827292 827319) (-501 "IAN.spad" 825377 825385 826970 827063) (-500 "IALGFACT.spad" 824980 825013 825367 825372) (-499 "HYPCAT.spad" 824404 824412 824970 824975) (-498 "HYPCAT.spad" 823826 823836 824394 824399) (-497 "HOSTNAME.spad" 823634 823642 823816 823821) (-496 "HOMOTOP.spad" 823377 823387 823624 823629) (-495 "HOAGG.spad" 820659 820669 823367 823372) (-494 "HOAGG.spad" 817716 817728 820426 820431) (-493 "HEXADEC.spad" 815818 815826 816183 816276) (-492 "HEUGCD.spad" 814853 814864 815808 815813) (-491 "HELLFDIV.spad" 814443 814467 814843 814848) (-490 "HEAP.spad" 813835 813845 814050 814077) (-489 "HEADAST.spad" 813368 813376 813825 813830) (-488 "HDP.spad" 803211 803227 803588 803719) (-487 "HDMP.spad" 800425 800440 801041 801168) (-486 "HB.spad" 798676 798684 800415 800420) (-485 "HASHTBL.spad" 797146 797177 797357 797384) (-484 "HASAST.spad" 796862 796870 797136 797141) (-483 "HACKPI.spad" 796353 796361 796764 796857) (-482 "GTSET.spad" 795292 795308 795999 796026) (-481 "GSTBL.spad" 793811 793846 793985 794000) (-480 "GSERIES.spad" 790982 791009 791943 792092) (-479 "GROUP.spad" 790255 790263 790962 790977) (-478 "GROUP.spad" 789536 789546 790245 790250) (-477 "GROEBSOL.spad" 788030 788051 789526 789531) (-476 "GRMOD.spad" 786601 786613 788020 788025) (-475 "GRMOD.spad" 785170 785184 786591 786596) (-474 "GRIMAGE.spad" 778059 778067 785160 785165) (-473 "GRDEF.spad" 776438 776446 778049 778054) (-472 "GRAY.spad" 774901 774909 776428 776433) (-471 "GRALG.spad" 773978 773990 774891 774896) (-470 "GRALG.spad" 773053 773067 773968 773973) (-469 "GPOLSET.spad" 772507 772530 772735 772762) (-468 "GOSPER.spad" 771776 771794 772497 772502) (-467 "GMODPOL.spad" 770924 770951 771744 771771) (-466 "GHENSEL.spad" 770007 770021 770914 770919) (-465 "GENUPS.spad" 766300 766313 769997 770002) (-464 "GENUFACT.spad" 765877 765887 766290 766295) (-463 "GENPGCD.spad" 765463 765480 765867 765872) (-462 "GENMFACT.spad" 764915 764934 765453 765458) (-461 "GENEEZ.spad" 762866 762879 764905 764910) (-460 "GDMP.spad" 759922 759939 760696 760823) (-459 "GCNAALG.spad" 753845 753872 759716 759783) (-458 "GCDDOM.spad" 753021 753029 753771 753840) (-457 "GCDDOM.spad" 752259 752269 753011 753016) (-456 "GB.spad" 749785 749823 752215 752220) (-455 "GBINTERN.spad" 745805 745843 749775 749780) (-454 "GBF.spad" 741572 741610 745795 745800) (-453 "GBEUCLID.spad" 739454 739492 741562 741567) (-452 "GAUSSFAC.spad" 738767 738775 739444 739449) (-451 "GALUTIL.spad" 737093 737103 738723 738728) (-450 "GALPOLYU.spad" 735547 735560 737083 737088) (-449 "GALFACTU.spad" 733720 733739 735537 735542) (-448 "GALFACT.spad" 723909 723920 733710 733715) (-447 "FVFUN.spad" 720932 720940 723899 723904) (-446 "FVC.spad" 719984 719992 720922 720927) (-445 "FUNDESC.spad" 719662 719670 719974 719979) (-444 "FUNCTION.spad" 719511 719523 719652 719657) (-443 "FT.spad" 717808 717816 719501 719506) (-442 "FTEM.spad" 716973 716981 717798 717803) (-441 "FSUPFACT.spad" 715873 715892 716909 716914) (-440 "FST.spad" 713959 713967 715863 715868) (-439 "FSRED.spad" 713439 713455 713949 713954) (-438 "FSPRMELT.spad" 712321 712337 713396 713401) (-437 "FSPECF.spad" 710412 710428 712311 712316) (-436 "FS.spad" 704680 704690 710187 710407) (-435 "FS.spad" 698726 698738 704235 704240) (-434 "FSINT.spad" 698386 698402 698716 698721) (-433 "FSERIES.spad" 697577 697589 698206 698305) (-432 "FSCINT.spad" 696894 696910 697567 697572) (-431 "FSAGG.spad" 696011 696021 696850 696889) (-430 "FSAGG.spad" 695090 695102 695931 695936) (-429 "FSAGG2.spad" 693833 693849 695080 695085) (-428 "FS2UPS.spad" 688324 688358 693823 693828) (-427 "FS2.spad" 687971 687987 688314 688319) (-426 "FS2EXPXP.spad" 687096 687119 687961 687966) (-425 "FRUTIL.spad" 686050 686060 687086 687091) (-424 "FR.spad" 679618 679628 684926 684995) (-423 "FRNAALG.spad" 674887 674897 679560 679613) (-422 "FRNAALG.spad" 670168 670180 674843 674848) (-421 "FRNAAF2.spad" 669624 669642 670158 670163) (-420 "FRMOD.spad" 669034 669064 669555 669560) (-419 "FRIDEAL.spad" 668259 668280 669014 669029) (-418 "FRIDEAL2.spad" 667863 667895 668249 668254) (-417 "FRETRCT.spad" 667374 667384 667853 667858) (-416 "FRETRCT.spad" 666751 666763 667232 667237) (-415 "FRAMALG.spad" 665099 665112 666707 666746) (-414 "FRAMALG.spad" 663479 663494 665089 665094) (-413 "FRAC.spad" 660578 660588 660981 661154) (-412 "FRAC2.spad" 660183 660195 660568 660573) (-411 "FR2.spad" 659519 659531 660173 660178) (-410 "FPS.spad" 656334 656342 659409 659514) (-409 "FPS.spad" 653177 653187 656254 656259) (-408 "FPC.spad" 652223 652231 653079 653172) (-407 "FPC.spad" 651355 651365 652213 652218) (-406 "FPATMAB.spad" 651117 651127 651345 651350) (-405 "FPARFRAC.spad" 649604 649621 651107 651112) (-404 "FORTRAN.spad" 648110 648153 649594 649599) (-403 "FORT.spad" 647059 647067 648100 648105) (-402 "FORTFN.spad" 644229 644237 647049 647054) (-401 "FORTCAT.spad" 643913 643921 644219 644224) (-400 "FORMULA.spad" 641387 641395 643903 643908) (-399 "FORMULA1.spad" 640866 640876 641377 641382) (-398 "FORDER.spad" 640557 640581 640856 640861) (-397 "FOP.spad" 639758 639766 640547 640552) (-396 "FNLA.spad" 639182 639204 639726 639753) (-395 "FNCAT.spad" 637777 637785 639172 639177) (-394 "FNAME.spad" 637669 637677 637767 637772) (-393 "FMTC.spad" 637467 637475 637595 637664) (-392 "FMONOID.spad" 637132 637142 637423 637428) (-391 "FMONCAT.spad" 634285 634295 637122 637127) (-390 "FM.spad" 633980 633992 634219 634246) (-389 "FMFUN.spad" 631010 631018 633970 633975) (-388 "FMC.spad" 630062 630070 631000 631005) (-387 "FMCAT.spad" 627730 627748 630030 630057) (-386 "FM1.spad" 627087 627099 627664 627691) (-385 "FLOATRP.spad" 624822 624836 627077 627082) (-384 "FLOAT.spad" 618136 618144 624688 624817) (-383 "FLOATCP.spad" 615567 615581 618126 618131) (-382 "FLINEXP.spad" 615279 615289 615547 615562) (-381 "FLINEXP.spad" 614945 614957 615215 615220) (-380 "FLASORT.spad" 614271 614283 614935 614940) (-379 "FLALG.spad" 611917 611936 614197 614266) (-378 "FLAGG.spad" 608959 608969 611897 611912) (-377 "FLAGG.spad" 605902 605914 608842 608847) (-376 "FLAGG2.spad" 604627 604643 605892 605897) (-375 "FINRALG.spad" 602688 602701 604583 604622) (-374 "FINRALG.spad" 600675 600690 602572 602577) (-373 "FINITE.spad" 599827 599835 600665 600670) (-372 "FINAALG.spad" 588948 588958 599769 599822) (-371 "FINAALG.spad" 578081 578093 588904 588909) (-370 "FILE.spad" 577664 577674 578071 578076) (-369 "FILECAT.spad" 576190 576207 577654 577659) (-368 "FIELD.spad" 575596 575604 576092 576185) (-367 "FIELD.spad" 575088 575098 575586 575591) (-366 "FGROUP.spad" 573735 573745 575068 575083) (-365 "FGLMICPK.spad" 572522 572537 573725 573730) (-364 "FFX.spad" 571897 571912 572238 572331) (-363 "FFSLPE.spad" 571400 571421 571887 571892) (-362 "FFPOLY.spad" 562662 562673 571390 571395) (-361 "FFPOLY2.spad" 561722 561739 562652 562657) (-360 "FFP.spad" 561119 561139 561438 561531) (-359 "FF.spad" 560567 560583 560800 560893) (-358 "FFNBX.spad" 559079 559099 560283 560376) (-357 "FFNBP.spad" 557592 557609 558795 558888) (-356 "FFNB.spad" 556057 556078 557273 557366) (-355 "FFINTBAS.spad" 553571 553590 556047 556052) (-354 "FFIELDC.spad" 551148 551156 553473 553566) (-353 "FFIELDC.spad" 548811 548821 551138 551143) (-352 "FFHOM.spad" 547559 547576 548801 548806) (-351 "FFF.spad" 544994 545005 547549 547554) (-350 "FFCGX.spad" 543841 543861 544710 544803) (-349 "FFCGP.spad" 542730 542750 543557 543650) (-348 "FFCG.spad" 541522 541543 542411 542504) (-347 "FFCAT.spad" 534695 534717 541361 541517) (-346 "FFCAT.spad" 527947 527971 534615 534620) (-345 "FFCAT2.spad" 527694 527734 527937 527942) (-344 "FEXPR.spad" 519411 519457 527450 527489) (-343 "FEVALAB.spad" 519119 519129 519401 519406) (-342 "FEVALAB.spad" 518612 518624 518896 518901) (-341 "FDIV.spad" 518054 518078 518602 518607) (-340 "FDIVCAT.spad" 516118 516142 518044 518049) (-339 "FDIVCAT.spad" 514180 514206 516108 516113) (-338 "FDIV2.spad" 513836 513876 514170 514175) (-337 "FCTRDATA.spad" 512844 512852 513826 513831) (-336 "FCPAK1.spad" 511411 511419 512834 512839) (-335 "FCOMP.spad" 510790 510800 511401 511406) (-334 "FC.spad" 500797 500805 510780 510785) (-333 "FAXF.spad" 493768 493782 500699 500792) (-332 "FAXF.spad" 486791 486807 493724 493729) (-331 "FARRAY.spad" 484941 484951 485974 486001) (-330 "FAMR.spad" 483077 483089 484839 484936) (-329 "FAMR.spad" 481197 481211 482961 482966) (-328 "FAMONOID.spad" 480865 480875 481151 481156) (-327 "FAMONC.spad" 479161 479173 480855 480860) (-326 "FAGROUP.spad" 478785 478795 479057 479084) (-325 "FACUTIL.spad" 476989 477006 478775 478780) (-324 "FACTFUNC.spad" 476183 476193 476979 476984) (-323 "EXPUPXS.spad" 473016 473039 474315 474464) (-322 "EXPRTUBE.spad" 470304 470312 473006 473011) (-321 "EXPRODE.spad" 467464 467480 470294 470299) (-320 "EXPR.spad" 462739 462749 463453 463860) (-319 "EXPR2UPS.spad" 458861 458874 462729 462734) (-318 "EXPR2.spad" 458566 458578 458851 458856) (-317 "EXPEXPAN.spad" 455506 455531 456138 456231) (-316 "EXIT.spad" 455177 455185 455496 455501) (-315 "EXITAST.spad" 454913 454921 455167 455172) (-314 "EVALCYC.spad" 454373 454387 454903 454908) (-313 "EVALAB.spad" 453945 453955 454363 454368) (-312 "EVALAB.spad" 453515 453527 453935 453940) (-311 "EUCDOM.spad" 451089 451097 453441 453510) (-310 "EUCDOM.spad" 448725 448735 451079 451084) (-309 "ESTOOLS.spad" 440571 440579 448715 448720) (-308 "ESTOOLS2.spad" 440174 440188 440561 440566) (-307 "ESTOOLS1.spad" 439859 439870 440164 440169) (-306 "ES.spad" 432674 432682 439849 439854) (-305 "ES.spad" 425395 425405 432572 432577) (-304 "ESCONT.spad" 422188 422196 425385 425390) (-303 "ESCONT1.spad" 421937 421949 422178 422183) (-302 "ES2.spad" 421442 421458 421927 421932) (-301 "ES1.spad" 421012 421028 421432 421437) (-300 "ERROR.spad" 418339 418347 421002 421007) (-299 "EQTBL.spad" 416811 416833 417020 417047) (-298 "EQ.spad" 411616 411626 414403 414515) (-297 "EQ2.spad" 411334 411346 411606 411611) (-296 "EP.spad" 407660 407670 411324 411329) (-295 "ENV.spad" 406338 406346 407650 407655) (-294 "ENTIRER.spad" 406006 406014 406282 406333) (-293 "EMR.spad" 405294 405335 405932 406001) (-292 "ELTAGG.spad" 403548 403567 405284 405289) (-291 "ELTAGG.spad" 401766 401787 403504 403509) (-290 "ELTAB.spad" 401241 401254 401756 401761) (-289 "ELFUTS.spad" 400628 400647 401231 401236) (-288 "ELEMFUN.spad" 400317 400325 400618 400623) (-287 "ELEMFUN.spad" 400004 400014 400307 400312) (-286 "ELAGG.spad" 397975 397985 399984 399999) (-285 "ELAGG.spad" 395883 395895 397894 397899) (-284 "ELABOR.spad" 395229 395237 395873 395878) (-283 "ELABEXPR.spad" 394161 394169 395219 395224) (-282 "EFUPXS.spad" 390937 390967 394117 394122) (-281 "EFULS.spad" 387773 387796 390893 390898) (-280 "EFSTRUC.spad" 385788 385804 387763 387768) (-279 "EF.spad" 380564 380580 385778 385783) (-278 "EAB.spad" 378840 378848 380554 380559) (-277 "E04UCFA.spad" 378376 378384 378830 378835) (-276 "E04NAFA.spad" 377953 377961 378366 378371) (-275 "E04MBFA.spad" 377533 377541 377943 377948) (-274 "E04JAFA.spad" 377069 377077 377523 377528) (-273 "E04GCFA.spad" 376605 376613 377059 377064) (-272 "E04FDFA.spad" 376141 376149 376595 376600) (-271 "E04DGFA.spad" 375677 375685 376131 376136) (-270 "E04AGNT.spad" 371527 371535 375667 375672) (-269 "DVARCAT.spad" 368216 368226 371517 371522) (-268 "DVARCAT.spad" 364903 364915 368206 368211) (-267 "DSMP.spad" 362370 362384 362675 362802) (-266 "DROPT.spad" 356329 356337 362360 362365) (-265 "DROPT1.spad" 355994 356004 356319 356324) (-264 "DROPT0.spad" 350851 350859 355984 355989) (-263 "DRAWPT.spad" 349024 349032 350841 350846) (-262 "DRAW.spad" 341900 341913 349014 349019) (-261 "DRAWHACK.spad" 341208 341218 341890 341895) (-260 "DRAWCX.spad" 338678 338686 341198 341203) (-259 "DRAWCURV.spad" 338225 338240 338668 338673) (-258 "DRAWCFUN.spad" 327757 327765 338215 338220) (-257 "DQAGG.spad" 325935 325945 327725 327752) (-256 "DPOLCAT.spad" 321284 321300 325803 325930) (-255 "DPOLCAT.spad" 316719 316737 321240 321245) (-254 "DPMO.spad" 308945 308961 309083 309384) (-253 "DPMM.spad" 301184 301202 301309 301610) (-252 "DOMTMPLT.spad" 300955 300963 301174 301179) (-251 "DOMCTOR.spad" 300710 300718 300945 300950) (-250 "DOMAIN.spad" 299797 299805 300700 300705) (-249 "DMP.spad" 297057 297072 297627 297754) (-248 "DLP.spad" 296409 296419 297047 297052) (-247 "DLIST.spad" 294988 294998 295592 295619) (-246 "DLAGG.spad" 293405 293415 294978 294983) (-245 "DIVRING.spad" 292947 292955 293349 293400) (-244 "DIVRING.spad" 292533 292543 292937 292942) (-243 "DISPLAY.spad" 290723 290731 292523 292528) (-242 "DIRPROD.spad" 280303 280319 280943 281074) (-241 "DIRPROD2.spad" 279121 279139 280293 280298) (-240 "DIRPCAT.spad" 278065 278081 278985 279116) (-239 "DIRPCAT.spad" 276738 276756 277660 277665) (-238 "DIOSP.spad" 275563 275571 276728 276733) (-237 "DIOPS.spad" 274559 274569 275543 275558) (-236 "DIOPS.spad" 273529 273541 274515 274520) (-235 "DIFRING.spad" 272825 272833 273509 273524) (-234 "DIFRING.spad" 272129 272139 272815 272820) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2266164 2266169 2266174 2266179) (-2 NIL 2266144 2266149 2266154 2266159) (-1 NIL 2266124 2266129 2266134 2266139) (0 NIL 2266104 2266109 2266114 2266119) (-1306 "ZMOD.spad" 2265913 2265926 2266042 2266099) (-1305 "ZLINDEP.spad" 2264979 2264990 2265903 2265908) (-1304 "ZDSOLVE.spad" 2254924 2254946 2264969 2264974) (-1303 "YSTREAM.spad" 2254419 2254430 2254914 2254919) (-1302 "YDIAGRAM.spad" 2254053 2254062 2254409 2254414) (-1301 "XRPOLY.spad" 2253273 2253293 2253909 2253978) (-1300 "XPR.spad" 2251068 2251081 2252991 2253090) (-1299 "XPOLY.spad" 2250623 2250634 2250924 2250993) (-1298 "XPOLYC.spad" 2249942 2249958 2250549 2250618) (-1297 "XPBWPOLY.spad" 2248379 2248399 2249722 2249791) (-1296 "XF.spad" 2246842 2246857 2248281 2248374) (-1295 "XF.spad" 2245285 2245302 2246726 2246731) (-1294 "XFALG.spad" 2242333 2242349 2245211 2245280) (-1293 "XEXPPKG.spad" 2241584 2241610 2242323 2242328) (-1292 "XDPOLY.spad" 2241198 2241214 2241440 2241509) (-1291 "XALG.spad" 2240858 2240869 2241154 2241193) (-1290 "WUTSET.spad" 2236697 2236714 2240504 2240531) (-1289 "WP.spad" 2235896 2235940 2236555 2236622) (-1288 "WHILEAST.spad" 2235694 2235703 2235886 2235891) (-1287 "WHEREAST.spad" 2235365 2235374 2235684 2235689) (-1286 "WFFINTBS.spad" 2233028 2233050 2235355 2235360) (-1285 "WEIER.spad" 2231250 2231261 2233018 2233023) (-1284 "VSPACE.spad" 2230923 2230934 2231218 2231245) (-1283 "VSPACE.spad" 2230616 2230629 2230913 2230918) (-1282 "VOID.spad" 2230293 2230302 2230606 2230611) (-1281 "VIEW.spad" 2227973 2227982 2230283 2230288) (-1280 "VIEWDEF.spad" 2223174 2223183 2227963 2227968) (-1279 "VIEW3D.spad" 2207135 2207144 2223164 2223169) (-1278 "VIEW2D.spad" 2195026 2195035 2207125 2207130) (-1277 "VECTOR.spad" 2193700 2193711 2193951 2193978) (-1276 "VECTOR2.spad" 2192339 2192352 2193690 2193695) (-1275 "VECTCAT.spad" 2190243 2190254 2192307 2192334) (-1274 "VECTCAT.spad" 2187954 2187967 2190020 2190025) (-1273 "VARIABLE.spad" 2187734 2187749 2187944 2187949) (-1272 "UTYPE.spad" 2187378 2187387 2187724 2187729) (-1271 "UTSODETL.spad" 2186673 2186697 2187334 2187339) (-1270 "UTSODE.spad" 2184889 2184909 2186663 2186668) (-1269 "UTS.spad" 2179693 2179721 2183356 2183453) (-1268 "UTSCAT.spad" 2177172 2177188 2179591 2179688) (-1267 "UTSCAT.spad" 2174295 2174313 2176716 2176721) (-1266 "UTS2.spad" 2173890 2173925 2174285 2174290) (-1265 "URAGG.spad" 2168563 2168574 2173880 2173885) (-1264 "URAGG.spad" 2163200 2163213 2168519 2168524) (-1263 "UPXSSING.spad" 2160845 2160871 2162281 2162414) (-1262 "UPXS.spad" 2157999 2158027 2158977 2159126) (-1261 "UPXSCONS.spad" 2155758 2155778 2156131 2156280) (-1260 "UPXSCCA.spad" 2154329 2154349 2155604 2155753) (-1259 "UPXSCCA.spad" 2153042 2153064 2154319 2154324) (-1258 "UPXSCAT.spad" 2151631 2151647 2152888 2153037) (-1257 "UPXS2.spad" 2151174 2151227 2151621 2151626) (-1256 "UPSQFREE.spad" 2149588 2149602 2151164 2151169) (-1255 "UPSCAT.spad" 2147375 2147399 2149486 2149583) (-1254 "UPSCAT.spad" 2144868 2144894 2146981 2146986) (-1253 "UPOLYC.spad" 2139908 2139919 2144710 2144863) (-1252 "UPOLYC.spad" 2134840 2134853 2139644 2139649) (-1251 "UPOLYC2.spad" 2134311 2134330 2134830 2134835) (-1250 "UP.spad" 2131510 2131525 2131897 2132050) (-1249 "UPMP.spad" 2130410 2130423 2131500 2131505) (-1248 "UPDIVP.spad" 2129975 2129989 2130400 2130405) (-1247 "UPDECOMP.spad" 2128220 2128234 2129965 2129970) (-1246 "UPCDEN.spad" 2127429 2127445 2128210 2128215) (-1245 "UP2.spad" 2126793 2126814 2127419 2127424) (-1244 "UNISEG.spad" 2126146 2126157 2126712 2126717) (-1243 "UNISEG2.spad" 2125643 2125656 2126102 2126107) (-1242 "UNIFACT.spad" 2124746 2124758 2125633 2125638) (-1241 "ULS.spad" 2115304 2115332 2116391 2116820) (-1240 "ULSCONS.spad" 2107700 2107720 2108070 2108219) (-1239 "ULSCCAT.spad" 2105437 2105457 2107546 2107695) (-1238 "ULSCCAT.spad" 2103282 2103304 2105393 2105398) (-1237 "ULSCAT.spad" 2101514 2101530 2103128 2103277) (-1236 "ULS2.spad" 2101028 2101081 2101504 2101509) (-1235 "UINT8.spad" 2100905 2100914 2101018 2101023) (-1234 "UINT64.spad" 2100781 2100790 2100895 2100900) (-1233 "UINT32.spad" 2100657 2100666 2100771 2100776) (-1232 "UINT16.spad" 2100533 2100542 2100647 2100652) (-1231 "UFD.spad" 2099598 2099607 2100459 2100528) (-1230 "UFD.spad" 2098725 2098736 2099588 2099593) (-1229 "UDVO.spad" 2097606 2097615 2098715 2098720) (-1228 "UDPO.spad" 2095099 2095110 2097562 2097567) (-1227 "TYPE.spad" 2095031 2095040 2095089 2095094) (-1226 "TYPEAST.spad" 2094950 2094959 2095021 2095026) (-1225 "TWOFACT.spad" 2093602 2093617 2094940 2094945) (-1224 "TUPLE.spad" 2093088 2093099 2093501 2093506) (-1223 "TUBETOOL.spad" 2089955 2089964 2093078 2093083) (-1222 "TUBE.spad" 2088602 2088619 2089945 2089950) (-1221 "TS.spad" 2087201 2087217 2088167 2088264) (-1220 "TSETCAT.spad" 2074328 2074345 2087169 2087196) (-1219 "TSETCAT.spad" 2061441 2061460 2074284 2074289) (-1218 "TRMANIP.spad" 2055807 2055824 2061147 2061152) (-1217 "TRIMAT.spad" 2054770 2054795 2055797 2055802) (-1216 "TRIGMNIP.spad" 2053297 2053314 2054760 2054765) (-1215 "TRIGCAT.spad" 2052809 2052818 2053287 2053292) (-1214 "TRIGCAT.spad" 2052319 2052330 2052799 2052804) (-1213 "TREE.spad" 2050894 2050905 2051926 2051953) (-1212 "TRANFUN.spad" 2050733 2050742 2050884 2050889) (-1211 "TRANFUN.spad" 2050570 2050581 2050723 2050728) (-1210 "TOPSP.spad" 2050244 2050253 2050560 2050565) (-1209 "TOOLSIGN.spad" 2049907 2049918 2050234 2050239) (-1208 "TEXTFILE.spad" 2048468 2048477 2049897 2049902) (-1207 "TEX.spad" 2045614 2045623 2048458 2048463) (-1206 "TEX1.spad" 2045170 2045181 