aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase114
1 files changed, 57 insertions, 57 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index db6fcb15..cc76cb4b 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2299821 . 3497132444)
+(2299821 . 3497162534)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -88,7 +88,7 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -2154 UP UPUP -2591)
+(-40 -2154 UP UPUP -2305)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T))
((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2229 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2229 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2229 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2229 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2229 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2229 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))))
@@ -111,7 +111,7 @@ NIL
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4499 . T) (-4500 . T))
-((-2229 (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|))))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))))
+((-2229 (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|))))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
@@ -172,59 +172,59 @@ NIL
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
((-4499 . T) (-4500 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-61 -4106)
+(-61 -4105)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -4106)
+(-62 -4105)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -4106)
+(-63 -4105)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -4106)
+(-64 -4105)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -4106)
+(-65 -4105)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -4106)
+(-66 -4105)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -4106)
+(-67 -4105)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -4106)
+(-68 -4105)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -4106)
+(-69 -4105)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -4106)
+(-70 -4105)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -4106)
+(-71 -4105)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -4106)
+(-72 -4105)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -4106)
+(-73 -4105)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -4106)
+(-74 -4105)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -4106)
+(-77 -4105)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -4106)
+(-78 -4105)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -4106)
+(-79 -4105)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -4106)
+(-80 -4105)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -4106)
+(-81 -4105)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -4106)
+(-82 -4105)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -4106)
+(-83 -4105)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -4106)
+(-84 -4105)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -4106)
+(-85 -4105)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -4106)
+(-86 -4105)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -4106)
+(-87 -4105)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -4106)
+(-88 -4105)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -4106)
+(-89 -4105)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -1128,7 +1128,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-300 S R |Mod| -1793 -3654 |exactQuo|)
+(-300 S R |Mod| -4442 -2223 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T))
NIL
@@ -1155,7 +1155,7 @@ NIL
(-306 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4499 . T) (-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))))
(-307)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
@@ -1251,7 +1251,7 @@ NIL
(-330 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
(-331 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1572,7 +1572,7 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-411 -4106 |returnType| -4085 |symbols|)
+(-411 -4105 |returnType| -4085 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
@@ -1879,11 +1879,11 @@ NIL
(-487 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
(-488 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))))
+((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))))
(-489 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4500 . T) (-4499 . T))
@@ -1899,7 +1899,7 @@ NIL
(-492 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4499 . T) (-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))))
(-493)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
@@ -2183,7 +2183,7 @@ NIL
(-563 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4499 . T) (-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))))
(-564 R -2154)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
@@ -2435,7 +2435,7 @@ NIL
(-626 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4499 . T) (-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-102))))
(-627 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
@@ -2531,7 +2531,7 @@ NIL
(-650)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2754) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-1188) (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 (-52))) (QUOTE (-1130))))
+((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2753) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-1188) (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 (-52))) (QUOTE (-1130))))
(-651 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
@@ -2644,7 +2644,7 @@ NIL
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-679 A -1932)
+(-679 A -3320)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4493 . T) (-4494 . T) (-4496 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375))))
@@ -2856,7 +2856,7 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-732 R |Mod| -1793 -3654 |exactQuo|)
+(-732 R |Mod| -4442 -2223 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T))
NIL
@@ -2872,7 +2872,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-736 R |Mod| -1793 -3654 |exactQuo|)
+(-736 R |Mod| -4442 -2223 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4496 . T))
NIL
@@ -4191,7 +4191,7 @@ NIL
(-1065)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4499 . T) (-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2754) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2753) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))))
(-1066)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4303,7 +4303,7 @@ NIL
(-1093)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
((-4499 . T) (-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2754) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2754 (-52))) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2753) (QUOTE (-52))))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1206)) (|:| -2753 (-52))) (QUOTE (-102))))
(-1094 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
@@ -4651,7 +4651,7 @@ NIL
(-1180 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))))
+((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))))
(-1181)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
@@ -4687,7 +4687,7 @@ NIL
(-1189 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4499 . T) (-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#1|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2754 |#1|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#1|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 (-1188)) (|:| -2753 |#1|)) (QUOTE (-102))))
(-1190 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
@@ -4719,7 +4719,7 @@ NIL
(-1197 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4501 "*") -2229 (-2319 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-174)) (-2319 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4492 -2229 (-2319 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2319 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T))
-((-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1198 R -2154)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
@@ -4743,11 +4743,11 @@ NIL
(-1203 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
(-1204 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
(-1205)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4807,7 +4807,7 @@ NIL
(-1219 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
((-4499 . T) (-4500 . T))
-((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2754) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2754 |#2|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3171) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2753) (|devaluate| |#2|)))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2229 (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -3171 |#1|) (|:| -2753 |#2|)) (QUOTE (-102))))
(-1220 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
@@ -4971,11 +4971,11 @@ NIL
(-1260 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T))
-((-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))))) (-2229 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-148))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870))))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-937))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))))))
+((-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))))) (-2229 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-148))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870))))) (-2229 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1052)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-937))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2229 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-146))))))
(-1261 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4501 "*") -2229 (-2319 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-841))) (|has| |#1| (-174)) (-2319 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-937)))) (-4492 -2229 (-2319 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2319 (|has| |#1| (-375)) (|has| (-1289 |#1| |#2| |#3|) (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T))
-((-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1289) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2229 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1289 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1262 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -5055,11 +5055,11 @@ NIL
(-1281 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T))
-((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))
+((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))
(-1282 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2229 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
(-1283 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
(((-4501 "*") |has| (-1282 |#2| |#3| |#4|) (-174)) (-4492 |has| (-1282 |#2| |#3| |#4|) (-569)) (-4493 . T) (-4494 . T) (-4496 . T))
@@ -5079,7 +5079,7 @@ NIL
(-1287 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasSignature| |#2| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4281) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasSignature| |#2| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3491) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))))
(-1288 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T))
@@ -5087,7 +5087,7 @@ NIL
(-1289 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4281) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2229 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -2410) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2229 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3491) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2948) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))))
(-1290 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL