aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase1174
1 files changed, 589 insertions, 585 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index c13e1d9e..585394a3 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(1962788 . 3577776433)
+(1963102 . 3577824390)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3992 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3988 . T) (-3993 . T) (-3987 . T))
+((-3993 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3989 . T) (-3994 . T) (-3988 . T))
NIL
(-30)
((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -63,7 +63,7 @@ NIL
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)))
+((|HasAttribute| |#1| (QUOTE -3996)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Maybe| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \\spad{nothing} if \\spad{u} has no key \\spad{k}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,7 +82,7 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an.")))
@@ -90,8 +90,8 @@ NIL
NIL
(-40 -3093 UP UPUP -2615)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1090)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))))
+((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))))
(-41 R -3093)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
@@ -106,23 +106,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-258))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-3992 |has| |#1| (-496)) (-3990 . T) (-3989 . T))
+((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T))
((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-3995 . T) (-3996 . T))
-((OR (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))))
+((-3996 . T) (-3997 . T))
+((OR (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'.")))
@@ -130,7 +130,7 @@ NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-51)
((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
@@ -158,11 +158,11 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-58 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -170,7 +170,7 @@ NIL
NIL
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-61 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
@@ -178,7 +178,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-312))))
(-62 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-63 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
@@ -202,11 +202,11 @@ NIL
NIL
(-68)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-3995 . T) ((-3997 "*") . T) (-3996 . T) (-3992 . T) (-3990 . T) (-3989 . T) (-3988 . T) (-3993 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3983 . T) (-3991 . T) (-3994 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3982 . T))
+((-3996 . T) ((-3998 "*") . T) (-3997 . T) (-3993 . T) (-3991 . T) (-3990 . T) (-3989 . T) (-3994 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3992 . T) (-3995 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3983 . T))
NIL
(-69 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-70 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -222,24 +222,24 @@ NIL
NIL
(-73 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-74 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3997 "*"))))
+((|HasAttribute| |#1| (QUOTE (-3998 "*"))))
(-75 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
NIL
NIL
(-76 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-3996 . T))
+((-3997 . T))
NIL
(-77)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1090)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1066))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1090)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1090)))) (|HasCategory| (-485) (QUOTE (-456 (-1090) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
(-78)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -254,11 +254,11 @@ NIL
NIL
(-81)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1014))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72))))
(-82 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-83 S)
((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}.")))
@@ -286,16 +286,16 @@ NIL
NIL
(-89 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-90 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-89 |#1|) (QUOTE (-822))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-1090)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-89 |#1|) (QUOTE (-934))) (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757)))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-1066))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-89 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-812 (-1090)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1090)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (|HasCategory| (-89 |#1|) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-89 |#1|) (QUOTE (-822))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-89 |#1|) (QUOTE (-934))) (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757)))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-1067))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-89 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (|HasCategory| (-89 |#1|) (QUOTE (-118)))))
(-91 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3996)))
+((|HasAttribute| |#1| (QUOTE -3997)))
(-92 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -306,7 +306,7 @@ NIL
NIL
(-94 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-95 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
@@ -314,7 +314,7 @@ NIL
NIL
(-96)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-97 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -322,15 +322,15 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-99 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-100 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-101)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256.")))
@@ -338,7 +338,7 @@ NIL
NIL
(-102)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014))))) (|HasCategory| (-101) (QUOTE (-553 (-773)))) (|HasCategory| (-101) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-101) (QUOTE (-757))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014))) (|HasCategory| (-101) (QUOTE (-72))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014)))))
(-103)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
@@ -358,7 +358,7 @@ NIL
NIL
(-107)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-3997 "*") . T))
+(((-3998 "*") . T))
NIL
(-108 |minix| -2622 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")))
@@ -386,7 +386,7 @@ NIL
NIL
(-114)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-3995 . T) (-3985 . T) (-3996 . T))
+((-3996 . T) (-3986 . T) (-3997 . T))
((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))))
(-115 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
@@ -402,7 +402,7 @@ NIL
NIL
(-118)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-119 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x.")))
@@ -410,7 +410,7 @@ NIL
NIL
(-120)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-121 -3093 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
@@ -423,14 +423,14 @@ NIL
(-123 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasAttribute| |#1| (QUOTE -3995)))
+((|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasAttribute| |#1| (QUOTE -3996)))
(-124 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-125 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-3990 . T) (-3989 . T) (-3992 . T))
+((-3991 . T) (-3990 . T) (-3993 . T))
NIL
(-126)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -483,10 +483,10 @@ NIL
(-138 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3991)) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))))
(-139 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-3988 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3994 |has| |#1| (-6 -3994)) (-1376 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3995 |has| |#1| (-6 -3995)) (-1377 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-140 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -498,8 +498,8 @@ NIL
NIL
(-142 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-3988 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3991 |has| |#1| (-6 -3991)) (-3994 |has| |#1| (-6 -3994)) (-1376 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))) (|HasCategory| |#1| (QUOTE (-812 (-1090))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-974))) (-12 (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3991)) (|HasAttribute| |#1| (QUOTE -3994)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+((-3989 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3995 |has| |#1| (-6 -3995)) (-1377 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-974))) (-12 (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3995)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-143 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-147)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -522,7 +522,7 @@ NIL
NIL
(-148 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-3997 "*") . T) (-3988 . T) (-3993 . T) (-3987 . T) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") . T) (-3989 . T) (-3994 . T) (-3988 . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-149)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1090)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1066))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1090)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1090)))) (|HasCategory| (-485) (QUOTE (-456 (-1090) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
(-172)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
@@ -634,11 +634,11 @@ NIL
NIL
(-176 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-177 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-178 R -3093)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
@@ -646,7 +646,7 @@ NIL
NIL
(-179)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-180)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -654,19 +654,19 @@ NIL
NIL
(-181 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-3996 . T) (-3995 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3997 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3997 . T) (-3996 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))))
(-182 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-183 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-3996 . T))
+((-3997 . T))
NIL
(-184 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-185 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -678,7 +678,7 @@ NIL
NIL
(-187 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-188 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -690,7 +690,7 @@ NIL
NIL
(-190)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-3992 . T))
+((-3993 . T))
NIL
(-191)
((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation.")))
@@ -699,10 +699,10 @@ NIL
(-192 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)))
+((|HasAttribute| |#1| (QUOTE -3996)))
(-193 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-3996 . T))
+((-3997 . T))
NIL
(-194)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
@@ -711,15 +711,15 @@ NIL
(-195 S -2622 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")))
NIL
-((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3992)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014))))
+((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3993)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014))))
(-196 -2622 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")))
-((-3989 |has| |#2| (-962)) (-3990 |has| |#2| (-962)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T))
+((-3990 |has| |#2| (-962)) (-3991 |has| |#2| (-962)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T))
NIL
(-197 -2622 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-3989 |has| |#2| (-962)) (-3990 |has| |#2| (-962)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
+((-3990 |has| |#2| (-962)) (-3991 |has| |#2| (-962)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
(-198 -2622 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
@@ -734,7 +734,7 @@ NIL
NIL
(-201)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-3988 . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-202 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -742,7 +742,7 @@ NIL
NIL
(-203 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-204 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
@@ -750,12 +750,12 @@ NIL
NIL
(-205 R)
((|constructor| (NIL "Category of modules that extend differential rings. \\blankline")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-206 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-207)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'.")))