2045604 2045609) (-1205 "TEMUTL.spad" 2044725 2044734 2045160 2045165) (-1204 "TBCMPPK.spad" 2042818 2042841 2044715 2044720) (-1203 "TBAGG.spad" 2041868 2041891 2042798 2042813) (-1202 "TBAGG.spad" 2040926 2040951 2041858 2041863) (-1201 "TANEXP.spad" 2040334 2040345 2040916 2040921) (-1200 "TALGOP.spad" 2040058 2040069 2040324 2040329) (-1199 "TABLE.spad" 2038469 2038492 2038739 2038766) (-1198 "TABLEAU.spad" 2037950 2037961 2038459 2038464) (-1197 "TABLBUMP.spad" 2034753 2034764 2037940 2037945) (-1196 "SYSTEM.spad" 2033981 2033990 2034743 2034748) (-1195 "SYSSOLP.spad" 2031464 2031475 2033971 2033976) (-1194 "SYSPTR.spad" 2031363 2031372 2031454 2031459) (-1193 "SYSNNI.spad" 2030545 2030556 2031353 2031358) (-1192 "SYSINT.spad" 2029949 2029960 2030535 2030540) (-1191 "SYNTAX.spad" 2026155 2026164 2029939 2029944) (-1190 "SYMTAB.spad" 2024223 2024232 2026145 2026150) (-1189 "SYMS.spad" 2020246 2020255 2024213 2024218) (-1188 "SYMPOLY.spad" 2019253 2019264 2019335 2019462) (-1187 "SYMFUNC.spad" 2018754 2018765 2019243 2019248) (-1186 "SYMBOL.spad" 2016257 2016266 2018744 2018749) (-1185 "SWITCH.spad" 2013028 2013037 2016247 2016252) (-1184 "SUTS.spad" 2009933 2009961 2011495 2011592) (-1183 "SUPXS.spad" 2007074 2007102 2008065 2008214) (-1182 "SUP.spad" 2003887 2003898 2004660 2004813) (-1181 "SUPFRACF.spad" 2002992 2003010 2003877 2003882) (-1180 "SUP2.spad" 2002384 2002397 2002982 2002987) (-1179 "SUMRF.spad" 2001358 2001369 2002374 2002379) (-1178 "SUMFS.spad" 2000995 2001012 2001348 2001353) (-1177 "SULS.spad" 1991540 1991568 1992640 1993069) (-1176 "SUCHTAST.spad" 1991309 1991318 1991530 1991535) (-1175 "SUCH.spad" 1990991 1991006 1991299 1991304) (-1174 "SUBSPACE.spad" 1983106 1983121 1990981 1990986) (-1173 "SUBRESP.spad" 1982276 1982290 1983062 1983067) (-1172 "STTF.spad" 1978375 1978391 1982266 1982271) (-1171 "STTFNC.spad" 1974843 1974859 1978365 1978370) (-1170 "STTAYLOR.spad" 1967478 1967489 1974724 1974729) (-1169 "STRTBL.spad" 1965983 1966000 1966132 1966159) (-1168 "STRING.spad" 1965392 1965401 1965406 1965433) (-1167 "STRICAT.spad" 1965180 1965189 1965360 1965387) (-1166 "STREAM.spad" 1962098 1962109 1964705 1964720) (-1165 "STREAM3.spad" 1961671 1961686 1962088 1962093) (-1164 "STREAM2.spad" 1960799 1960812 1961661 1961666) (-1163 "STREAM1.spad" 1960505 1960516 1960789 1960794) (-1162 "STINPROD.spad" 1959441 1959457 1960495 1960500) (-1161 "STEP.spad" 1958642 1958651 1959431 1959436) (-1160 "STEPAST.spad" 1957876 1957885 1958632 1958637) (-1159 "STBL.spad" 1956402 1956430 1956569 1956584) (-1158 "STAGG.spad" 1955477 1955488 1956392 1956397) (-1157 "STAGG.spad" 1954550 1954563 1955467 1955472) (-1156 "STACK.spad" 1953907 1953918 1954157 1954184) (-1155 "SREGSET.spad" 1951611 1951628 1953553 1953580) (-1154 "SRDCMPK.spad" 1950172 1950192 1951601 1951606) (-1153 "SRAGG.spad" 1945315 1945324 1950140 1950167) (-1152 "SRAGG.spad" 1940478 1940489 1945305 1945310) (-1151 "SQMATRIX.spad" 1938094 1938112 1939010 1939097) (-1150 "SPLTREE.spad" 1932646 1932659 1937530 1937557) (-1149 "SPLNODE.spad" 1929234 1929247 1932636 1932641) (-1148 "SPFCAT.spad" 1928043 1928052 1929224 1929229) (-1147 "SPECOUT.spad" 1926595 1926604 1928033 1928038) (-1146 "SPADXPT.spad" 1918190 1918199 1926585 1926590) (-1145 "spad-parser.spad" 1917655 1917664 1918180 1918185) (-1144 "SPADAST.spad" 1917356 1917365 1917645 1917650) (-1143 "SPACEC.spad" 1901555 1901566 1917346 1917351) (-1142 "SPACE3.spad" 1901331 1901342 1901545 1901550) (-1141 "SORTPAK.spad" 1900880 1900893 1901287 1901292) (-1140 "SOLVETRA.spad" 1898643 1898654 1900870 1900875) (-1139 "SOLVESER.spad" 1897171 1897182 1898633 1898638) (-1138 "SOLVERAD.spad" 1893197 1893208 1897161 1897166) (-1137 "SOLVEFOR.spad" 1891659 1891677 1893187 1893192) (-1136 "SNTSCAT.spad" 1891259 1891276 1891627 1891654) (-1135 "SMTS.spad" 1889531 1889557 1890824 1890921) (-1134 "SMP.spad" 1887006 1887026 1887396 1887523) (-1133 "SMITH.spad" 1885851 1885876 1886996 1887001) (-1132 "SMATCAT.spad" 1883961 1883991 1885795 1885846) (-1131 "SMATCAT.spad" 1882003 1882035 1883839 1883844) (-1130 "SKAGG.spad" 1880966 1880977 1881971 1881998) (-1129 "SINT.spad" 1879906 1879915 1880832 1880961) (-1128 "SIMPAN.spad" 1879634 1879643 1879896 1879901) (-1127 "SIG.spad" 1878964 1878973 1879624 1879629) (-1126 "SIGNRF.spad" 1878082 1878093 1878954 1878959) (-1125 "SIGNEF.spad" 1877361 1877378 1878072 1878077) (-1124 "SIGAST.spad" 1876746 1876755 1877351 1877356) (-1123 "SHP.spad" 1874674 1874689 1876702 1876707) (-1122 "SHDP.spad" 1864385 1864412 1864894 1865025) (-1121 "SGROUP.spad" 1863993 1864002 1864375 1864380) (-1120 "SGROUP.spad" 1863599 1863610 1863983 1863988) (-1119 "SGCF.spad" 1856738 1856747 1863589 1863594) (-1118 "SFRTCAT.spad" 1855668 1855685 1856706 1856733) (-1117 "SFRGCD.spad" 1854731 1854751 1855658 1855663) (-1116 "SFQCMPK.spad" 1849368 1849388 1854721 1854726) (-1115 "SFORT.spad" 1848807 1848821 1849358 1849363) (-1114 "SEXOF.spad" 1848650 1848690 1848797 1848802) (-1113 "SEX.spad" 1848542 1848551 1848640 1848645) (-1112 "SEXCAT.spad" 1846323 1846363 1848532 1848537) (-1111 "SET.spad" 1844647 1844658 1845744 1845783) (-1110 "SETMN.spad" 1843097 1843114 1844637 1844642) (-1109 "SETCAT.spad" 1842419 1842428 1843087 1843092) (-1108 "SETCAT.spad" 1841739 1841750 1842409 1842414) (-1107 "SETAGG.spad" 1838288 1838299 1841719 1841734) (-1106 "SETAGG.spad" 1834845 1834858 1838278 1838283) (-1105 "SEQAST.spad" 1834548 1834557 1834835 1834840) (-1104 "SEGXCAT.spad" 1833704 1833717 1834538 1834543) (-1103 "SEG.spad" 1833517 1833528 1833623 1833628) (-1102 "SEGCAT.spad" 1832442 1832453 1833507 1833512) (-1101 "SEGBIND.spad" 1832200 1832211 1832389 1832394) (-1100 "SEGBIND2.spad" 1831898 1831911 1832190 1832195) (-1099 "SEGAST.spad" 1831612 1831621 1831888 1831893) (-1098 "SEG2.spad" 1831047 1831060 1831568 1831573) (-1097 "SDVAR.spad" 1830323 1830334 1831037 1831042) (-1096 "SDPOL.spad" 1827749 1827760 1828040 1828167) (-1095 "SCPKG.spad" 1825838 1825849 1827739 1827744) (-1094 "SCOPE.spad" 1824991 1825000 1825828 1825833) (-1093 "SCACHE.spad" 1823687 1823698 1824981 1824986) (-1092 "SASTCAT.spad" 1823596 1823605 1823677 1823682) (-1091 "SAOS.spad" 1823468 1823477 1823586 1823591) (-1090 "SAERFFC.spad" 1823181 1823201 1823458 1823463) (-1089 "SAE.spad" 1821356 1821372 1821967 1822102) (-1088 "SAEFACT.spad" 1821057 1821077 1821346 1821351) (-1087 "RURPK.spad" 1818716 1818732 1821047 1821052) (-1086 "RULESET.spad" 1818169 1818193 1818706 1818711) (-1085 "RULE.spad" 1816409 1816433 1818159 1818164) (-1084 "RULECOLD.spad" 1816261 1816274 1816399 1816404) (-1083 "RTVALUE.spad" 1815996 1816005 1816251 1816256) (-1082 "RSTRCAST.spad" 1815713 1815722 1815986 1815991) (-1081 "RSETGCD.spad" 1812091 1812111 1815703 1815708) (-1080 "RSETCAT.spad" 1802027 1802044 1812059 1812086) (-1079 "RSETCAT.spad" 1791983 1792002 1802017 1802022) (-1078 "RSDCMPK.spad" 1790435 1790455 1791973 1791978) (-1077 "RRCC.spad" 1788819 1788849 1790425 1790430) (-1076 "RRCC.spad" 1787201 1787233 1788809 1788814) (-1075 "RPTAST.spad" 1786903 1786912 1787191 1787196) (-1074 "RPOLCAT.spad" 1766263 1766278 1786771 1786898) (-1073 "RPOLCAT.spad" 1745336 1745353 1765846 1765851) (-1072 "ROUTINE.spad" 1741219 1741228 1743983 1744010) (-1071 "ROMAN.spad" 1740547 1740556 1741085 1741214) (-1070 "ROIRC.spad" 1739627 1739659 1740537 1740542) (-1069 "RNS.spad" 1738530 1738539 1739529 1739622) (-1068 "RNS.spad" 1737519 1737530 1738520 1738525) (-1067 "RNG.spad" 1737254 1737263 1737509 1737514) (-1066 "RNGBIND.spad" 1736414 1736428 1737209 1737214) (-1065 "RMODULE.spad" 1736179 1736190 1736404 1736409) (-1064 "RMCAT2.spad" 1735599 1735656 1736169 1736174) (-1063 "RMATRIX.spad" 1734423 1734442 1734766 1734805) (-1062 "RMATCAT.spad" 1730002 1730033 1734379 1734418) (-1061 "RMATCAT.spad" 1725471 1725504 1729850 1729855) (-1060 "RLINSET.spad" 1724865 1724876 1725461 1725466) (-1059 "RINTERP.spad" 1724753 1724773 1724855 1724860) (-1058 "RING.spad" 1724223 1724232 1724733 1724748) (-1057 "RING.spad" 1723701 1723712 1724213 1724218) (-1056 "RIDIST.spad" 1723093 1723102 1723691 1723696) (-1055 "RGCHAIN.spad" 1721676 1721692 1722578 1722605) (-1054 "RGBCSPC.spad" 1721457 1721469 1721666 1721671) (-1053 "RGBCMDL.spad" 1720987 1720999 1721447 1721452) (-1052 "RF.spad" 1718629 1718640 1720977 1720982) (-1051 "RFFACTOR.spad" 1718091 1718102 1718619 1718624) (-1050 "RFFACT.spad" 1717826 1717838 1718081 1718086) (-1049 "RFDIST.spad" 1716822 1716831 1717816 1717821) (-1048 "RETSOL.spad" 1716241 1716254 1716812 1716817) (-1047 "RETRACT.spad" 1715669 1715680 1716231 1716236) (-1046 "RETRACT.spad" 1715095 1715108 1715659 1715664) (-1045 "RETAST.spad" 1714907 1714916 1715085 1715090) (-1044 "RESULT.spad" 1712967 1712976 1713554 1713581) (-1043 "RESRING.spad" 1712314 1712361 1712905 1712962) (-1042 "RESLATC.spad" 1711638 1711649 1712304 1712309) (-1041 "REPSQ.spad" 1711369 1711380 1711628 1711633) (-1040 "REP.spad" 1708923 1708932 1711359 1711364) (-1039 "REPDB.spad" 1708630 1708641 1708913 1708918) (-1038 "REP2.spad" 1698288 1698299 1708472 1708477) (-1037 "REP1.spad" 1692484 1692495 1698238 1698243) (-1036 "REGSET.spad" 1690281 1690298 1692130 1692157) (-1035 "REF.spad" 1689616 1689627 1690236 1690241) (-1034 "REDORDER.spad" 1688822 1688839 1689606 1689611) (-1033 "RECLOS.spad" 1687605 1687625 1688309 1688402) (-1032 "REALSOLV.spad" 1686745 1686754 1687595 1687600) (-1031 "REAL.spad" 1686617 1686626 1686735 1686740) (-1030 "REAL0Q.spad" 1683915 1683930 1686607 1686612) (-1029 "REAL0.spad" 1680759 1680774 1683905 1683910) (-1028 "RDUCEAST.spad" 1680480 1680489 1680749 1680754) (-1027 "RDIV.spad" 1680135 1680160 1680470 1680475) (-1026 "RDIST.spad" 1679702 1679713 1680125 1680130) (-1025 "RDETRS.spad" 1678566 1678584 1679692 1679697) (-1024 "RDETR.spad" 1676705 1676723 1678556 1678561) (-1023 "RDEEFS.spad" 1675804 1675821 1676695 1676700) (-1022 "RDEEF.spad" 1674814 1674831 1675794 1675799) (-1021 "RCFIELD.spad" 1672000 1672009 1674716 1674809) (-1020 "RCFIELD.spad" 1669272 1669283 1671990 1671995) (-1019 "RCAGG.spad" 1667200 1667211 1669262 1669267) (-1018 "RCAGG.spad" 1665055 1665068 1667119 1667124) (-1017 "RATRET.spad" 1664415 1664426 1665045 1665050) (-1016 "RATFACT.spad" 1664107 1664119 1664405 1664410) (-1015 "RANDSRC.spad" 1663426 1663435 1664097 1664102) (-1014 "RADUTIL.spad" 1663182 1663191 1663416 1663421) (-1013 "RADIX.spad" 1660103 1660117 1661649 1661742) (-1012 "RADFF.spad" 1658516 1658553 1658635 1658791) (-1011 "RADCAT.spad" 1658111 1658120 1658506 1658511) (-1010 "RADCAT.spad" 1657704 1657715 1658101 1658106) (-1009 "QUEUE.spad" 1657052 1657063 1657311 1657338) (-1008 "QUAT.spad" 1655633 1655644 1655976 1656041) (-1007 "QUATCT2.spad" 1655253 1655272 1655623 1655628) (-1006 "QUATCAT.spad" 1653423 1653434 1655183 1655248) (-1005 "QUATCAT.spad" 1651344 1651357 1653106 1653111) (-1004 "QUAGG.spad" 1650171 1650182 1651312 1651339) (-1003 "QQUTAST.spad" 1649939 1649948 1650161 1650166) (-1002 "QFORM.spad" 1649557 1649572 1649929 1649934) (-1001 "QFCAT.spad" 1648259 1648270 1649459 1649552) (-1000 "QFCAT.spad" 1646552 1646565 1647754 1647759) (-999 "QFCAT2.spad" 1646245 1646261 1646542 1646547) (-998 "QEQUAT.spad" 1645804 1645812 1646235 1646240) (-997 "QCMPACK.spad" 1640551 1640570 1645794 1645799) (-996 "QALGSET.spad" 1636630 1636662 1640465 1640470) (-995 "QALGSET2.spad" 1634626 1634644 1636620 1636625) (-994 "PWFFINTB.spad" 1632042 1632063 1634616 1634621) (-993 "PUSHVAR.spad" 1631381 1631400 1632032 1632037) (-992 "PTRANFN.spad" 1627509 1627519 1631371 1631376) (-991 "PTPACK.spad" 1624597 1624607 1627499 1627504) (-990 "PTFUNC2.spad" 1624420 1624434 1624587 1624592) (-989 "PTCAT.spad" 1623675 1623685 1624388 1624415) (-988 "PSQFR.spad" 1622982 1623006 1623665 1623670) (-987 "PSEUDLIN.spad" 1621868 1621878 1622972 1622977) (-986 "PSETPK.spad" 1607301 1607317 1621746 1621751) (-985 "PSETCAT.spad" 1601221 1601244 1607281 1607296) (-984 "PSETCAT.spad" 1595115 1595140 1601177 1601182) (-983 "PSCURVE.spad" 1594098 1594106 1595105 1595110) (-982 "PSCAT.spad" 1592881 1592910 1593996 1594093) (-981 "PSCAT.spad" 1591754 1591785 1592871 1592876) (-980 "PRTITION.spad" 1590452 1590460 1591744 1591749) (-979 "PRTDAST.spad" 1590171 1590179 1590442 1590447) (-978 "PRS.spad" 1579733 1579750 1590127 1590132) (-977 "PRQAGG.spad" 1579168 1579178 1579701 1579728) (-976 "PROPLOG.spad" 1578740 1578748 1579158 1579163) (-975 "PROPFUN2.spad" 1578363 1578376 1578730 1578735) (-974 "PROPFUN1.spad" 1577761 1577772 1578353 1578358) (-973 "PROPFRML.spad" 1576329 1576340 1577751 1577756) (-972 "PROPERTY.spad" 1575817 1575825 1576319 1576324) (-971 "PRODUCT.spad" 1573499 1573511 1573783 1573838) (-970 "PR.spad" 1571891 1571903 1572590 1572717) (-969 "PRINT.spad" 1571643 1571651 1571881 1571886) (-968 "PRIMES.spad" 1569896 1569906 1571633 1571638) (-967 "PRIMELT.spad" 1567977 1567991 1569886 1569891) (-966 "PRIMCAT.spad" 1567604 1567612 1567967 1567972) (-965 "PRIMARR.spad" 1566609 1566619 1566787 1566814) (-964 "PRIMARR2.spad" 1565376 1565388 1566599 1566604) (-963 "PREASSOC.spad" 1564758 1564770 1565366 1565371) (-962 "PPCURVE.spad" 1563895 1563903 1564748 1564753) (-961 "PORTNUM.spad" 1563670 1563678 1563885 1563890) (-960 "POLYROOT.spad" 1562519 1562541 1563626 1563631) (-959 "POLY.spad" 1559854 1559864 1560369 1560496) (-958 "POLYLIFT.spad" 1559119 1559142 1559844 1559849) (-957 "POLYCATQ.spad" 1557237 1557259 1559109 1559114) (-956 "POLYCAT.spad" 1550707 1550728 1557105 1557232) (-955 "POLYCAT.spad" 1543515 1543538 1549915 1549920) (-954 "POLY2UP.spad" 1542967 1542981 1543505 1543510) (-953 "POLY2.spad" 1542564 1542576 1542957 1542962) (-952 "POLUTIL.spad" 1541505 1541534 1542520 1542525) (-951 "POLTOPOL.spad" 1540253 1540268 1541495 1541500) (-950 "POINT.spad" 1539091 1539101 1539178 1539205) (-949 "PNTHEORY.spad" 1535793 1535801 1539081 1539086) (-948 "PMTOOLS.spad" 1534568 1534582 1535783 1535788) (-947 "PMSYM.spad" 1534117 1534127 1534558 1534563) (-946 "PMQFCAT.spad" 1533708 1533722 1534107 1534112) (-945 "PMPRED.spad" 1533187 1533201 1533698 1533703) (-944 "PMPREDFS.spad" 1532641 1532663 1533177 1533182) (-943 "PMPLCAT.spad" 1531721 1531739 1532573 1532578) (-942 "PMLSAGG.spad" 1531306 1531320 1531711 1531716) (-941 "PMKERNEL.spad" 1530885 1530897 1531296 1531301) (-940 "PMINS.spad" 1530465 1530475 1530875 1530880) (-939 "PMFS.spad" 1530042 1530060 1530455 1530460) (-938 "PMDOWN.spad" 1529332 1529346 1530032 1530037) (-937 "PMASS.spad" 1528342 1528350 1529322 1529327) (-936 "PMASSFS.spad" 1527309 1527325 1528332 1528337) (-935 "PLOTTOOL.spad" 1527089 1527097 1527299 1527304) (-934 "PLOT.spad" 1522012 1522020 1527079 1527084) (-933 "PLOT3D.spad" 1518476 1518484 1522002 1522007) (-932 "PLOT1.spad" 1517633 1517643 1518466 1518471) (-931 "PLEQN.spad" 1504923 1504950 1517623 1517628) (-930 "PINTERP.spad" 1504545 1504564 1504913 1504918) (-929 "PINTERPA.spad" 1504329 1504345 1504535 1504540) (-928 "PI.spad" 1503938 1503946 1504303 1504324) (-927 "PID.spad" 1502908 1502916 1503864 1503933) (-926 "PICOERCE.spad" 1502565 1502575 1502898 1502903) (-925 "PGROEB.spad" 1501166 1501180 1502555 1502560) (-924 "PGE.spad" 1492783 1492791 1501156 1501161) (-923 "PGCD.spad" 1491673 1491690 1492773 1492778) (-922 "PFRPAC.spad" 1490822 1490832 1491663 1491668) (-921 "PFR.spad" 1487485 1487495 1490724 1490817) (-920 "PFOTOOLS.spad" 1486743 1486759 1487475 1487480) (-919 "PFOQ.spad" 1486113 1486131 1486733 1486738) (-918 "PFO.spad" 1485532 1485559 1486103 1486108) (-917 "PF.spad" 1485106 1485118 1485337 1485430) (-916 "PFECAT.spad" 1482788 1482796 1485032 1485101) (-915 "PFECAT.spad" 1480498 1480508 1482744 1482749) (-914 "PFBRU.spad" 1478386 1478398 1480488 1480493) (-913 "PFBR.spad" 1475946 1475969 1478376 1478381) (-912 "PERM.spad" 1471753 1471763 1475776 1475791) (-911 "PERMGRP.spad" 1466523 1466533 1471743 1471748) (-910 "PERMCAT.spad" 1465184 1465194 1466503 1466518) (-909 "PERMAN.spad" 1463716 1463730 1465174 1465179) (-908 "PENDTREE.spad" 1463057 1463067 1463345 1463350) (-907 "PDRING.spad" 1461608 1461618 1463037 1463052) (-906 "PDRING.spad" 1460167 1460179 1461598 1461603) (-905 "PDEPROB.spad" 1459182 1459190 1460157 1460162) (-904 "PDEPACK.spad" 1453222 1453230 1459172 1459177) (-903 "PDECOMP.spad" 1452692 1452709 1453212 1453217) (-902 "PDECAT.spad" 1451048 1451056 1452682 1452687) (-901 "PCOMP.spad" 1450901 1450914 1451038 1451043) (-900 "PBWLB.spad" 1449489 1449506 1450891 1450896) (-899 "PATTERN.spad" 1444028 1444038 1449479 1449484) (-898 "PATTERN2.spad" 1443766 1443778 1444018 1444023) (-897 "PATTERN1.spad" 1442102 1442118 1443756 1443761) (-896 "PATRES.spad" 1439677 1439689 1442092 1442097) (-895 "PATRES2.spad" 1439349 1439363 1439667 1439672) (-894 "PATMATCH.spad" 1437546 1437577 1439057 1439062) (-893 "PATMAB.spad" 1436975 1436985 1437536 1437541) (-892 "PATLRES.spad" 1436061 1436075 1436965 1436970) (-891 "PATAB.spad" 1435825 1435835 1436051 1436056) (-890 "PARTPERM.spad" 1433833 1433841 1435815 1435820) (-889 "PARSURF.spad" 1433267 1433295 1433823 1433828) (-888 "PARSU2.spad" 1433064 1433080 1433257 1433262) (-887 "script-parser.spad" 1432584 1432592 1433054 1433059) (-886 "PARSCURV.spad" 1432018 1432046 1432574 1432579) (-885 "PARSC2.spad" 1431809 1431825 1432008 1432013) (-884 "PARPCURV.spad" 1431271 1431299 1431799 1431804) (-883 "PARPC2.spad" 1431062 1431078 1431261 1431266) (-882 "PARAMAST.spad" 1430190 1430198 1431052 1431057) (-881 "PAN2EXPR.spad" 1429602 1429610 1430180 1430185) (-880 "PALETTE.spad" 1428572 1428580 1429592 1429597) (-879 "PAIR.spad" 1427559 1427572 1428160 1428165) (-878 "PADICRC.spad" 1424893 1424911 1426064 1426157) (-877 "PADICRAT.spad" 1422908 1422920 1423129 1423222) (-876 "PADIC.spad" 1422603 1422615 1422834 1422903) (-875 "PADICCT.spad" 1421152 1421164 1422529 1422598) (-874 "PADEPAC.spad" 1419841 1419860 1421142 1421147) (-873 "PADE.spad" 1418593 1418609 1419831 1419836) (-872 "OWP.spad" 1417833 1417863 1418451 1418518) (-871 "OVERSET.spad" 1417406 1417414 1417823 1417828) (-870 "OVAR.spad" 1417187 1417210 1417396 1417401) (-869 "OUT.spad" 1416273 1416281 1417177 1417182) (-868 "OUTFORM.spad" 1405665 1405673 1416263 1416268) (-867 "OUTBFILE.spad" 1405083 1405091 1405655 1405660) (-866 "OUTBCON.spad" 1404089 1404097 1405073 1405078) (-865 "OUTBCON.spad" 1403093 1403103 1404079 1404084) (-864 "OSI.spad" 1402568 1402576 1403083 1403088) (-863 "OSGROUP.spad" 1402486 1402494 1402558 1402563) (-862 "ORTHPOL.spad" 1400971 1400981 1402403 1402408) (-861 "OREUP.spad" 1400424 1400452 1400651 1400690) (-860 "ORESUP.spad" 1399725 1399749 1400104 1400143) (-859 "OREPCTO.spad" 1397582 1397594 1399645 1399650) (-858 "OREPCAT.spad" 1391729 1391739 1397538 1397577) (-857 "OREPCAT.spad" 1385766 1385778 1391577 1391582) (-856 "ORDSET.spad" 1384938 1384946 1385756 1385761) (-855 "ORDSET.spad" 1384108 1384118 1384928 1384933) (-854 "ORDRING.spad" 1383498 1383506 1384088 1384103) (-853 "ORDRING.spad" 1382896 1382906 1383488 1383493) (-852 "ORDMON.spad" 1382751 1382759 1382886 1382891) (-851 "ORDFUNS.spad" 1381883 1381899 1382741 1382746) (-850 "ORDFIN.spad" 1381703 1381711 1381873 1381878) (-849 "ORDCOMP.spad" 1380168 1380178 1381250 1381279) (-848 "ORDCOMP2.spad" 1379461 1379473 1380158 1380163) (-847 "OPTPROB.spad" 1378099 1378107 1379451 1379456) (-846 "OPTPACK.spad" 1370508 1370516 1378089 1378094) (-845 "OPTCAT.spad" 1368187 1368195 1370498 1370503) (-844 "OPSIG.spad" 1367841 1367849 1368177 1368182) (-843 "OPQUERY.spad" 1367390 1367398 1367831 1367836) (-842 "OP.spad" 1367132 1367142 1367212 1367279) (-841 "OPERCAT.spad" 1366598 1366608 1367122 1367127) (-840 "OPERCAT.spad" 1366062 1366074 1366588 1366593) (-839 "ONECOMP.spad" 1364807 1364817 1365609 1365638) (-838 "ONECOMP2.spad" 1364231 1364243 1364797 1364802) (-837 "OMSERVER.spad" 1363237 1363245 1364221 1364226) (-836 "OMSAGG.spad" 1363025 1363035 1363193 1363232) (-835 "OMPKG.spad" 1361641 1361649 1363015 1363020) (-834 "OM.spad" 1360614 1360622 1361631 1361636) (-833 "OMLO.spad" 1360039 1360051 1360500 1360539) (-832 "OMEXPR.spad" 1359873 1359883 1360029 1360034) (-831 "OMERR.spad" 1359418 1359426 1359863 1359868) (-830 "OMERRK.spad" 1358452 1358460 1359408 1359413) (-829 "OMENC.spad" 1357796 1357804 1358442 1358447) (-828 "OMDEV.spad" 1352105 1352113 1357786 1357791) (-827 "OMCONN.spad" 1351514 1351522 1352095 1352100) (-826 "OINTDOM.spad" 1351277 1351285 1351440 1351509) (-825 "OFMONOID.spad" 1349400 1349410 1351233 1351238) (-824 "ODVAR.spad" 1348661 1348671 1349390 1349395) (-823 "ODR.spad" 1348305 1348331 1348473 1348622) (-822 "ODPOL.spad" 1345687 1345697 1346027 1346154) (-821 "ODP.spad" 1335534 1335554 1335907 1336038) (-820 "ODETOOLS.spad" 1334183 1334202 1335524 1335529) (-819 "ODESYS.spad" 1331877 1331894 1334173 1334178) (-818 "ODERTRIC.spad" 1327886 1327903 1331834 1331839) (-817 "ODERED.spad" 1327285 1327309 1327876 1327881) (-816 "ODERAT.spad" 1324900 1324917 1327275 1327280) (-815 "ODEPRRIC.spad" 1321937 1321959 1324890 1324895) (-814 "ODEPROB.spad" 1321194 1321202 1321927 1321932) (-813 "ODEPRIM.spad" 1318528 1318550 1321184 1321189) (-812 "ODEPAL.spad" 1317914 1317938 1318518 1318523) (-811 "ODEPACK.spad" 1304580 1304588 1317904 1317909) (-810 "ODEINT.spad" 1304015 1304031 1304570 1304575) (-809 "ODEIFTBL.spad" 1301410 1301418 1304005 1304010) (-808 "ODEEF.spad" 1296901 1296917 1301400 1301405) (-807 "ODECONST.spad" 1296438 1296456 1296891 1296896) (-806 "ODECAT.spad" 1295036 1295044 1296428 1296433) (-805 "OCT.spad" 1293172 1293182 1293886 1293925) (-804 "OCTCT2.spad" 1292818 1292839 1293162 1293167) (-803 "OC.spad" 1290614 1290624 1292774 1292813) (-802 "OC.spad" 1288135 1288147 1290297 1290302) (-801 "OCAMON.spad" 1287983 1287991 1288125 1288130) (-800 "OASGP.spad" 1287798 1287806 1287973 1287978) (-799 "OAMONS.spad" 1287320 1287328 1287788 1287793) (-798 "OAMON.spad" 1287181 1287189 1287310 1287315) (-797 "OAGROUP.spad" 1287043 1287051 1287171 1287176) (-796 "NUMTUBE.spad" 1286634 1286650 1287033 1287038) (-795 "NUMQUAD.spad" 1274610 1274618 1286624 1286629) (-794 "NUMODE.spad" 1265964 1265972 1274600 1274605) (-793 "NUMINT.spad" 1263530 1263538 1265954 1265959) (-792 "NUMFMT.spad" 1262370 1262378 1263520 1263525) (-791 "NUMERIC.spad" 1254484 1254494 1262175 1262180) (-790 "NTSCAT.spad" 1252992 1253008 1254452 1254479) (-789 "NTPOLFN.spad" 1252543 1252553 1252909 1252914) (-788 "NSUP.spad" 1245589 1245599 1250129 1250282) (-787 "NSUP2.spad" 1244981 1244993 1245579 1245584) (-786 "NSMP.spad" 1241211 1241230 1241519 1241646) (-785 "NREP.spad" 1239589 1239603 1241201 1241206) (-784 "NPCOEF.spad" 1238835 1238855 1239579 1239584) (-783 "NORMRETR.spad" 1238433 1238472 1238825 1238830) (-782 "NORMPK.spad" 1236335 1236354 1238423 1238428) (-781 "NORMMA.spad" 1236023 1236049 1236325 1236330) (-780 "NONE.spad" 1235764 1235772 1236013 1236018) (-779 "NONE1.spad" 1235440 1235450 1235754 1235759) (-778 "NODE1.spad" 1234927 1234943 1235430 1235435) (-777 "NNI.spad" 1233822 1233830 1234901 1234922) (-776 "NLINSOL.spad" 1232448 1232458 1233812 1233817) (-775 "NIPROB.spad" 1230989 1230997 1232438 1232443) (-774 "NFINTBAS.spad" 1228549 1228566 1230979 1230984) (-773 "NETCLT.spad" 1228523 1228534 1228539 1228544) (-772 "NCODIV.spad" 1226739 1226755 1228513 1228518) (-771 "NCNTFRAC.spad" 1226381 1226395 1226729 1226734) (-770 "NCEP.spad" 1224547 1224561 1226371 1226376) (-769 "NASRING.spad" 1224143 1224151 1224537 1224542) (-768 "NASRING.spad" 1223737 1223747 1224133 1224138) (-767 "NARNG.spad" 1223089 1223097 1223727 1223732) (-766 "NARNG.spad" 1222439 1222449 1223079 1223084) (-765 "NAGSP.spad" 1221516 1221524 1222429 1222434) (-764 "NAGS.spad" 1211177 1211185 1221506 1221511) (-763 "NAGF07.spad" 1209608 1209616 1211167 1211172) (-762 "NAGF04.spad" 1204010 1204018 1209598 1209603) (-761 "NAGF02.spad" 1198079 1198087 1204000 1204005) (-760 "NAGF01.spad" 1193840 1193848 1198069 1198074) (-759 "NAGE04.spad" 1187540 1187548 1193830 1193835) (-758 "NAGE02.spad" 1178200 1178208 1187530 1187535) (-757 "NAGE01.spad" 1174202 1174210 1178190 1178195) (-756 "NAGD03.spad" 1172206 1172214 1174192 1174197) (-755 "NAGD02.spad" 1164953 1164961 1172196 1172201) (-754 "NAGD01.spad" 1159246 1159254 1164943 1164948) (-753 "NAGC06.spad" 1155121 1155129 1159236 1159241) (-752 "NAGC05.spad" 1153622 1153630 1155111 1155116) (-751 "NAGC02.spad" 1152889 1152897 1153612 1153617) (-750 "NAALG.spad" 1152430 1152440 1152857 1152884) (-749 "NAALG.spad" 1151991 1152003 1152420 1152425) (-748 "MULTSQFR.spad" 1148949 1148966 1151981 1151986) (-747 "MULTFACT.spad" 1148332 1148349 1148939 1148944) (-746 "MTSCAT.spad" 1146426 1146447 1148230 1148327) (-745 "MTHING.spad" 1146085 1146095 1146416 1146421) (-744 "MSYSCMD.spad" 1145519 1145527 1146075 1146080) (-743 "MSET.spad" 1143477 1143487 1145225 1145264) (-742 "MSETAGG.spad" 1143322 1143332 1143445 1143472) (-741 "MRING.spad" 1140299 1140311 1143030 1143097) (-740 "MRF2.spad" 1139869 1139883 1140289 1140294) (-739 "MRATFAC.spad" 1139415 1139432 1139859 1139864) (-738 "MPRFF.spad" 1137455 1137474 1139405 1139410) (-737 "MPOLY.spad" 1134926 1134941 1135285 1135412) (-736 "MPCPF.spad" 1134190 1134209 1134916 1134921) (-735 "MPC3.spad" 1134007 1134047 1134180 1134185) (-734 "MPC2.spad" 1133653 1133686 1133997 1134002) (-733 "MONOTOOL.spad" 1132004 1132021 1133643 1133648) (-732 "MONOID.spad" 1131323 1131331 1131994 1131999) (-731 "MONOID.spad" 1130640 1130650 1131313 1131318) (-730 "MONOGEN.spad" 1129388 1129401 1130500 1130635) (-729 "MONOGEN.spad" 1128158 1128173 1129272 1129277) (-728 "MONADWU.spad" 1126188 1126196 1128148 1128153) (-727 "MONADWU.spad" 1124216 1124226 1126178 1126183) (-726 "MONAD.spad" 1123376 1123384 1124206 1124211) (-725 "MONAD.spad" 1122534 1122544 1123366 1123371) (-724 "MOEBIUS.spad" 1121270 1121284 1122514 1122529) (-723 "MODULE.spad" 1121140 1121150 1121238 1121265) (-722 "MODULE.spad" 1121030 1121042 1121130 1121135) (-721 "MODRING.spad" 1120365 1120404 1121010 1121025) (-720 "MODOP.spad" 1119030 1119042 1120187 1120254) (-719 "MODMONOM.spad" 1118761 1118779 1119020 1119025) (-718 "MODMON.spad" 1115556 1115572 1116275 1116428) (-717 "MODFIELD.spad" 1114918 1114957 1115458 1115551) (-716 "MMLFORM.spad" 1113778 1113786 1114908 1114913) (-715 "MMAP.spad" 1113520 1113554 1113768 1113773) (-714 "MLO.spad" 1111979 1111989 1113476 1113515) (-713 "MLIFT.spad" 1110591 1110608 1111969 1111974) (-712 "MKUCFUNC.spad" 1110126 1110144 1110581 1110586) (-711 "MKRECORD.spad" 1109730 1109743 1110116 1110121) (-710 "MKFUNC.spad" 1109137 1109147 1109720 1109725) (-709 "MKFLCFN.spad" 1108105 1108115 1109127 1109132) (-708 "MKBCFUNC.spad" 1107600 1107618 1108095 1108100) (-707 "MINT.spad" 1107039 1107047 1107502 1107595) (-706 "MHROWRED.spad" 1105550 1105560 1107029 1107034) (-705 "MFLOAT.spad" 1104070 1104078 1105440 1105545) (-704 "MFINFACT.spad" 1103470 1103492 1104060 1104065) (-703 "MESH.spad" 1101252 1101260 1103460 1103465) (-702 "MDDFACT.spad" 1099463 1099473 1101242 1101247) (-701 "MDAGG.spad" 1098754 1098764 1099443 1099458) (-700 "MCMPLX.spad" 1094765 1094773 1095379 1095580) (-699 "MCDEN.spad" 1093975 1093987 1094755 1094760) (-698 "MCALCFN.spad" 1091097 1091123 1093965 1093970) (-697 "MAYBE.spad" 1090381 1090392 1091087 1091092) (-696 "MATSTOR.spad" 1087689 1087699 1090371 1090376) (-695 "MATRIX.spad" 1086393 1086403 1086877 1086904) (-694 "MATLIN.spad" 1083737 1083761 1086277 1086282) (-693 "MATCAT.spad" 1075466 1075488 1083705 1083732) (-692 "MATCAT.spad" 1067067 1067091 1075308 1075313) (-691 "MATCAT2.spad" 1066349 1066397 1067057 1067062) (-690 "MAPPKG3.spad" 1065264 1065278 1066339 1066344) (-689 "MAPPKG2.spad" 1064602 1064614 1065254 1065259) (-688 "MAPPKG1.spad" 1063430 1063440 1064592 1064597) (-687 "MAPPAST.spad" 1062745 1062753 1063420 1063425) (-686 "MAPHACK3.spad" 1062557 1062571 1062735 1062740) (-685 "MAPHACK2.spad" 1062326 1062338 1062547 1062552) (-684 "MAPHACK1.spad" 1061970 1061980 1062316 1062321) (-683 "MAGMA.spad" 1059760 1059777 1061960 1061965) (-682 "MACROAST.spad" 1059339 1059347 1059750 1059755) (-681 "M3D.spad" 1057059 