NIL
@@ -770,23 +770,23 @@ NIL
NIL
(-210 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-3992 OR (-2563 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3992)) (-2563 (|has| |#4| (-962)) (|has| |#4| (-810 (-1090))))) (-3989 |has| |#4| (-962)) (-3990 |has| |#4| (-962)) (-3995 . T))
-((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1090))))) (|HasCategory| |#4| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1090)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3992)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1090)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))))
+((-3993 OR (-2563 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3993)) (-2563 (|has| |#4| (-962)) (|has| |#4| (-810 (-1091))))) (-3990 |has| |#4| (-962)) (-3991 |has| |#4| (-962)) (-3996 . T))
+((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (|HasCategory| |#4| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3993)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))))
(-211 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-3992 OR (-2563 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3992)) (-2563 (|has| |#3| (-962)) (|has| |#3| (-810 (-1090))))) (-3989 |has| |#3| (-962)) (-3990 |has| |#3| (-962)) (-3995 . T))
-((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1090))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3992)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))))
+((-3993 OR (-2563 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3993)) (-2563 (|has| |#3| (-962)) (|has| |#3| (-810 (-1091))))) (-3990 |has| |#3| (-962)) (-3991 |has| |#3| (-962)) (-3996 . T))
+((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3993)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))))
(-212 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-190))))
(-213 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
(-214 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
NIL
(-215 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -827,15 +827,15 @@ NIL
(-224 S R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-189))))
+((|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))))
(-225 R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
NIL
(-226 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#3| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#3| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#3| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#3| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#3| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#3| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-227 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -878,7 +878,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))))
(-237 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-3996 . T))
+((-3997 . T))
NIL
(-238 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -899,14 +899,14 @@ NIL
(-242 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3996)))
+((|HasAttribute| |#1| (QUOTE -3997)))
(-243 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-244 S R |Mod| -2038 -3518 |exactQuo|)
+(-244 S R |Mod| -2038 -3519 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-245 S)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
@@ -914,7 +914,7 @@ NIL
NIL
(-246)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-3988 . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-247)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -926,16 +926,16 @@ NIL
NIL
(-249 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-3992 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3989 |has| |#1| (-962)) (-3990 |has| |#1| (-962)))
-((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-664))))
+((-3993 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3990 |has| |#1| (-962)) (-3991 |has| |#1| (-962)))
+((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-664))))
(-250 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
(-251 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
(-252)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
@@ -962,7 +962,7 @@ NIL
NIL
(-258)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-259 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -986,11 +986,11 @@ NIL
NIL
(-264 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-474)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-1066))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-330)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-485)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-485)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-474)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-330)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118)))))
(-265 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-3992 OR (-12 (|has| |#1| (-496)) (OR (|has| |#1| (-962)) (|has| |#1| (-413)))) (|has| |#1| (-962)) (|has| |#1| (-413))) (-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) ((-3997 "*") |has| |#1| (-496)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-496)) (-3987 |has| |#1| (-496)))
+((-3993 OR (-12 (|has| |#1| (-496)) (OR (|has| |#1| (-962)) (|has| |#1| (-413)))) (|has| |#1| (-962)) (|has| |#1| (-413))) (-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) ((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-496)) (-3988 |has| |#1| (-496)))
((OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
(-266 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
@@ -1010,8 +1010,8 @@ NIL
NIL
(-270 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
(-271 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1022,7 +1022,7 @@ NIL
NIL
(-273 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative.")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-717))))
(-274 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1038,11 +1038,11 @@ NIL
((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))))
(-277 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-278 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-279 S -3093)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
@@ -1050,7 +1050,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-320))))
(-280 -3093)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-281 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
@@ -1079,14 +1079,14 @@ NIL
(-287 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))))
(-288 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-289 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
(-290 S -3093 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
@@ -1094,7 +1094,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-312))))
(-291 -3093 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-292 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
@@ -1102,15 +1102,15 @@ NIL
NIL
(-293 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
(-294 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-295 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-296 GF)
((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
@@ -1126,7 +1126,7 @@ NIL
NIL
(-299)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-300 R UP -3093)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
@@ -1134,19 +1134,19 @@ NIL
NIL
(-301 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
(-302 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-303 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-304 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-305 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
@@ -1162,7 +1162,7 @@ NIL
NIL
(-308 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-309 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}.")))
@@ -1170,7 +1170,7 @@ NIL
NIL
(-310 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-311 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1178,7 +1178,7 @@ NIL
NIL
(-312)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-313 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
@@ -1194,7 +1194,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-496))))
(-316 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-3992 |has| |#1| (-496)) (-3990 . T) (-3989 . T))
+((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T))
NIL
(-317 A S)
((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}.")))
@@ -1202,7 +1202,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-72))))
(-318 S)
((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}.")))
-((-3995 . T))
+((-3996 . T))
NIL
(-319 S)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1218,15 +1218,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-312))))
(-322 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-323 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))))
+((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))))
(-324 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-3995 . T))
+((-3996 . T))
NIL
(-325 S A R B)
((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1234,7 +1234,7 @@ NIL
NIL
(-326 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T))
NIL
(-327 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1250,7 +1250,7 @@ NIL
NIL
(-330)
((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3978 . T) (-3986 . T) (-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3979 . T) (-3987 . T) (-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-331 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1262,15 +1262,15 @@ NIL
NIL
(-333 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
(-334 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
((|HasCategory| |#1| (QUOTE (-146))))
(-335 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-336 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1290,7 +1290,7 @@ NIL
NIL
(-340 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-341 -3093 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
@@ -1310,28 +1310,28 @@ NIL
NIL
(-345)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-346 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -3978)) (|HasAttribute| |#1| (QUOTE -3986)))
+((|HasAttribute| |#1| (QUOTE -3979)) (|HasAttribute| |#1| (QUOTE -3987)))
(-347)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3770 . T) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-348 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-456 (-1090) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1134))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1134)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-392))))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-456 (-1091) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1135))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-392))))
(-349 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
(-350 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-3982 -12 (|has| |#1| (-6 -3993)) (|has| |#1| (-392)) (|has| |#1| (-6 -3982))) (-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1090)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-484))) (-12 (|HasAttribute| |#1| (QUOTE -3982)) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392)))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+((-3983 -12 (|has| |#1| (-6 -3994)) (|has| |#1| (-392)) (|has| |#1| (-6 -3983))) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1091)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-484))) (-12 (|HasAttribute| |#1| (QUOTE -3983)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392)))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-351 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
@@ -1342,7 +1342,7 @@ NIL
NIL
(-353 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-354 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1354,7 +1354,7 @@ NIL
NIL
(-356 R -3093 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-357 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
@@ -1374,7 +1374,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-312))))
(-361 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3992 |has| |#1| (-496)) (-3990 . T) (-3989 . T))
+((-3993 |has| |#1| (-496)) (-3991 . T) (-3990 . T))
NIL
(-362 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
@@ -1386,7 +1386,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
(-364 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-3992 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) ((-3997 "*") |has| |#1| (-496)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-496)) (-3987 |has| |#1| (-496)))
+((-3993 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) ((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-496)) (-3988 |has| |#1| (-496)))
NIL
(-365 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
@@ -1406,7 +1406,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))))
(-369 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-3995 . T) (-3985 . T) (-3996 . T))
+((-3996 . T) (-3986 . T) (-3997 . T))
NIL
(-370 S A R B)
((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
@@ -1418,8 +1418,8 @@ NIL
NIL
(-372 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-3982 -12 (|has| |#1| (-6 -3982)) (|has| |#2| (-6 -3982))) (-3989 . T) (-3990 . T) (-3992 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -3982)) (|HasAttribute| |#2| (QUOTE -3982))))
+((-3983 -12 (|has| |#1| (-6 -3983)) (|has| |#2| (-6 -3983))) (-3990 . T) (-3991 . T) (-3993 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -3983)) (|HasAttribute| |#2| (QUOTE -3983))))
(-373 R -3093)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
@@ -1498,16 +1498,16 @@ NIL
NIL
(-392)
((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-393 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-3992 |has| (-350 (-858 |#1|)) (-496)) (-3990 . T) (-3989 . T))
+((-3993 |has| (-350 (-858 |#1|)) (-496)) (-3991 . T) (-3990 . T))
((|HasCategory| (-350 (-858 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-350 (-858 |#1|)) (QUOTE (-496))))
(-394 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-395 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional.")))
NIL
@@ -1534,7 +1534,7 @@ NIL
NIL
(-401 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-402 E V R P Q)
((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1542,7 +1542,7 @@ NIL
NIL
(-403 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
(-404 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}.")))
@@ -1582,23 +1582,23 @@ NIL
NIL
(-413)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-414 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
(-415 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
(-416 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
(-417)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-418)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1606,27 +1606,27 @@ NIL
NIL
(-419 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
(-420)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-421 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-422 -2622 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3989 |has| |#2| (-962)) (-3990 |has| |#2| (-962)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
+((-3990 |has| |#2| (-962)) (-3991 |has| |#2| (-962)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
(-423)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-424 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-425 -3093 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
@@ -1638,12 +1638,12 @@ NIL
NIL
(-427)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1090)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1066))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1090)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1090)))) (|HasCategory| (-485) (QUOTE (-456 (-1090) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
(-428 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3995)) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))
+((|HasAttribute| |#1| (QUOTE -3996)) (|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))
(-429 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1670,15 +1670,15 @@ NIL
NIL
(-435)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
(-436 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-437 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-438 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
@@ -1690,7 +1690,7 @@ NIL
NIL
(-440 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-1014))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-72))))
(-441 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1707,7 +1707,7 @@ NIL
(-444 -3093 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (QUOTE (-554 (-1090)))))
+((|HasCategory| |#3| (QUOTE (-554 (-1091)))))
(-445 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -1762,7 +1762,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-717))))
(-458 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-459)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
@@ -1770,16 +1770,16 @@ NIL
NIL
(-460 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| (-518 |#1|) (QUOTE (-118))) (|HasCategory| (-518 |#1|) (QUOTE (-320)))) (|HasCategory| (-518 |#1|) (QUOTE (-120))) (|HasCategory| (-518 |#1|) (QUOTE (-320))) (|HasCategory| (-518 |#1|) (QUOTE (-118))))
(-461 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -3996)))
+((|HasAttribute| |#3| (QUOTE -3997)))
(-462 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -3996)))
+((|HasAttribute| |#7| (QUOTE -3997)))
(-463)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -1866,11 +1866,11 @@ NIL
NIL
(-484)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-485)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-486)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -1890,8 +1890,8 @@ NIL
NIL
(-490 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
(-491 R -3093)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
@@ -1906,7 +1906,7 @@ NIL
NIL
(-494 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3770 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3771 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-495 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -1914,7 +1914,7 @@ NIL
NIL
(-496)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-497 R -3093)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
@@ -1947,7 +1947,7 @@ NIL
(-504 R -3093)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-570)))))
+((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-1054)))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-570)))))
(-505 -3093 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
@@ -1962,7 +1962,7 @@ NIL
NIL
(-508 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3770 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3771 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-509)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
@@ -1971,7 +1971,7 @@ NIL
(-510 R -3093)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-496))))
+((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-496))))
(-511 -3093 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
@@ -1998,11 +1998,11 @@ NIL
NIL
(-517 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-518 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320))))
(-519)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
@@ -2010,8 +2010,8 @@ NIL
NIL
(-520 -3093)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-3990 . T) (-3989 . T))
-((|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-951 (-1090)))))
+((-3991 . T) (-3990 . T))
+((|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-951 (-1091)))))
(-521 E -3093)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
@@ -2054,11 +2054,11 @@ NIL
NIL
(-531 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (|HasCategory| (-485) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (|HasCategory| (-485) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))))
(-532 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-3997 "*") |has| |#1| (-496)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-496)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-496))))
(-533)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
@@ -2083,7 +2083,7 @@ NIL
(-538 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-757))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#3| (QUOTE (-1014))))
+((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-757))) (|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#3| (QUOTE (-1014))))
(-539 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2094,7 +2094,7 @@ NIL
NIL
(-541 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-3992 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3990 . T) (-3989 . T))
+((-3993 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3991 . T) (-3990 . T))
((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
(-542)
((|constructor| (NIL "This is the datatype for the JVM bytecodes.")))