1057069 1058717 1058722) (-680 "LZSTAGG.spad" 1054297 1054307 1057049 1057054) (-679 "LZSTAGG.spad" 1051533 1051545 1054287 1054292) (-678 "LWORD.spad" 1048238 1048255 1051523 1051528) (-677 "LSTAST.spad" 1048022 1048030 1048228 1048233) (-676 "LSQM.spad" 1046252 1046266 1046646 1046697) (-675 "LSPP.spad" 1045787 1045804 1046242 1046247) (-674 "LSMP.spad" 1044637 1044665 1045777 1045782) (-673 "LSMP1.spad" 1042455 1042469 1044627 1044632) (-672 "LSAGG.spad" 1042124 1042134 1042423 1042450) (-671 "LSAGG.spad" 1041813 1041825 1042114 1042119) (-670 "LPOLY.spad" 1040767 1040786 1041669 1041738) (-669 "LPEFRAC.spad" 1040038 1040048 1040757 1040762) (-668 "LO.spad" 1039439 1039453 1039972 1039999) (-667 "LOGIC.spad" 1039041 1039049 1039429 1039434) (-666 "LOGIC.spad" 1038641 1038651 1039031 1039036) (-665 "LODOOPS.spad" 1037571 1037583 1038631 1038636) (-664 "LODO.spad" 1036955 1036971 1037251 1037290) (-663 "LODOF.spad" 1036001 1036018 1036912 1036917) (-662 "LODOCAT.spad" 1034667 1034677 1035957 1035996) (-661 "LODOCAT.spad" 1033331 1033343 1034623 1034628) (-660 "LODO2.spad" 1032604 1032616 1033011 1033050) (-659 "LODO1.spad" 1032004 1032014 1032284 1032323) (-658 "LODEEF.spad" 1030806 1030824 1031994 1031999) (-657 "LNAGG.spad" 1026953 1026963 1030796 1030801) (-656 "LNAGG.spad" 1023064 1023076 1026909 1026914) (-655 "LMOPS.spad" 1019832 1019849 1023054 1023059) (-654 "LMODULE.spad" 1019600 1019610 1019822 1019827) (-653 "LMDICT.spad" 1018887 1018897 1019151 1019178) (-652 "LLINSET.spad" 1018284 1018294 1018877 1018882) (-651 "LITERAL.spad" 1018190 1018201 1018274 1018279) (-650 "LIST.spad" 1015925 1015935 1017337 1017364) (-649 "LIST3.spad" 1015236 1015250 1015915 1015920) (-648 "LIST2.spad" 1013938 1013950 1015226 1015231) (-647 "LIST2MAP.spad" 1010841 1010853 1013928 1013933) (-646 "LINSET.spad" 1010463 1010473 1010831 1010836) (-645 "LINEXP.spad" 1009897 1009907 1010443 1010458) (-644 "LINDEP.spad" 1008706 1008718 1009809 1009814) (-643 "LIMITRF.spad" 1006634 1006644 1008696 1008701) (-642 "LIMITPS.spad" 1005537 1005550 1006624 1006629) (-641 "LIE.spad" 1003553 1003565 1004827 1004972) (-640 "LIECAT.spad" 1003029 1003039 1003479 1003548) (-639 "LIECAT.spad" 1002533 1002545 1002985 1002990) (-638 "LIB.spad" 1000746 1000754 1001192 1001207) (-637 "LGROBP.spad" 998099 998118 1000736 1000741) (-636 "LF.spad" 997054 997070 998089 998094) (-635 "LFCAT.spad" 996113 996121 997044 997049) (-634 "LEXTRIPK.spad" 991616 991631 996103 996108) (-633 "LEXP.spad" 989619 989646 991596 991611) (-632 "LETAST.spad" 989318 989326 989609 989614) (-631 "LEADCDET.spad" 987716 987733 989308 989313) (-630 "LAZM3PK.spad" 986420 986442 987706 987711) (-629 "LAUPOL.spad" 985113 985126 986013 986082) (-628 "LAPLACE.spad" 984696 984712 985103 985108) (-627 "LA.spad" 984136 984150 984618 984657) (-626 "LALG.spad" 983912 983922 984116 984131) (-625 "LALG.spad" 983696 983708 983902 983907) (-624 "KVTFROM.spad" 983431 983441 983686 983691) (-623 "KTVLOGIC.spad" 982943 982951 983421 983426) (-622 "KRCFROM.spad" 982681 982691 982933 982938) (-621 "KOVACIC.spad" 981404 981421 982671 982676) (-620 "KONVERT.spad" 981126 981136 981394 981399) (-619 "KOERCE.spad" 980863 980873 981116 981121) (-618 "KERNEL.spad" 979518 979528 980647 980652) (-617 "KERNEL2.spad" 979221 979233 979508 979513) (-616 "KDAGG.spad" 978330 978352 979201 979216) (-615 "KDAGG.spad" 977447 977471 978320 978325) (-614 "KAFILE.spad" 976410 976426 976645 976672) (-613 "JORDAN.spad" 974239 974251 975700 975845) (-612 "JOINAST.spad" 973933 973941 974229 974234) (-611 "JAVACODE.spad" 973799 973807 973923 973928) (-610 "IXAGG.spad" 971932 971956 973789 973794) (-609 "IXAGG.spad" 969920 969946 971779 971784) (-608 "IVECTOR.spad" 968690 968705 968845 968872) (-607 "ITUPLE.spad" 967851 967861 968680 968685) (-606 "ITRIGMNP.spad" 966690 966709 967841 967846) (-605 "ITFUN3.spad" 966196 966210 966680 966685) (-604 "ITFUN2.spad" 965940 965952 966186 966191) (-603 "ITFORM.spad" 965295 965303 965930 965935) (-602 "ITAYLOR.spad" 963289 963304 965159 965256) (-601 "ISUPS.spad" 955726 955741 962263 962360) (-600 "ISUMP.spad" 955227 955243 955716 955721) (-599 "ISTRING.spad" 954315 954328 954396 954423) (-598 "ISAST.spad" 954034 954042 954305 954310) (-597 "IRURPK.spad" 952751 952770 954024 954029) (-596 "IRSN.spad" 950723 950731 952741 952746) (-595 "IRRF2F.spad" 949208 949218 950679 950684) (-594 "IRREDFFX.spad" 948809 948820 949198 949203) (-593 "IROOT.spad" 947148 947158 948799 948804) (-592 "IR.spad" 944949 944963 947003 947030) (-591 "IRFORM.spad" 944273 944281 944939 944944) (-590 "IR2.spad" 943301 943317 944263 944268) (-589 "IR2F.spad" 942507 942523 943291 943296) (-588 "IPRNTPK.spad" 942267 942275 942497 942502) (-587 "IPF.spad" 941832 941844 942072 942165) (-586 "IPADIC.spad" 941593 941619 941758 941827) (-585 "IP4ADDR.spad" 941150 941158 941583 941588) (-584 "IOMODE.spad" 940672 940680 941140 941145) (-583 "IOBFILE.spad" 940033 940041 940662 940667) (-582 "IOBCON.spad" 939898 939906 940023 940028) (-581 "INVLAPLA.spad" 939547 939563 939888 939893) (-580 "INTTR.spad" 932929 932946 939537 939542) (-579 "INTTOOLS.spad" 930684 930700 932503 932508) (-578 "INTSLPE.spad" 930004 930012 930674 930679) (-577 "INTRVL.spad" 929570 929580 929918 929999) (-576 "INTRF.spad" 927994 928008 929560 929565) (-575 "INTRET.spad" 927426 927436 927984 927989) (-574 "INTRAT.spad" 926153 926170 927416 927421) (-573 "INTPM.spad" 924538 924554 925796 925801) (-572 "INTPAF.spad" 922402 922420 924470 924475) (-571 "INTPACK.spad" 912776 912784 922392 922397) (-570 "INT.spad" 912224 912232 912630 912771) (-569 "INTHERTR.spad" 911498 911515 912214 912219) (-568 "INTHERAL.spad" 911168 911192 911488 911493) (-567 "INTHEORY.spad" 907607 907615 911158 911163) (-566 "INTG0.spad" 901340 901358 907539 907544) (-565 "INTFTBL.spad" 895369 895377 901330 901335) (-564 "INTFACT.spad" 894428 894438 895359 895364) (-563 "INTEF.spad" 892813 892829 894418 894423) (-562 "INTDOM.spad" 891436 891444 892739 892808) (-561 "INTDOM.spad" 890121 890131 891426 891431) (-560 "INTCAT.spad" 888380 888390 890035 890116) (-559 "INTBIT.spad" 887887 887895 888370 888375) (-558 "INTALG.spad" 887075 887102 887877 887882) (-557 "INTAF.spad" 886575 886591 887065 887070) (-556 "INTABL.spad" 885093 885124 885256 885283) (-555 "INT8.spad" 884973 884981 885083 885088) (-554 "INT64.spad" 884852 884860 884963 884968) (-553 "INT32.spad" 884731 884739 884842 884847) (-552 "INT16.spad" 884610 884618 884721 884726) (-551 "INS.spad" 882113 882121 884512 884605) (-550 "INS.spad" 879702 879712 882103 882108) (-549 "INPSIGN.spad" 879150 879163 879692 879697) (-548 "INPRODPF.spad" 878246 878265 879140 879145) (-547 "INPRODFF.spad" 877334 877358 878236 878241) (-546 "INNMFACT.spad" 876309 876326 877324 877329) (-545 "INMODGCD.spad" 875797 875827 876299 876304) (-544 "INFSP.spad" 874094 874116 875787 875792) (-543 "INFPROD0.spad" 873174 873193 874084 874089) (-542 "INFORM.spad" 870373 870381 873164 873169) (-541 "INFORM1.spad" 869998 870008 870363 870368) (-540 "INFINITY.spad" 869550 869558 869988 869993) (-539 "INETCLTS.spad" 869527 869535 869540 869545) (-538 "INEP.spad" 868065 868087 869517 869522) (-537 "INDE.spad" 867794 867811 868055 868060) (-536 "INCRMAPS.spad" 867215 867225 867784 867789) (-535 "INBFILE.spad" 866287 866295 867205 867210) (-534 "INBFF.spad" 862081 862092 866277 866282) (-533 "INBCON.spad" 860371 860379 862071 862076) (-532 "INBCON.spad" 858659 858669 860361 860366) (-531 "INAST.spad" 858320 858328 858649 858654) (-530 "IMPTAST.spad" 858028 858036 858310 858315) (-529 "IMATRIX.spad" 856973 856999 857485 857512) (-528 "IMATQF.spad" 856067 856111 856929 856934) (-527 "IMATLIN.spad" 854672 854696 856023 856028) (-526 "ILIST.spad" 853330 853345 853855 853882) (-525 "IIARRAY2.spad" 852718 852756 852937 852964) (-524 "IFF.spad" 852128 852144 852399 852492) (-523 "IFAST.spad" 851742 851750 852118 852123) (-522 "IFARRAY.spad" 849235 849250 850925 850952) (-521 "IFAMON.spad" 849097 849114 849191 849196) (-520 "IEVALAB.spad" 848502 848514 849087 849092) (-519 "IEVALAB.spad" 847905 847919 848492 848497) (-518 "IDPO.spad" 847703 847715 847895 847900) (-517 "IDPOAMS.spad" 847459 847471 847693 847698) (-516 "IDPOAM.spad" 847179 847191 847449 847454) (-515 "IDPC.spad" 846117 846129 847169 847174) (-514 "IDPAM.spad" 845862 845874 846107 846112) (-513 "IDPAG.spad" 845609 845621 845852 845857) (-512 "IDENT.spad" 845259 845267 845599 845604) (-511 "IDECOMP.spad" 842498 842516 845249 845254) (-510 "IDEAL.spad" 837447 837486 842433 842438) (-509 "ICDEN.spad" 836636 836652 837437 837442) (-508 "ICARD.spad" 835827 835835 836626 836631) (-507 "IBPTOOLS.spad" 834434 834451 835817 835822) (-506 "IBITS.spad" 833637 833650 834070 834097) (-505 "IBATOOL.spad" 830614 830633 833627 833632) (-504 "IBACHIN.spad" 829121 829136 830604 830609) (-503 "IARRAY2.spad" 828109 828135 828728 828755) (-502 "IARRAY1.spad" 827154 827169 827292 827319) (-501 "IAN.spad" 825377 825385 826970 827063) (-500 "IALGFACT.spad" 824980 825013 825367 825372) (-499 "HYPCAT.spad" 824404 824412 824970 824975) (-498 "HYPCAT.spad" 823826 823836 824394 824399) (-497 "HOSTNAME.spad" 823634 823642 823816 823821) (-496 "HOMOTOP.spad" 823377 823387 823624 823629) (-495 "HOAGG.spad" 820659 820669 823367 823372) (-494 "HOAGG.spad" 817716 817728 820426 820431) (-493 "HEXADEC.spad" 815818 815826 816183 816276) (-492 "HEUGCD.spad" 814853 814864 815808 815813) (-491 "HELLFDIV.spad" 814443 814467 814843 814848) (-490 "HEAP.spad" 813835 813845 814050 814077) (-489 "HEADAST.spad" 813368 813376 813825 813830) (-488 "HDP.spad" 803211 803227 803588 803719) (-487 "HDMP.spad" 800425 800440 801041 801168) (-486 "HB.spad" 798676 798684 800415 800420) (-485 "HASHTBL.spad" 797146 797177 797357 797384) (-484 "HASAST.spad" 796862 796870 797136 797141) (-483 "HACKPI.spad" 796353 796361 796764 796857) (-482 "GTSET.spad" 795292 795308 795999 796026) (-481 "GSTBL.spad" 793811 793846 793985 794000) (-480 "GSERIES.spad" 790982 791009 791943 792092) (-479 "GROUP.spad" 790255 790263 790962 790977) (-478 "GROUP.spad" 789536 789546 790245 790250) (-477 "GROEBSOL.spad" 788030 788051 789526 789531) (-476 "GRMOD.spad" 786601 786613 788020 788025) (-475 "GRMOD.spad" 785170 785184 786591 786596) (-474 "GRIMAGE.spad" 778059 778067 785160 785165) (-473 "GRDEF.spad" 776438 776446 778049 778054) (-472 "GRAY.spad" 774901 774909 776428 776433) (-471 "GRALG.spad" 773978 773990 774891 774896) (-470 "GRALG.spad" 773053 773067 773968 773973) (-469 "GPOLSET.spad" 772507 772530 772735 772762) (-468 "GOSPER.spad" 771776 771794 772497 772502) (-467 "GMODPOL.spad" 770924 770951 771744 771771) (-466 "GHENSEL.spad" 770007 770021 770914 770919) (-465 "GENUPS.spad" 766300 766313 769997 770002) (-464 "GENUFACT.spad" 765877 765887 766290 766295) (-463 "GENPGCD.spad" 765463 765480 765867 765872) (-462 "GENMFACT.spad" 764915 764934 765453 765458) (-461 "GENEEZ.spad" 762866 762879 764905 764910) (-460 "GDMP.spad" 759922 759939 760696 760823) (-459 "GCNAALG.spad" 753845 753872 759716 759783) (-458 "GCDDOM.spad" 753021 753029 753771 753840) (-457 "GCDDOM.spad" 752259 752269 753011 753016) (-456 "GB.spad" 749785 749823 752215 752220) (-455 "GBINTERN.spad" 745805 745843 749775 749780) (-454 "GBF.spad" 741572 741610 745795 745800) (-453 "GBEUCLID.spad" 739454 739492 741562 741567) (-452 "GAUSSFAC.spad" 738767 738775 739444 739449) (-451 "GALUTIL.spad" 737093 737103 738723 738728) (-450 "GALPOLYU.spad" 735547 735560 737083 737088) (-449 "GALFACTU.spad" 733720 733739 735537 735542) (-448 "GALFACT.spad" 723909 723920 733710 733715) (-447 "FVFUN.spad" 720932 720940 723899 723904) (-446 "FVC.spad" 719984 719992 720922 720927) (-445 "FUNDESC.spad" 719662 719670 719974 719979) (-444 "FUNCTION.spad" 719511 719523 719652 719657) (-443 "FT.spad" 717808 717816 719501 719506) (-442 "FTEM.spad" 716973 716981 717798 717803) (-441 "FSUPFACT.spad" 715873 715892 716909 716914) (-440 "FST.spad" 713959 713967 715863 715868) (-439 "FSRED.spad" 713439 713455 713949 713954) (-438 "FSPRMELT.spad" 712321 712337 713396 713401) (-437 "FSPECF.spad" 710412 710428 712311 712316) (-436 "FS.spad" 704680 704690 710187 710407) (-435 "FS.spad" 698726 698738 704235 704240) (-434 "FSINT.spad" 698386 698402 698716 698721) (-433 "FSERIES.spad" 697577 697589 698206 698305) (-432 "FSCINT.spad" 696894 696910 697567 697572) (-431 "FSAGG.spad" 696011 696021 696850 696889) (-430 "FSAGG.spad" 695090 695102 695931 695936) (-429 "FSAGG2.spad" 693833 693849 695080 695085) (-428 "FS2UPS.spad" 688324 688358 693823 693828) (-427 "FS2.spad" 687971 687987 688314 688319) (-426 "FS2EXPXP.spad" 687096 687119 687961 687966) (-425 "FRUTIL.spad" 686050 686060 687086 687091) (-424 "FR.spad" 679618 679628 684926 684995) (-423 "FRNAALG.spad" 674887 674897 679560 679613) (-422 "FRNAALG.spad" 670168 670180 674843 674848) (-421 "FRNAAF2.spad" 669624 669642 670158 670163) (-420 "FRMOD.spad" 669034 669064 669555 669560) (-419 "FRIDEAL.spad" 668259 668280 669014 669029) (-418 "FRIDEAL2.spad" 667863 667895 668249 668254) (-417 "FRETRCT.spad" 667374 667384 667853 667858) (-416 "FRETRCT.spad" 666751 666763 667232 667237) (-415 "FRAMALG.spad" 665099 665112 666707 666746) (-414 "FRAMALG.spad" 663479 663494 665089 665094) (-413 "FRAC.spad" 660578 660588 660981 661154) (-412 "FRAC2.spad" 660183 660195 660568 660573) (-411 "FR2.spad" 659519 659531 660173 660178) (-410 "FPS.spad" 656334 656342 659409 659514) (-409 "FPS.spad" 653177 653187 656254 656259) (-408 "FPC.spad" 652223 652231 653079 653172) (-407 "FPC.spad" 651355 651365 652213 652218) (-406 "FPATMAB.spad" 651117 651127 651345 651350) (-405 "FPARFRAC.spad" 649604 649621 651107 651112) (-404 "FORTRAN.spad" 648110 648153 649594 649599) (-403 "FORT.spad" 647059 647067 648100 648105) (-402 "FORTFN.spad" 644229 644237 647049 647054) (-401 "FORTCAT.spad" 643913 643921 644219 644224) (-400 "FORMULA.spad" 641387 641395 643903 643908) (-399 "FORMULA1.spad" 640866 640876 641377 641382) (-398 "FORDER.spad" 640557 640581 640856 640861) (-397 "FOP.spad" 639758 639766 640547 640552) (-396 "FNLA.spad" 639182 639204 639726 639753) (-395 "FNCAT.spad" 637777 637785 639172 639177) (-394 "FNAME.spad" 637669 637677 637767 637772) (-393 "FMTC.spad" 637467 637475 637595 637664) (-392 "FMONOID.spad" 637132 637142 637423 637428) (-391 "FMONCAT.spad" 634285 634295 637122 637127) (-390 "FM.spad" 633980 633992 634219 634246) (-389 "FMFUN.spad" 631010 631018 633970 633975) (-388 "FMC.spad" 630062 630070 631000 631005) (-387 "FMCAT.spad" 627730 627748 630030 630057) (-386 "FM1.spad" 627087 627099 627664 627691) (-385 "FLOATRP.spad" 624822 624836 627077 627082) (-384 "FLOAT.spad" 618136 618144 624688 624817) (-383 "FLOATCP.spad" 615567 615581 618126 618131) (-382 "FLINEXP.spad" 615279 615289 615547 615562) (-381 "FLINEXP.spad" 614945 614957 615215 615220) (-380 "FLASORT.spad" 614271 614283 614935 614940) (-379 "FLALG.spad" 611917 611936 614197 614266) (-378 "FLAGG.spad" 608959 608969 611897 611912) (-377 "FLAGG.spad" 605902 605914 608842 608847) (-376 "FLAGG2.spad" 604627 604643 605892 605897) (-375 "FINRALG.spad" 602688 602701 604583 604622) (-374 "FINRALG.spad" 600675 600690 602572 602577) (-373 "FINITE.spad" 599827 599835 600665 600670) (-372 "FINAALG.spad" 588948 588958 599769 599822) (-371 "FINAALG.spad" 578081 578093 588904 588909) (-370 "FILE.spad" 577664 577674 578071 578076) (-369 "FILECAT.spad" 576190 576207 577654 577659) (-368 "FIELD.spad" 575596 575604 576092 576185) (-367 "FIELD.spad" 575088 575098 575586 575591) (-366 "FGROUP.spad" 573735 573745 575068 575083) (-365 "FGLMICPK.spad" 572522 572537 573725 573730) (-364 "FFX.spad" 571897 571912 572238 572331) (-363 "FFSLPE.spad" 571400 571421 571887 571892) (-362 "FFPOLY.spad" 562662 562673 571390 571395) (-361 "FFPOLY2.spad" 561722 561739 562652 562657) (-360 "FFP.spad" 561119 561139 561438 561531) (-359 "FF.spad" 560567 560583 560800 560893) (-358 "FFNBX.spad" 559079 559099 560283 560376) (-357 "FFNBP.spad" 557592 557609 558795 558888) (-356 "FFNB.spad" 556057 556078 557273 557366) (-355 "FFINTBAS.spad" 553571 553590 556047 556052) (-354 "FFIELDC.spad" 551148 551156 553473 553566) (-353 "FFIELDC.spad" 548811 548821 551138 551143) (-352 "FFHOM.spad" 547559 547576 548801 548806) (-351 "FFF.spad" 544994 545005 547549 547554) (-350 "FFCGX.spad" 543841 543861 544710 544803) (-349 "FFCGP.spad" 542730 542750 543557 543650) (-348 "FFCG.spad" 541522 541543 542411 542504) (-347 "FFCAT.spad" 534695 534717 541361 541517) (-346 "FFCAT.spad" 527947 527971 534615 534620) (-345 "FFCAT2.spad" 527694 527734 527937 527942) (-344 "FEXPR.spad" 519411 519457 527450 527489) (-343 "FEVALAB.spad" 519119 519129 519401 519406) (-342 "FEVALAB.spad" 518612 518624 518896 518901) (-341 "FDIV.spad" 518054 518078 518602 518607) (-340 "FDIVCAT.spad" 516118 516142 518044 518049) (-339 "FDIVCAT.spad" 514180 514206 516108 516113) (-338 "FDIV2.spad" 513836 513876 514170 514175) (-337 "FCTRDATA.spad" 512844 512852 513826 513831) (-336 "FCPAK1.spad" 511411 511419 512834 512839) (-335 "FCOMP.spad" 510790 510800 511401 511406) (-334 "FC.spad" 500797 500805 510780 510785) (-333 "FAXF.spad" 493768 493782 500699 500792) (-332 "FAXF.spad" 486791 486807 493724 493729) (-331 "FARRAY.spad" 484941 484951 485974 486001) (-330 "FAMR.spad" 483077 483089 484839 484936) (-329 "FAMR.spad" 481197 481211 482961 482966) (-328 "FAMONOID.spad" 480865 480875 481151 481156) (-327 "FAMONC.spad" 479161 479173 480855 480860) (-326 "FAGROUP.spad" 478785 478795 479057 479084) (-325 "FACUTIL.spad" 476989 477006 478775 478780) (-324 "FACTFUNC.spad" 476183 476193 476979 476984) (-323 "EXPUPXS.spad" 473016 473039 474315 474464) (-322 "EXPRTUBE.spad" 470304 470312 473006 473011) (-321 "EXPRODE.spad" 467464 467480 470294 470299) (-320 "EXPR.spad" 462739 462749 463453 463860) (-319 "EXPR2UPS.spad" 458861 458874 462729 462734) (-318 "EXPR2.spad" 458566 458578 458851 458856) (-317 "EXPEXPAN.spad" 455506 455531 456138 456231) (-316 "EXIT.spad" 455177 455185 455496 455501) (-315 "EXITAST.spad" 454913 454921 455167 455172) (-314 "EVALCYC.spad" 454373 454387 454903 454908) (-313 "EVALAB.spad" 453945 453955 454363 454368) (-312 "EVALAB.spad" 453515 453527 453935 453940) (-311 "EUCDOM.spad" 451089 451097 453441 453510) (-310 "EUCDOM.spad" 448725 448735 451079 451084) (-309 "ESTOOLS.spad" 440571 440579 448715 448720) (-308 "ESTOOLS2.spad" 440174 440188 440561 440566) (-307 "ESTOOLS1.spad" 439859 439870 440164 440169) (-306 "ES.spad" 432674 432682 439849 439854) (-305 "ES.spad" 425395 425405 432572 432577) (-304 "ESCONT.spad" 422188 422196 425385 425390) (-303 "ESCONT1.spad" 421937 421949 422178 422183) (-302 "ES2.spad" 421442 421458 421927 421932) (-301 "ES1.spad" 421012 421028 421432 421437) (-300 "ERROR.spad" 418339 418347 421002 421007) (-299 "EQTBL.spad" 416811 416833 417020 417047) (-298 "EQ.spad" 411616 411626 414403 414515) (-297 "EQ2.spad" 411334 411346 411606 411611) (-296 "EP.spad" 407660 407670 411324 411329) (-295 "ENV.spad" 406338 406346 407650 407655) (-294 "ENTIRER.spad" 406006 406014 406282 406333) (-293 "EMR.spad" 405294 405335 405932 406001) (-292 "ELTAGG.spad" 403548 403567 405284 405289) (-291 "ELTAGG.spad" 401766 401787 403504 403509) (-290 "ELTAB.spad" 401241 401254 401756 401761) (-289 "ELFUTS.spad" 400628 400647 401231 401236) (-288 "ELEMFUN.spad" 400317 400325 400618 400623) (-287 "ELEMFUN.spad" 400004 400014 400307 400312) (-286 "ELAGG.spad" 397975 397985 399984 399999) (-285 "ELAGG.spad" 395883 395895 397894 397899) (-284 "ELABOR.spad" 395229 395237 395873 395878) (-283 "ELABEXPR.spad" 394161 394169 395219 395224) (-282 "EFUPXS.spad" 390937 390967 394117 394122) (-281 "EFULS.spad" 387773 387796 390893 390898) (-280 "EFSTRUC.spad" 385788 385804 387763 387768) (-279 "EF.spad" 380564 380580 385778 385783) (-278 "EAB.spad" 378840 378848 380554 380559) (-277 "E04UCFA.spad" 378376 378384 378830 378835) (-276 "E04NAFA.spad" 377953 377961 378366 378371) (-275 "E04MBFA.spad" 377533 377541 377943 377948) (-274 "E04JAFA.spad" 377069 377077 377523 377528) (-273 "E04GCFA.spad" 376605 376613 377059 377064) (-272 "E04FDFA.spad" 376141 376149 376595 376600) (-271 "E04DGFA.spad" 375677 375685 376131 376136) (-270 "E04AGNT.spad" 371527 371535 375667 375672) (-269 "DVARCAT.spad" 368216 368226 371517 371522) (-268 "DVARCAT.spad" 364903 364915 368206 368211) (-267 "DSMP.spad" 362370 362384 362675 362802) (-266 "DROPT.spad" 356329 356337 362360 362365) (-265 "DROPT1.spad" 355994 356004 356319 356324) (-264 "DROPT0.spad" 350851 350859 355984 355989) (-263 "DRAWPT.spad" 349024 349032 350841 350846) (-262 "DRAW.spad" 341900 341913 349014 349019) (-261 "DRAWHACK.spad" 341208 341218 341890 341895) (-260 "DRAWCX.spad" 338678 338686 341198 341203) (-259 "DRAWCURV.spad" 338225 338240 338668 338673) (-258 "DRAWCFUN.spad" 327757 327765 338215 338220) (-257 "DQAGG.spad" 325935 325945 327725 327752) (-256 "DPOLCAT.spad" 321284 321300 325803 325930) (-255 "DPOLCAT.spad" 316719 316737 321240 321245) (-254 "DPMO.spad" 308945 308961 309083 309384) (-253 "DPMM.spad" 301184 301202 301309 301610) (-252 "DOMTMPLT.spad" 300955 300963 301174 301179) (-251 "DOMCTOR.spad" 300710 300718 300945 300950) (-250 "DOMAIN.spad" 299797 299805 300700 300705) (-249 "DMP.spad" 297057 297072 297627 297754) (-248 "DLP.spad" 296409 296419 297047 297052) (-247 "DLIST.spad" 294988 294998 295592 295619) (-246 "DLAGG.spad" 293405 293415 294978 294983) (-245 "DIVRING.spad" 292947 292955 293349 293400) (-244 "DIVRING.spad" 292533 292543 292937 292942) (-243 "DISPLAY.spad" 290723 290731 292523 292528) (-242 "DIRPROD.spad" 280303 280319 280943 281074) (-241 "DIRPROD2.spad" 279121 279139 280293 280298) (-240 "DIRPCAT.spad" 278065 278081 278985 279116) (-239 "DIRPCAT.spad" 276738 276756 277660 277665) (-238 "DIOSP.spad" 275563 275571 276728 276733) (-237 "DIOPS.spad" 274559 274569 275543 275558) (-236 "DIOPS.spad" 273529 273541 274515 274520) (-235 "DIFRING.spad" 272825 272833 273509 273524) (-234 "DIFRING.spad" 272129 272139 272815 272820) (-233 "DIFEXT.spad" 271300 271310 272109 272124) (-232 "DIFEXT.spad" 270388 270400 271199 271204) (-231 "DIAGG.spad" 270018 270028 270368 270383) (-230 "DIAGG.spad" 269656 269668 270008 270013) (-229 "DHMATRIX.spad" 267968 267978 269113 269140) (-228 "DFSFUN.spad" 261608 261616 267958 267963) (-227 "DFLOAT.spad" 258339 258347 261498 261603) (-226 "DFINTTLS.spad" 256570 256586 258329 258334) (-225 "DERHAM.spad" 254484 254516 256550 256565) (-224 "DEQUEUE.spad" 253808 253818 254091 254118) (-223 "DEGRED.spad" 253425 253439 253798 253803) (-222 "DEFINTRF.spad" 250962 250972 253415 253420) (-221 "DEFINTEF.spad" 249472 249488 250952 250957) (-220 "DEFAST.spad" 248840 248848 249462 249467) (-219 "DECIMAL.spad" 246946 246954 247307 247400) (-218 "DDFACT.spad" 244759 244776 246936 246941) (-217 "DBLRESP.spad" 244359 244383 244749 244754) (-216 "DBASE.spad" 243023 243033 244349 244354) (-215 "DATAARY.spad" 242485 242498 243013 243018) (-214 "D03FAFA.spad" 242313 242321 242475 242480) (-213 "D03EEFA.spad" 242133 242141 242303 242308) (-212 "D03AGNT.spad" 241219 241227 242123 242128) (-211 "D02EJFA.spad" 240681 240689 241209 241214) (-210 "D02CJFA.spad" 240159 240167 240671 240676) (-209 "D02BHFA.spad" 239649 239657 240149 240154) (-208 "D02BBFA.spad" 239139 239147 239639 239644) (-207 "D02AGNT.spad" 233953 233961 239129 239134) (-206 "D01WGTS.spad" 232272 232280 233943 233948) (-205 "D01TRNS.spad" 232249 232257 232262 232267) (-204 "D01GBFA.spad" 231771 231779 232239 232244) (-203 "D01FCFA.spad" 231293 231301 231761 231766) (-202 "D01ASFA.spad" 230761 230769 231283 231288) (-201 "D01AQFA.spad" 230207 230215 230751 230756) (-200 "D01APFA.spad" 229631 229639 230197 230202) (-199 "D01ANFA.spad" 229125 229133 229621 229626) (-198 "D01AMFA.spad" 228635 228643 229115 229120) (-197 "D01ALFA.spad" 228175 228183 228625 228630) (-196 "D01AKFA.spad" 227701 227709 228165 228170) (-195 "D01AJFA.spad" 227224 227232 227691 227696) (-194 "D01AGNT.spad" 223291 223299 227214 227219) (-193 "CYCLOTOM.spad" 222797 222805 223281 223286) (-192 "CYCLES.spad" 219589 219597 222787 222792) (-191 "CVMP.spad" 219006 219016 219579 219584) (-190 "CTRIGMNP.spad" 217506 217522 218996 219001) (-189 "CTOR.spad" 217197 217205 217496 217501) (-188 "CTORKIND.spad" 216800 216808 217187 217192) (-187 "CTORCAT.spad" 216049 216057 216790 216795) (-186 "CTORCAT.spad" 215296 215306 216039 216044) (-185 "CTORCALL.spad" 214885 214895 215286 215291) (-184 "CSTTOOLS.spad" 214130 214143 214875 214880) (-183 "CRFP.spad" 207854 207867 214120 214125) (-182 "CRCEAST.spad" 207574 207582 207844 207849) (-181 "CRAPACK.spad" 206625 206635 207564 207569) (-180 "CPMATCH.spad" 206129 206144 206550 206555) (-179 "CPIMA.spad" 205834 205853 206119 206124) (-178 "COORDSYS.spad" 200843 200853 205824 205829) (-177 "CONTOUR.spad" 200254 200262 200833 200838) (-176 "CONTFRAC.spad" 196004 196014 200156 200249) (-175 "CONDUIT.spad" 195762 195770 195994 195999) (-174 "COMRING.spad" 195436 195444 195700 195757) (-173 "COMPPROP.spad" 194954 194962 195426 195431) (-172 "COMPLPAT.spad" 194721 194736 194944 194949) (-171 "COMPLEX.spad" 188858 188868 189102 189363) (-170 "COMPLEX2.spad" 188573 188585 188848 188853) (-169 "COMPILER.spad" 188122 188130 188563 188568) (-168 "COMPFACT.spad" 187724 187738 188112 188117) (-167 "COMPCAT.spad" 185796 185806 187458 187719) (-166 "COMPCAT.spad" 183596 183608 185260 185265) (-165 "COMMUPC.spad" 183344 183362 183586 183591) (-164 "COMMONOP.spad" 182877 182885 183334 183339) (-163 "COMM.spad" 182688 182696 182867 182872) (-162 "COMMAAST.spad" 182451 182459 182678 182683) (-161 "COMBOPC.spad" 181366 181374 182441 182446) (-160 "COMBINAT.spad" 180133 180143 181356 181361) (-159 "COMBF.spad" 177515 177531 180123 180128) (-158 "COLOR.spad" 176352 176360 177505 177510) (-157 "COLONAST.spad" 176018 176026 176342 176347) (-156 "CMPLXRT.spad" 175729 175746 176008 176013) (-155 "CLLCTAST.spad" 175391 175399 175719 175724) (-154 "CLIP.spad" 171499 171507 175381 175386) (-153 "CLIF.spad" 170154 170170 171455 171494) (-152 "CLAGG.spad" 166659 166669 170144 170149) (-151 "CLAGG.spad" 163035 163047 166522 166527) (-150 "CINTSLPE.spad" 162366 162379 163025 163030) (-149 "CHVAR.spad" 160504 160526 162356 162361) (-148 "CHARZ.spad" 160419 160427 160484 160499) (-147 "CHARPOL.spad" 159929 159939 160409 160414) (-146 "CHARNZ.spad" 159682 159690 159909 159924) (-145 "CHAR.spad" 157556 157564 159672 159677) (-144 "CFCAT.spad" 156884 156892 157546 157551) (-143 "CDEN.spad" 156080 156094 156874 156879) (-142 "CCLASS.spad" 154229 154237 155491 155530) (-141 "CATEGORY.spad" 153271 153279 154219 154224) (-140 "CATCTOR.spad" 153162 153170 153261 153266) (-139 "CATAST.spad" 152780 152788 153152 153157) (-138 "CASEAST.spad" 152494 152502 152770 152775) (-137 "CARTEN.spad" 147861 147885 152484 152489) (-136 "CARTEN2.spad" 147251 147278 147851 147856) (-135 "CARD.spad" 144546 144554 147225 147246) (-134 "CAPSLAST.spad" 144320 144328 144536 144541) (-133 "CACHSET.spad" 143944 143952 144310 144315) (-132 "CABMON.spad" 143499 143507 143934 143939) (-131 "BYTEORD.spad" 143174 143182 143489 143494) (-130 "BYTE.spad" 142601 142609 143164 143169) (-129 "BYTEBUF.spad" 140460 140468 141770 141797) (-128 "BTREE.spad" 139533 139543 140067 140094) (-127 "BTOURN.spad" 138538 138548 139140 139167) (-126 "BTCAT.spad" 137930 137940 138506 138533) (-125 "BTCAT.spad" 137342 137354 137920 137925) (-124 "BTAGG.spad" 136808 136816 137310 137337) (-123 "BTAGG.spad" 136294 136304 136798 136803) (-122 "BSTREE.spad" 135035 135045 135901 135928) (-121 "BRILL.spad" 133232 133243 135025 135030) (-120 "BRAGG.spad" 132172 132182 133222 133227) (-119 "BRAGG.spad" 131076 131088 132128 132133) (-118 "BPADICRT.spad" 129057 129069 129312 129405) (-117 "BPADIC.spad" 128721 128733 128983 129052) (-116 "BOUNDZRO.spad" 128377 128394 128711 128716) (-115 "BOP.spad" 123559 123567 128367 128372) (-114 "BOP1.spad" 121025 121035 123549 123554) (-113 "BOOLE.spad" 120675 120683 121015 121020) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file