@@ -2122,15 +2122,15 @@ NIL
NIL
(-548 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3860 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-1073) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))))
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))))
(-549 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-550 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-3996 . T))
+((-3997 . T))
NIL
(-551 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
@@ -2166,7 +2166,7 @@ NIL
NIL
(-559 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-756))))
(-560 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
@@ -2174,7 +2174,7 @@ NIL
NIL
(-561 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-562 R -3093)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
@@ -2182,8 +2182,8 @@ NIL
NIL
(-563 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3988 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
+((-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3989 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
(-564 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional.")))
NIL
@@ -2198,7 +2198,7 @@ NIL
NIL
(-567 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-568 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}.")))
@@ -2218,11 +2218,11 @@ NIL
NIL
(-572)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3860 (-1073)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-554 (-474)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-1014))) (|HasCategory| (-1073) (QUOTE (-757))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))))
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3861 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-554 (-474)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))))
(-573 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-3992 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3990 . T) (-3989 . T))
+((-3993 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3991 . T) (-3990 . T))
((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
(-574 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
@@ -2230,7 +2230,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-312))))
(-575 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T))
NIL
(-576 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
@@ -2250,7 +2250,7 @@ NIL
((-2561 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312))))
(-580 K B)
((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}.")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-578 |#2|) (QUOTE (-1014)))))
(-581 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
@@ -2258,7 +2258,7 @@ NIL
NIL
(-582 K B)
((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}.")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-583 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
@@ -2266,7 +2266,7 @@ NIL
NIL
(-584 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-585 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
@@ -2290,7 +2290,7 @@ NIL
NIL
(-590 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72))))
(-591 R)
((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline")))
@@ -2303,14 +2303,14 @@ NIL
(-593 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3996)))
+((|HasAttribute| |#1| (QUOTE -3997)))
(-594 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
(-595 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
((|HasCategory| |#1| (QUOTE (-715))))
(-596 R -3093 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
@@ -2318,15 +2318,15 @@ NIL
NIL
(-597 A -2493)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
(-598 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
(-599 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
(-600 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2334,7 +2334,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-312))))
(-601 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-602 -3093 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
@@ -2358,7 +2358,7 @@ NIL
NIL
(-607 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3990 . T) (-3989 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T))
((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-146))))
(-608 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2366,7 +2366,7 @@ NIL
NIL
(-609 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-610 -3093 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
@@ -2382,8 +2382,8 @@ NIL
NIL
(-613 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-3992 . T) (-3995 . T) (-3989 . T) (-3990 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3997 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3997 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
+((-3993 . T) (-3996 . T) (-3990 . T) (-3991 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3998 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3998 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
(-614)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2439,10 +2439,10 @@ NIL
(-627 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")))
NIL
-((|HasAttribute| |#2| (QUOTE (-3997 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))))
+((|HasAttribute| |#2| (QUOTE (-3998 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))))
(-628 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
@@ -2454,8 +2454,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))))
(-631 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-3996 . T) (-3995 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3997 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+((-3997 . T) (-3996 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-632 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2470,7 +2470,7 @@ NIL
NIL
(-635 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-3996 . T))
+((-3997 . T))
NIL
(-636 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2514,7 +2514,7 @@ NIL
NIL
(-646 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-647 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2524,25 +2524,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-649 R |Mod| -2038 -3518 |exactQuo|)
+(-649 R |Mod| -2038 -3519 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-650 R P)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-651 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-652 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))))
-(-653 R |Mod| -2038 -3518 |exactQuo|)
+(-653 R |Mod| -2038 -3519 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3992 . T))
+((-3993 . T))
NIL
(-654 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2550,11 +2550,11 @@ NIL
NIL
(-655 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-656 -3093)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-657 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2578,7 +2578,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))))
(-662 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-3988 |has| |#1| (-312)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 |has| |#1| (-312)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-663 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
@@ -2614,8 +2614,8 @@ NIL
NIL
(-671 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-672 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2630,15 +2630,15 @@ NIL
NIL
(-675 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-757))))
(-676 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-3995 . T) (-3985 . T) (-3996 . T))
+((-3996 . T) (-3986 . T) (-3997 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-677 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-3985 . T) (-3996 . T))
+((-3986 . T) (-3997 . T))
NIL
(-678)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2650,7 +2650,7 @@ NIL
NIL
(-680 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3990 . T) (-3989 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
(-681 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2666,7 +2666,7 @@ NIL
NIL
(-684 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-685 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
@@ -2710,7 +2710,7 @@ NIL
NIL
(-695)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-3997 "*") . T))
+(((-3998 "*") . T))
NIL
(-696 R -3093)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
@@ -2746,12 +2746,12 @@ NIL
NIL
(-704 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1090))))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1090))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2561 (|HasCategory| |#1| (QUOTE (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-905 (-485))))))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2561 (|HasCategory| |#1| (QUOTE (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2561 (|HasCategory| |#1| (QUOTE (-905 (-485))))))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-705 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-706 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -2762,7 +2762,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
(-708 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-709 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -2814,7 +2814,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))))
(-721 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-722)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
@@ -2822,8 +2822,8 @@ NIL
NIL
(-723 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
+((-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
(-724 OR R OS S)
((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
@@ -2874,15 +2874,15 @@ NIL
NIL
(-736 -2622 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3989 |has| |#2| (-962)) (-3990 |has| |#2| (-962)) (-3992 |has| |#2| (-6 -3992)) (-3995 . T))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3992)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
+((-3990 |has| |#2| (-962)) (-3991 |has| |#2| (-962)) (-3993 |has| |#2| (-6 -3993)) (-3996 . T))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))))
(-737 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-739 (-1090)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-739 (-1090)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-739 (-1090)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-739 (-1090)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-739 (-1090)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-738 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-3997 "*") |has| |#2| (-312)) (-3988 |has| |#2| (-312)) (-3993 |has| |#2| (-312)) (-3987 |has| |#2| (-312)) (-3992 . T) (-3990 . T) (-3989 . T))
+(((-3998 "*") |has| |#2| (-312)) (-3989 |has| |#2| (-312)) (-3994 |has| |#2| (-312)) (-3988 |has| |#2| (-312)) (-3993 . T) (-3991 . T) (-3990 . T))
((|HasCategory| |#2| (QUOTE (-312))))
(-739 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -2894,19 +2894,19 @@ NIL
((|HasCategory| |#1| (QUOTE (-757))))
(-741)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-742 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190))))
(-743 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-3995 . T) (-3985 . T) (-3996 . T))
+((-3996 . T) (-3986 . T) (-3997 . T))
NIL
(-744 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-3992 |has| |#1| (-756)))
+((-3993 |has| |#1| (-756)))
((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484))))
(-745 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
@@ -2914,7 +2914,7 @@ NIL
NIL
(-746 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))))
(-747 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
@@ -2934,7 +2934,7 @@ NIL
NIL
(-751 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-3992 |has| |#1| (-756)))
+((-3993 |has| |#1| (-756)))
((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484))))
(-752 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
@@ -2954,7 +2954,7 @@ NIL
NIL
(-756)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")))
-((-3992 . T))
+((-3993 . T))
NIL
(-757)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")))
@@ -2978,7 +2978,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))))
(-762 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-763 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
@@ -2986,11 +2986,11 @@ NIL
((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))))
(-764 R |sigma| -3245)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
(-765 |x| R |sigma| -3245)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-312))))
(-766 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
@@ -3034,7 +3034,7 @@ NIL
NIL
(-776 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))))
(-777 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3046,20 +3046,20 @@ NIL
NIL
(-779 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-780 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-781 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1090)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-120))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-1066))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1090)))) (|HasCategory| (-779 |#1|) (QUOTE (-190))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1090)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-258))) (|HasCategory| (-779 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-120))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-1067))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-190))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-258))) (|HasCategory| (-779 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-118)))))
(-782 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1090)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-484))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-484))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-783 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'.")))
NIL
@@ -3123,7 +3123,7 @@ NIL
(-798 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2561 (|HasCategory| |#2| (QUOTE (-951 (-1090))))) (-2561 (|HasCategory| |#2| (QUOTE (-962))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2561 (|HasCategory| |#2| (QUOTE (-951 (-1090)))))) (|HasCategory| |#2| (QUOTE (-951 (-1090)))))
+((-12 (-2561 (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-2561 (|HasCategory| |#2| (QUOTE (-962))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2561 (|HasCategory| |#2| (QUOTE (-951 (-1091)))))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))))
(-799 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
@@ -3166,11 +3166,11 @@ NIL
NIL
(-809 R S)
((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
(-810 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3992 . T))
+((-3993 . T))
NIL
(-811 A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
@@ -3186,7 +3186,7 @@ NIL
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-814 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-3992 . T))
+((-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757))))
(-815 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
@@ -3194,7 +3194,7 @@ NIL
NIL
(-816 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-817 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3202,7 +3202,7 @@ NIL
NIL
(-818 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320))))
(-819 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
@@ -3218,7 +3218,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-118))))
(-822)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-823 R0 -3093 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
@@ -3234,7 +3234,7 @@ NIL
NIL
(-826 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-827 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3254,7 +3254,7 @@ NIL
NIL
(-831)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-3997 "*") . T))
+(((-3998 "*") . T))
NIL
(-832 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
@@ -3262,7 +3262,7 @@ NIL
NIL
(-833)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-834 |xx| -3093)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
@@ -3350,7 +3350,7 @@ NIL
NIL
(-855 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-856 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
@@ -3362,8 +3362,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-756))))
(-858 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1090) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1090) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1090) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1090) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1090) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1091) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1091) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1091) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-859 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
@@ -3375,10 +3375,10 @@ NIL
(-861 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#4| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#4| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
(-862 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
(-863 E V R P -3093)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
@@ -3402,15 +3402,15 @@ NIL
NIL
(-868 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3993)))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3994)))
(-869 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
(-870 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-871 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -3434,7 +3434,7 @@ NIL
NIL
(-876 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-3992 -12 (|has| |#2| (-413)) (|has| |#1| (-413))))
+((-3993 -12 (|has| |#2| (-413)) (|has| |#1| (-413))))
((OR (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))))
(-877)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
@@ -3458,7 +3458,7 @@ NIL
NIL
(-882 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
NIL
(-883 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3478,7 +3478,7 @@ NIL
NIL
(-887 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-888)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3490,7 +3490,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-496))))
(-890 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-3995 . T))
+((-3996 . T))
NIL
(-891 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor.")))
@@ -3506,7 +3506,7 @@ NIL
NIL
(-894 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-895 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
@@ -3547,10 +3547,10 @@ NIL
(-904 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-951 (-1090)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1066))))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))))
(-905 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-906 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
@@ -3566,19 +3566,19 @@ NIL
NIL
(-909 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
NIL
(-910 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-3988 |has| |#1| (-246)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))))
+((-3989 |has| |#1| (-246)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))))
(-911 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
((|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-246))))
(-912 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-3988 |has| |#1| (-246)) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 |has| |#1| (-246)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-913 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3586,7 +3586,7 @@ NIL
NIL
(-914 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
(-915 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
@@ -3598,12 +3598,12 @@ NIL
NIL
(-917 -3093 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-3988 |has| (-350 |#2|) (-312)) (-3993 |has| (-350 |#2|) (-312)) (-3987 |has| (-350 |#2|) (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1090)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1090))))))
+((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))))
(-918 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1090)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1066))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1090)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1090)))) (|HasCategory| (-485) (QUOTE (-456 (-1090) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
(-919)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3623,7 +3623,7 @@ NIL
(-923 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-1014))))
+((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (QUOTE (-1014))))
(-924 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -3634,7 +3634,7 @@ NIL
NIL
(-926)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-3988 . T) (-3993 . T) (-3987 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3992 . T))
+((-3989 . T) (-3994 . T) (-3988 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3993 . T))
NIL
(-927 R -3093)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
@@ -3682,7 +3682,7 @@ NIL
NIL
(-938 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-3988 . T) (-3993 . T) (-3987 . T) (-3990 . T) (-3989 . T) ((-3997 "*") . T) (-3992 . T))
+((-3989 . T) (-3994 . T) (-3988 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485)))))
(-939 -3093 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
@@ -3694,7 +3694,7 @@ NIL
NIL
(-941 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
(-942)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
@@ -3703,7 +3703,7 @@ NIL
(-943 R)
((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3997 "*"))))
+((|HasAttribute| |#1| (QUOTE (-3998 "*"))))
(-944 R)
((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -3722,7 +3722,7 @@ NIL
NIL
(-948 -3093 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-949)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
@@ -3766,7 +3766,7 @@ NIL
NIL
(-959 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-474)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-774 |#2|) (QUOTE (-320))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72))))
(-960)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -3778,7 +3778,7 @@ NIL
NIL
(-962)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-3992 . T))
+((-3993 . T))
NIL
(-963 |xx| -3093)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
@@ -3794,11 +3794,11 @@ NIL
((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-146))))
(-966 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")))
-((-3995 . T) (-3990 . T) (-3989 . T))
+((-3996 . T) (-3991 . T) (-3990 . T))
NIL
(-967 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-3995 . T) (-3990 . T) (-3989 . T))
+((-3996 . T) (-3991 . T) (-3990 . T))
((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-496))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-553 (-773)))))
(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
@@ -3826,7 +3826,7 @@ NIL
NIL
(-974)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-975 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -3834,15 +3834,15 @@ NIL
NIL
(-976)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-977 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-905 (-485)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-1090)))))
+((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-905 (-485)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-1091)))))
(-978 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
(-979)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -3866,7 +3866,7 @@ NIL
NIL
(-984 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-985 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -3898,8 +3898,8 @@ NIL
NIL
(-992 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-3988 |has| |#1| (-312)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1090))))))
+((-3989 |has| |#1| (-312)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))))
(-993 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -3930,8 +3930,8 @@ NIL
NIL
(-1000 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1001 (-1090)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1001 (-1090)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1001 (-1090)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1001 (-1090)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1001 (-1090)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-1001 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -3970,7 +3970,7 @@ NIL
NIL
(-1010 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-3995 . T) (-3985 . T) (-3996 . T))
+((-3996 . T) (-3986 . T) (-3997 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
(-1011 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
@@ -3978,7 +3978,7 @@ NIL
NIL
(-1012 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-3985 . T))
+((-3986 . T))
NIL
(-1013 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4014,7 +4014,7 @@ NIL
NIL
(-1021 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
(-1022)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4038,8 +4038,8 @@ NIL
NIL
(-1027 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3989 |has| |#3| (-962)) (-3990 |has| |#3| (-962)) (-3992 |has| |#3| (-6 -3992)) (-3995 . T))
-((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1090))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -3992)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1090)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))))
+((-3990 |has| |#3| (-962)) (-3991 |has| |#3| (-962)) (-3993 |has| |#3| (-6 -3993)) (-3996 . T))
+((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -3993)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))))
(-1028 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4066,707 +4066,711 @@ NIL
NIL
(-1034)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-3983 . T) (-3987 . T) (-3982 . T) (-3993 . T) (-3994 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-1035 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
NIL
-(-1036 S |ndim| R |Row| |Col|)
+(-1036 S)
+((|constructor| (NIL "This category describes the class of homogeneous aggregates that support in place mutation that do not change their general shapes.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\spad{f(x)}")))
+NIL
+NIL
+(-1037 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3997 "*"))) (|HasCategory| |#3| (QUOTE (-146))))
-(-1037 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3998 "*"))) (|HasCategory| |#3| (QUOTE (-146))))
+(-1038 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
-((-3995 . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3996 . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1038 R |Row| |Col| M)
+(-1039 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1039 R |VarSet|)
+(-1040 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1040 |Coef| |Var| SMP)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1041 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3990 . T) (-3989 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1041 R E V P)
+(-1042 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
-(-1042 UP -3093)
+(-1043 UP -3093)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1043 R)
+(-1044 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1044 R)
+(-1045 R)
((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1045 R)
+(-1046 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1046 S A)
+(-1047 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
((|HasCategory| |#1| (QUOTE (-757))))
-(-1047 R)
+(-1048 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1048 R)
+(-1049 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1049)
+(-1050)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1050)
+(-1051)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1051)
+(-1052)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement.")))
NIL
NIL
-(-1052)
+(-1053)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1053)
+(-1054)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1054 V C)
+(-1055 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1055 V C)
+(-1056 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-3996 . T) (-3995 . T))
-((-12 (|HasCategory| (-1054 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1054) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1014))) (OR (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-72))))
-(-1056 |ndim| R)
+((-3997 . T) (-3996 . T))
+((-12 (|HasCategory| (-1055 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014))) (OR (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))))
+(-1057 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-3992 . T) (-3984 |has| |#2| (-6 (-3997 "*"))) (-3995 . T) (-3989 . T) (-3990 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3997 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3997 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
-(-1057 S)
+((-3993 . T) (-3985 |has| |#2| (-6 (-3998 "*"))) (-3996 . T) (-3990 . T) (-3991 . T))
+((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3998 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3998 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
+(-1058 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1058)
+(-1059)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
-(-1059 R E V P TS)
+(-1060 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1060 R E V P)
+(-1061 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-1061)
+(-1062)
((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:")))
NIL
NIL
-(-1062 S)
+(-1063 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-1063 A S)
+(-1064 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1064 S)
+(-1065 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1065 |Key| |Ent| |dent|)
+(-1066 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
-(-1066)
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+(-1067)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1067)
+(-1068)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1068 |Coef|)
+(-1069 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1069 S)
+(-1070 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-3996 . T))
+((-3997 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))))
-(-1070 S)
+(-1071 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1071 A B)
+(-1072 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1072 A B C)
+(-1073 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1073)
+(-1074)
((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-117) (QUOTE (-757))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014))) (|HasCategory| (-117) (QUOTE (-72))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))))
-(-1074 |Entry|)
+(-1075 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3860 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1014))) (|HasCategory| (-1073) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))))
-(-1075 A)
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))))
+(-1076 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
-(-1076 |Coef|)
+(-1077 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1077 |Coef|)
+(-1078 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1078 R UP)
+(-1079 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-258))))
-(-1079 |n| R)
+(-1080 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1080 S1 S2)
+(-1081 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t")))
NIL
NIL
-(-1081)
+(-1082)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1082 |Coef| |var| |cen|)
+(-1083 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3997 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-822)))) (-3988 OR (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-822)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-951 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1083 R -3093)
+(((-3998 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3989 OR (-2563 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2563 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1084 R -3093)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1084 R)
+(-1085 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1085 R)
+(-1086 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-812 (-1090)))) (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1086 R S)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1087 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1087 E OV R P)
+(-1088 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1088 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
(-1089 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(-1090 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
-(-1090)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(-1091)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1091 R)
+(-1092 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1092 R)
+(-1093 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-6 -3993)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-885) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3993)))
-(-1093)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-6 -3994)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-885) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3994)))
+(-1094)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1094)
+(-1095)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1095)
+(-1096)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1096 N)
+(-1097 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1097 N)
+(-1098 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")))
NIL
NIL
-(-1098)
+(-1099)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1099 R)
+(-1100 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1100)
+(-1101)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1101 S)
+(-1102 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1102 |Key| |Entry|)
+(-1103 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-3995 . T) (-3996 . T))
-((-12 (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3860) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3860 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
-(-1103 S)
+((-3996 . T) (-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))))
+(-1104 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1104 S)
+(-1105 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1105 R)
+(-1106 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1106 S |Key| |Entry|)
+(-1107 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")))
NIL
NIL
-(-1107 |Key| |Entry|)
+(-1108 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")))
-((-3995 . T) (-3996 . T))
+((-3996 . T) (-3997 . T))
NIL
-(-1108 |Key| |Entry|)
+(-1109 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1109)
+(-1110)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1110 S)
+(-1111 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1111)
+(-1112)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1112 R)
+(-1113 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1113)
+(-1114)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1114 S)
+(-1115 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1115)
+(-1116)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1116 S)
+(-1117 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-1117 S)
+(-1118 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1118)
+(-1119)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1119 R -3093)
+(-1120 R -3093)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1120 R |Row| |Col| M)
+(-1121 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1121 R -3093)
+(-1122 R -3093)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -797) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -797) (|devaluate| |#1|)))))
-(-1122 |Coef|)
+(-1123 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3990 . T) (-3989 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3991 . T) (-3990 . T) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1123 S R E V P)
+(-1124 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-320))))
-(-1124 R E V P)
+(-1125 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
-(-1125 |Curve|)
+(-1126 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1126)
+(-1127)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1127 S)
+(-1128 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))))
-(-1128 -3093)
+(-1129 -3093)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1129)
+(-1130)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1130)
+(-1131)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1131 S)
+(-1132 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}")))
NIL
((|HasCategory| |#1| (QUOTE (-757))))
-(-1132)
+(-1133)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1133 S)
+(-1134 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1134)
+(-1135)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1135)
+(-1136)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1136)
+(-1137)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1137)
+(-1138)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1138)
+(-1139)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1139 |Coef| |var| |cen|)
+(-1140 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3997 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-822)))) (-3988 OR (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-822)))) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-951 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1090)) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1140 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-3998 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3989 OR (-2563 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2563 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1141 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1141 |Coef|)
+(-1142 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1142 S |Coef| UTS)
+(-1143 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-312))))
-(-1143 |Coef| UTS)
+(-1144 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1144 |Coef| UTS)
+(-1145 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1090)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))))
-(-1145 ZP)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))))
+(-1146 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1146 S)
+(-1147 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014))))
-(-1147 R S)
+(-1148 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-756))))
-(-1148 |x| R)
+(-1149 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3997 "*") |has| |#2| (-146)) (-3988 |has| |#2| (-496)) (-3991 |has| |#2| (-312)) (-3993 |has| |#2| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-812 (-1090)))) (|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-1149 |x| R |y| S)
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-496)) (-3992 |has| |#2| (-312)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-1150 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1150 R Q UP)
+(-1151 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1151 R UP)
+(-1152 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1152 R UP)
+(-1153 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1153 R U)
+(-1154 R U)
((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all.")))
NIL
NIL
-(-1154 S R)
+(-1155 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1066))))
-(-1155 R)
+((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1067))))
+(-1156 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3991 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3990 . T) (-3989 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-1156 R PR S PS)
+(-1157 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1157 S |Coef| |Expon|)
+(-1158 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-810 (-1090)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#2|) (QUOTE (-1090))))))
-(-1158 |Coef| |Expon|)
+((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#2|) (QUOTE (-1091))))))
+(-1159 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1159 RC P)
+(-1160 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1160 |Coef| |var| |cen|)
+(-1161 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
-(-1161 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(-1162 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1162 |Coef|)
+(-1163 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1163 S |Coef| ULS)
+(-1164 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1164 |Coef| ULS)
+(-1165 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1165 |Coef| ULS)
+(-1166 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3987 |has| |#1| (-312)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
-(-1166 R FE |var| |cen|)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
+(-1167 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-3997 "*") |has| (-1160 |#2| |#3| |#4|) (-146)) (-3988 |has| (-1160 |#2| |#3| |#4|) (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-496))))
-(-1167 A S)
+(((-3998 "*") |has| (-1161 |#2| |#3| |#4|) (-146)) (-3989 |has| (-1161 |#2| |#3| |#4|) (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-496))))
+(-1168 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3996)))
-(-1168 S)
+((|HasAttribute| |#1| (QUOTE -3997)))
+(-1169 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1169 |Coef| |var| |cen|)
+(-1170 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3946) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#1|)))))))
-(-1170 |Coef1| |Coef2| UTS1 UTS2)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(-1171 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1171 S |Coef|)
+(-1172 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-29 (-485)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasSignature| |#2| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1090))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3812) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))))
-(-1172 |Coef|)
+((|HasCategory| |#2| (QUOTE (-29 (-485)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasSignature| |#2| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))))
+(-1173 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3997 "*") |has| |#1| (-146)) (-3988 |has| |#1| (-496)) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-496)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1173 |Coef| UTS)
+(-1174 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1174 -3093 UP L UTS)
+(-1175 -3093 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-496))))
-(-1175)
+(-1176)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1176 |sym|)
+(-1177 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1177 S R)
+(-1178 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1178 R)
+(-1179 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
NIL
-(-1179 R)
+(-1180 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-1180 A B)
+(-1181 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1181)
+(-1182)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1182)
+(-1183)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1183)
+(-1184)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1184)
+(-1185)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1185)
+(-1186)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1186 A S)
+(-1187 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1187 S)
+(-1188 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-3990 . T) (-3989 . T))
+((-3991 . T) (-3990 . T))
NIL
-(-1188 R)
+(-1189 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1189 K R UP -3093)
+(-1190 K R UP -3093)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1190)
+(-1191)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1191)
+(-1192)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1192 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1193 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3990 |has| |#1| (-146)) (-3989 |has| |#1| (-146)) (-3992 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1193 R E V P)
+(-1194 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}.")))
-((-3996 . T) (-3995 . T))
+((-3997 . T) (-3996 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-72))))
-(-1194 R)
+(-1195 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)")))
-((-3989 . T) (-3990 . T) (-3992 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1195 |vl| R)
+(-1196 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-3992 . T) (-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3988)))
-(-1196 R |VarSet| XPOLY)
+((-3993 . T) (-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3989)))
+(-1197 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1197 S -3093)
+(-1198 S -3093)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))))
-(-1198 -3093)
+(-1199 -3093)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-3987 . T) (-3993 . T) (-3988 . T) ((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1199 |vl| R)
+(-1200 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
+((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-1200 |VarSet| R)
+(-1201 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-655 (-350 (-485))))) (|HasAttribute| |#2| (QUOTE -3988)))
-(-1201 R)
+((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-655 (-350 (-485))))) (|HasAttribute| |#2| (QUOTE -3989)))
+(-1202 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-3988 |has| |#1| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3988)))
-(-1202 |vl| R)
+((-3989 |has| |#1| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3989)))
+(-1203 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
+((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-1203 R E)
+(-1204 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-3992 . T) (-3993 |has| |#1| (-6 -3993)) (-3988 |has| |#1| (-6 -3988)) (-3990 . T) (-3989 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3988)))
-(-1204 |VarSet| R)
+((-3993 . T) (-3994 |has| |#1| (-6 -3994)) (-3989 |has| |#1| (-6 -3989)) (-3991 . T) (-3990 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3989)))
+(-1205 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-3988 |has| |#2| (-6 -3988)) (-3990 . T) (-3989 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3988)))
-(-1205)
+((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3989)))
+(-1206)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1206 A)
+(-1207 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1207 R |ls| |ls2|)
+(-1208 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1208 R)
+(-1209 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1209 |p|)
+(-1210 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-3997 "*") . T) (-3989 . T) (-3990 . T) (-3992 . T))
+(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
NIL
NIL
@@ -4784,4 +4788,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 1962768 1962773 1962778 1962783) (-2 NIL 1962748 1962753 1962758 1962763) (-1 NIL 1962728 1962733 1962738 1962743) (0 NIL 1962708 1962713 1962718 1962723) (-1209 "ZMOD.spad" 1962517 1962530 1962646 1962703) (-1208 "ZLINDEP.spad" 1961615 1961626 1962507 1962512) (-1207 "ZDSOLVE.spad" 1951576 1951598 1961605 1961610) (-1206 "YSTREAM.spad" 1951071 1951082 1951566 1951571) (-1205 "YDIAGRAM.spad" 1950705 1950714 1951061 1951066) (-1204 "XRPOLY.spad" 1949925 1949945 1950561 1950630) (-1203 "XPR.spad" 1947720 1947733 1949643 1949742) (-1202 "XPOLYC.spad" 1947039 1947055 1947646 1947715) (-1201 "XPOLY.spad" 1946594 1946605 1946895 1946964) (-1200 "XPBWPOLY.spad" 1945065 1945085 1946400 1946469) (-1199 "XFALG.spad" 1942113 1942129 1944991 1945060) (-1198 "XF.spad" 1940576 1940591 1942015 1942108) (-1197 "XF.spad" 1939019 1939036 1940460 1940465) (-1196 "XEXPPKG.spad" 1938278 1938304 1939009 1939014) (-1195 "XDPOLY.spad" 1937892 1937908 1938134 1938203) (-1194 "XALG.spad" 1937560 1937571 1937848 1937887) (-1193 "WUTSET.spad" 1933563 1933580 1937194 1937221) (-1192 "WP.spad" 1932770 1932814 1933421 1933488) (-1191 "WHILEAST.spad" 1932568 1932577 1932760 1932765) (-1190 "WHEREAST.spad" 1932239 1932248 1932558 1932563) (-1189 "WFFINTBS.spad" 1929902 1929924 1932229 1932234) (-1188 "WEIER.spad" 1928124 1928135 1929892 1929897) (-1187 "VSPACE.spad" 1927797 1927808 1928092 1928119) (-1186 "VSPACE.spad" 1927490 1927503 1927787 1927792) (-1185 "VOID.spad" 1927167 1927176 1927480 1927485) (-1184 "VIEWDEF.spad" 1922368 1922377 1927157 1927162) (-1183 "VIEW3D.spad" 1906329 1906338 1922358 1922363) (-1182 "VIEW2D.spad" 1894228 1894237 1906319 1906324) (-1181 "VIEW.spad" 1891948 1891957 1894218 1894223) (-1180 "VECTOR2.spad" 1890587 1890600 1891938 1891943) (-1179 "VECTOR.spad" 1889306 1889317 1889557 1889584) (-1178 "VECTCAT.spad" 1887218 1887229 1889274 1889301) (-1177 "VECTCAT.spad" 1884939 1884952 1886997 1887002) (-1176 "VARIABLE.spad" 1884719 1884734 1884929 1884934) (-1175 "UTYPE.spad" 1884363 1884372 1884709 1884714) (-1174 "UTSODETL.spad" 1883658 1883682 1884319 1884324) (-1173 "UTSODE.spad" 1881874 1881894 1883648 1883653) (-1172 "UTSCAT.spad" 1879353 1879369 1881772 1881869) (-1171 "UTSCAT.spad" 1876500 1876518 1878921 1878926) (-1170 "UTS2.spad" 1876095 1876130 1876490 1876495) (-1169 "UTS.spad" 1871107 1871135 1874627 1874724) (-1168 "URAGG.spad" 1865828 1865839 1871097 1871102) (-1167 "URAGG.spad" 1860513 1860526 1865784 1865789) (-1166 "UPXSSING.spad" 1858281 1858307 1859717 1859850) (-1165 "UPXSCONS.spad" 1856099 1856119 1856472 1856621) (-1164 "UPXSCCA.spad" 1854670 1854690 1855945 1856094) (-1163 "UPXSCCA.spad" 1853383 1853405 1854660 1854665) (-1162 "UPXSCAT.spad" 1851972 1851988 1853229 1853378) (-1161 "UPXS2.spad" 1851515 1851568 1851962 1851967) (-1160 "UPXS.spad" 1848870 1848898 1849706 1849855) (-1159 "UPSQFREE.spad" 1847285 1847299 1848860 1848865) (-1158 "UPSCAT.spad" 1845080 1845104 1847183 1847280) (-1157 "UPSCAT.spad" 1842576 1842602 1844681 1844686) (-1156 "UPOLYC2.spad" 1842047 1842066 1842566 1842571) (-1155 "UPOLYC.spad" 1837127 1837138 1841889 1842042) (-1154 "UPOLYC.spad" 1832125 1832138 1836889 1836894) (-1153 "UPMP.spad" 1831057 1831070 1832115 1832120) (-1152 "UPDIVP.spad" 1830622 1830636 1831047 1831052) (-1151 "UPDECOMP.spad" 1828883 1828897 1830612 1830617) (-1150 "UPCDEN.spad" 1828100 1828116 1828873 1828878) (-1149 "UP2.spad" 1827464 1827485 1828090 1828095) (-1148 "UP.spad" 1824934 1824949 1825321 1825474) (-1147 "UNISEG2.spad" 1824431 1824444 1824890 1824895) (-1146 "UNISEG.spad" 1823784 1823795 1824350 1824355) (-1145 "UNIFACT.spad" 1822887 1822899 1823774 1823779) (-1144 "ULSCONS.spad" 1816733 1816753 1817103 1817252) (-1143 "ULSCCAT.spad" 1814470 1814490 1816579 1816728) (-1142 "ULSCCAT.spad" 1812315 1812337 1814426 1814431) (-1141 "ULSCAT.spad" 1810555 1810571 1812161 1812310) (-1140 "ULS2.spad" 1810069 1810122 1810545 1810550) (-1139 "ULS.spad" 1802102 1802130 1803047 1803470) (-1138 "UINT8.spad" 1801979 1801988 1802092 1802097) (-1137 "UINT64.spad" 1801855 1801864 1801969 1801974) (-1136 "UINT32.spad" 1801731 1801740 1801845 1801850) (-1135 "UINT16.spad" 1801607 1801616 1801721 1801726) (-1134 "UFD.spad" 1800672 1800681 1801533 1801602) (-1133 "UFD.spad" 1799799 1799810 1800662 1800667) (-1132 "UDVO.spad" 1798680 1798689 1799789 1799794) (-1131 "UDPO.spad" 1796261 1796272 1798636 1798641) (-1130 "TYPEAST.spad" 1796180 1796189 1796251 1796256) (-1129 "TYPE.spad" 1796112 1796121 1796170 1796175) (-1128 "TWOFACT.spad" 1794764 1794779 1796102 1796107) (-1127 "TUPLE.spad" 1794271 1794282 1794676 1794681) (-1126 "TUBETOOL.spad" 1791138 1791147 1794261 1794266) (-1125 "TUBE.spad" 1789785 1789802 1791128 1791133) (-1124 "TSETCAT.spad" 1777856 1777873 1789753 1789780) (-1123 "TSETCAT.spad" 1765913 1765932 1777812 1777817) (-1122 "TS.spad" 1764541 1764557 1765507 1765604) (-1121 "TRMANIP.spad" 1758905 1758922 1764229 1764234) (-1120 "TRIMAT.spad" 1757868 1757893 1758895 1758900) (-1119 "TRIGMNIP.spad" 1756395 1756412 1757858 1757863) (-1118 "TRIGCAT.spad" 1755907 1755916 1756385 1756390) (-1117 "TRIGCAT.spad" 1755417 1755428 1755897 1755902) (-1116 "TREE.spad" 1754057 1754068 1755089 1755116) (-1115 "TRANFUN.spad" 1753896 1753905 1754047 1754052) (-1114 "TRANFUN.spad" 1753733 1753744 1753886 1753891) (-1113 "TOPSP.spad" 1753407 1753416 1753723 1753728) (-1112 "TOOLSIGN.spad" 1753070 1753081 1753397 1753402) (-1111 "TEXTFILE.spad" 1751631 1751640 1753060 1753065) (-1110 "TEX1.spad" 1751187 1751198 1751621 1751626) (-1109 "TEX.spad" 1748381 1748390 1751177 1751182) (-1108 "TBCMPPK.spad" 1746482 1746505 1748371 1748376) (-1107 "TBAGG.spad" 1745725 1745748 1746450 1746477) (-1106 "TBAGG.spad" 1744988 1745013 1745715 1745720) (-1105 "TANEXP.spad" 1744396 1744407 1744978 1744983) (-1104 "TALGOP.spad" 1744120 1744131 1744386 1744391) (-1103 "TABLEAU.spad" 1743601 1743612 1744110 1744115) (-1102 "TABLE.spad" 1741876 1741899 1742146 1742173) (-1101 "TABLBUMP.spad" 1738655 1738666 1741866 1741871) (-1100 "SYSTEM.spad" 1737883 1737892 1738645 1738650) (-1099 "SYSSOLP.spad" 1735366 1735377 1737873 1737878) (-1098 "SYSPTR.spad" 1735265 1735274 1735356 1735361) (-1097 "SYSNNI.spad" 1734488 1734499 1735255 1735260) (-1096 "SYSINT.spad" 1733892 1733903 1734478 1734483) (-1095 "SYNTAX.spad" 1730226 1730235 1733882 1733887) (-1094 "SYMTAB.spad" 1728294 1728303 1730216 1730221) (-1093 "SYMS.spad" 1724323 1724332 1728284 1728289) (-1092 "SYMPOLY.spad" 1723456 1723467 1723538 1723665) (-1091 "SYMFUNC.spad" 1722957 1722968 1723446 1723451) (-1090 "SYMBOL.spad" 1720452 1720461 1722947 1722952) (-1089 "SUTS.spad" 1717565 1717593 1718984 1719081) (-1088 "SUPXS.spad" 1714907 1714935 1715756 1715905) (-1087 "SUPFRACF.spad" 1714012 1714030 1714897 1714902) (-1086 "SUP2.spad" 1713404 1713417 1714002 1714007) (-1085 "SUP.spad" 1710488 1710499 1711261 1711414) (-1084 "SUMRF.spad" 1709462 1709473 1710478 1710483) (-1083 "SUMFS.spad" 1709091 1709108 1709452 1709457) (-1082 "SULS.spad" 1701111 1701139 1702069 1702492) (-1081 "syntax.spad" 1700880 1700889 1701101 1701106) (-1080 "SUCH.spad" 1700570 1700585 1700870 1700875) (-1079 "SUBSPACE.spad" 1692701 1692716 1700560 1700565) (-1078 "SUBRESP.spad" 1691871 1691885 1692657 1692662) (-1077 "STTFNC.spad" 1688339 1688355 1691861 1691866) (-1076 "STTF.spad" 1684438 1684454 1688329 1688334) (-1075 "STTAYLOR.spad" 1677115 1677126 1684345 1684350) (-1074 "STRTBL.spad" 1675502 1675519 1675651 1675678) (-1073 "STRING.spad" 1674370 1674379 1674755 1674782) (-1072 "STREAM3.spad" 1673943 1673958 1674360 1674365) (-1071 "STREAM2.spad" 1673071 1673084 1673933 1673938) (-1070 "STREAM1.spad" 1672777 1672788 1673061 1673066) (-1069 "STREAM.spad" 1669773 1669784 1672380 1672395) (-1068 "STINPROD.spad" 1668709 1668725 1669763 1669768) (-1067 "STEPAST.spad" 1667943 1667952 1668699 1668704) (-1066 "STEP.spad" 1667260 1667269 1667933 1667938) (-1065 "STBL.spad" 1665638 1665666 1665805 1665832) (-1064 "STAGG.spad" 1664337 1664348 1665628 1665633) (-1063 "STAGG.spad" 1663034 1663047 1664327 1664332) (-1062 "STACK.spad" 1662456 1662467 1662706 1662733) (-1061 "SRING.spad" 1662216 1662225 1662446 1662451) (-1060 "SREGSET.spad" 1659948 1659965 1661850 1661877) (-1059 "SRDCMPK.spad" 1658525 1658545 1659938 1659943) (-1058 "SRAGG.spad" 1653708 1653717 1658493 1658520) (-1057 "SRAGG.spad" 1648911 1648922 1653698 1653703) (-1056 "SQMATRIX.spad" 1646588 1646606 1647504 1647591) (-1055 "SPLTREE.spad" 1641330 1641343 1646126 1646153) (-1054 "SPLNODE.spad" 1637950 1637963 1641320 1641325) (-1053 "SPFCAT.spad" 1636759 1636768 1637940 1637945) (-1052 "SPECOUT.spad" 1635311 1635320 1636749 1636754) (-1051 "SPADXPT.spad" 1627402 1627411 1635301 1635306) (-1050 "spad-parser.spad" 1626867 1626876 1627392 1627397) (-1049 "SPADAST.spad" 1626568 1626577 1626857 1626862) (-1048 "SPACEC.spad" 1610783 1610794 1626558 1626563) (-1047 "SPACE3.spad" 1610559 1610570 1610773 1610778) (-1046 "SORTPAK.spad" 1610108 1610121 1610515 1610520) (-1045 "SOLVETRA.spad" 1607871 1607882 1610098 1610103) (-1044 "SOLVESER.spad" 1606327 1606338 1607861 1607866) (-1043 "SOLVERAD.spad" 1602353 1602364 1606317 1606322) (-1042 "SOLVEFOR.spad" 1600815 1600833 1602343 1602348) (-1041 "SNTSCAT.spad" 1600415 1600432 1600783 1600810) (-1040 "SMTS.spad" 1598732 1598758 1600009 1600106) (-1039 "SMP.spad" 1596540 1596560 1596930 1597057) (-1038 "SMITH.spad" 1595385 1595410 1596530 1596535) (-1037 "SMATCAT.spad" 1593503 1593533 1595329 1595380) (-1036 "SMATCAT.spad" 1591553 1591585 1593381 1593386) (-1035 "SKAGG.spad" 1590522 1590533 1591521 1591548) (-1034 "SINT.spad" 1589821 1589830 1590388 1590517) (-1033 "SIMPAN.spad" 1589549 1589558 1589811 1589816) (-1032 "SIGNRF.spad" 1588674 1588685 1589539 1589544) (-1031 "SIGNEF.spad" 1587960 1587977 1588664 1588669) (-1030 "syntax.spad" 1587377 1587386 1587950 1587955) (-1029 "SIG.spad" 1586739 1586748 1587367 1587372) (-1028 "SHP.spad" 1584683 1584698 1586695 1586700) (-1027 "SHDP.spad" 1574176 1574203 1574693 1574790) (-1026 "SGROUP.spad" 1573784 1573793 1574166 1574171) (-1025 "SGROUP.spad" 1573390 1573401 1573774 1573779) (-1024 "catdef.spad" 1573100 1573112 1573211 1573385) (-1023 "catdef.spad" 1572656 1572668 1572921 1573095) (-1022 "SGCF.spad" 1565795 1565804 1572646 1572651) (-1021 "SFRTCAT.spad" 1564741 1564758 1565763 1565790) (-1020 "SFRGCD.spad" 1563804 1563824 1564731 1564736) (-1019 "SFQCMPK.spad" 1558617 1558637 1563794 1563799) (-1018 "SEXOF.spad" 1558460 1558500 1558607 1558612) (-1017 "SEXCAT.spad" 1556288 1556328 1558450 1558455) (-1016 "SEX.spad" 1556180 1556189 1556278 1556283) (-1015 "SETMN.spad" 1554640 1554657 1556170 1556175) (-1014 "SETCAT.spad" 1554125 1554134 1554630 1554635) (-1013 "SETCAT.spad" 1553608 1553619 1554115 1554120) (-1012 "SETAGG.spad" 1550157 1550168 1553588 1553603) (-1011 "SETAGG.spad" 1546714 1546727 1550147 1550152) (-1010 "SET.spad" 1545023 1545034 1546120 1546159) (-1009 "syntax.spad" 1544726 1544735 1545013 1545018) (-1008 "SEGXCAT.spad" 1543882 1543895 1544716 1544721) (-1007 "SEGCAT.spad" 1542807 1542818 1543872 1543877) (-1006 "SEGBIND2.spad" 1542505 1542518 1542797 1542802) (-1005 "SEGBIND.spad" 1542263 1542274 1542452 1542457) (-1004 "SEGAST.spad" 1541993 1542002 1542253 1542258) (-1003 "SEG2.spad" 1541428 1541441 1541949 1541954) (-1002 "SEG.spad" 1541241 1541252 1541347 1541352) (-1001 "SDVAR.spad" 1540517 1540528 1541231 1541236) (-1000 "SDPOL.spad" 1538209 1538220 1538500 1538627) (-999 "SCPKG.spad" 1536299 1536309 1538199 1538204) (-998 "SCOPE.spad" 1535477 1535485 1536289 1536294) (-997 "SCACHE.spad" 1534174 1534184 1535467 1535472) (-996 "SASTCAT.spad" 1534084 1534092 1534164 1534169) (-995 "SAOS.spad" 1533957 1533965 1534074 1534079) (-994 "SAERFFC.spad" 1533671 1533690 1533947 1533952) (-993 "SAEFACT.spad" 1533373 1533392 1533661 1533666) (-992 "SAE.spad" 1531024 1531039 1531634 1531769) (-991 "RURPK.spad" 1528684 1528699 1531014 1531019) (-990 "RULESET.spad" 1528138 1528161 1528674 1528679) (-989 "RULECOLD.spad" 1527991 1528003 1528128 1528133) (-988 "RULE.spad" 1526240 1526263 1527981 1527986) (-987 "RTVALUE.spad" 1525976 1525984 1526230 1526235) (-986 "syntax.spad" 1525694 1525702 1525966 1525971) (-985 "RSETGCD.spad" 1522137 1522156 1525684 1525689) (-984 "RSETCAT.spad" 1512106 1512122 1522105 1522132) (-983 "RSETCAT.spad" 1502095 1502113 1512096 1512101) (-982 "RSDCMPK.spad" 1500596 1500615 1502085 1502090) (-981 "RRCC.spad" 1498981 1499010 1500586 1500591) (-980 "RRCC.spad" 1497364 1497395 1498971 1498976) (-979 "RPTAST.spad" 1497067 1497075 1497354 1497359) (-978 "RPOLCAT.spad" 1476572 1476586 1496935 1497062) (-977 "RPOLCAT.spad" 1455870 1455886 1476235 1476240) (-976 "ROMAN.spad" 1455199 1455207 1455736 1455865) (-975 "ROIRC.spad" 1454280 1454311 1455189 1455194) (-974 "RNS.spad" 1453257 1453265 1454182 1454275) (-973 "RNS.spad" 1452320 1452330 1453247 1453252) (-972 "RNGBIND.spad" 1451481 1451494 1452275 1452280) (-971 "RNG.spad" 1451090 1451098 1451471 1451476) (-970 "RNG.spad" 1450697 1450707 1451080 1451085) (-969 "RMODULE.spad" 1450479 1450489 1450687 1450692) (-968 "RMCAT2.spad" 1449900 1449956 1450469 1450474) (-967 "RMATRIX.spad" 1448710 1448728 1449052 1449091) (-966 "RMATCAT.spad" 1444348 1444378 1448666 1448705) (-965 "RMATCAT.spad" 1439876 1439908 1444196 1444201) (-964 "RLINSET.spad" 1439581 1439591 1439866 1439871) (-963 "RINTERP.spad" 1439470 1439489 1439571 1439576) (-962 "RING.spad" 1438941 1438949 1439450 1439465) (-961 "RING.spad" 1438420 1438430 1438931 1438936) (-960 "RIDIST.spad" 1437813 1437821 1438410 1438415) (-959 "RGCHAIN.spad" 1436368 1436383 1437261 1437288) (-958 "RGBCSPC.spad" 1436158 1436169 1436358 1436363) (-957 "RGBCMDL.spad" 1435721 1435732 1436148 1436153) (-956 "RFFACTOR.spad" 1435184 1435194 1435711 1435716) (-955 "RFFACT.spad" 1434920 1434931 1435174 1435179) (-954 "RFDIST.spad" 1433917 1433925 1434910 1434915) (-953 "RF.spad" 1431592 1431602 1433907 1433912) (-952 "RETSOL.spad" 1431012 1431024 1431582 1431587) (-951 "RETRACT.spad" 1430441 1430451 1431002 1431007) (-950 "RETRACT.spad" 1429868 1429880 1430431 1430436) (-949 "RETAST.spad" 1429681 1429689 1429858 1429863) (-948 "RESRING.spad" 1429029 1429075 1429619 1429676) (-947 "RESLATC.spad" 1428354 1428364 1429019 1429024) (-946 "REPSQ.spad" 1428086 1428096 1428344 1428349) (-945 "REPDB.spad" 1427794 1427804 1428076 1428081) (-944 "REP2.spad" 1417509 1417519 1427636 1427641) (-943 "REP1.spad" 1411730 1411740 1417459 1417464) (-942 "REP.spad" 1409285 1409293 1411720 1411725) (-941 "REGSET.spad" 1407111 1407127 1408919 1408946) (-940 "REF.spad" 1406630 1406640 1407101 1407106) (-939 "REDORDER.spad" 1405837 1405853 1406620 1406625) (-938 "RECLOS.spad" 1404734 1404753 1405437 1405530) (-937 "REALSOLV.spad" 1403875 1403883 1404724 1404729) (-936 "REAL0Q.spad" 1401174 1401188 1403865 1403870) (-935 "REAL0.spad" 1398019 1398033 1401164 1401169) (-934 "REAL.spad" 1397892 1397900 1398009 1398014) (-933 "RDUCEAST.spad" 1397614 1397622 1397882 1397887) (-932 "RDIV.spad" 1397270 1397294 1397604 1397609) (-931 "RDIST.spad" 1396838 1396848 1397260 1397265) (-930 "RDETRS.spad" 1395703 1395720 1396828 1396833) (-929 "RDETR.spad" 1393843 1393860 1395693 1395698) (-928 "RDEEFS.spad" 1392943 1392959 1393833 1393838) (-927 "RDEEF.spad" 1391954 1391970 1392933 1392938) (-926 "RCFIELD.spad" 1389173 1389181 1391856 1391949) (-925 "RCFIELD.spad" 1386478 1386488 1389163 1389168) (-924 "RCAGG.spad" 1384415 1384425 1386468 1386473) (-923 "RCAGG.spad" 1382279 1382291 1384334 1384339) (-922 "RATRET.spad" 1381640 1381650 1382269 1382274) (-921 "RATFACT.spad" 1381333 1381344 1381630 1381635) (-920 "RANDSRC.spad" 1380653 1380661 1381323 1381328) (-919 "RADUTIL.spad" 1380410 1380418 1380643 1380648) (-918 "RADIX.spad" 1377455 1377468 1379000 1379093) (-917 "RADFF.spad" 1375372 1375408 1375490 1375646) (-916 "RADCAT.spad" 1374968 1374976 1375362 1375367) (-915 "RADCAT.spad" 1374562 1374572 1374958 1374963) (-914 "QUEUE.spad" 1373976 1373986 1374234 1374261) (-913 "QUATCT2.spad" 1373597 1373615 1373966 1373971) (-912 "QUATCAT.spad" 1371768 1371778 1373527 1373592) (-911 "QUATCAT.spad" 1369704 1369716 1371465 1371470) (-910 "QUAT.spad" 1368311 1368321 1368653 1368718) (-909 "QUAGG.spad" 1367145 1367155 1368279 1368306) (-908 "QQUTAST.spad" 1366914 1366922 1367135 1367140) (-907 "QFORM.spad" 1366533 1366547 1366904 1366909) (-906 "QFCAT2.spad" 1366226 1366242 1366523 1366528) (-905 "QFCAT.spad" 1364929 1364939 1366128 1366221) (-904 "QFCAT.spad" 1363265 1363277 1364466 1364471) (-903 "QEQUAT.spad" 1362824 1362832 1363255 1363260) (-902 "QCMPACK.spad" 1357739 1357758 1362814 1362819) (-901 "QALGSET2.spad" 1355735 1355753 1357729 1357734) (-900 "QALGSET.spad" 1351840 1351872 1355649 1355654) (-899 "PWFFINTB.spad" 1349256 1349277 1351830 1351835) (-898 "PUSHVAR.spad" 1348595 1348614 1349246 1349251) (-897 "PTRANFN.spad" 1344731 1344741 1348585 1348590) (-896 "PTPACK.spad" 1341819 1341829 1344721 1344726) (-895 "PTFUNC2.spad" 1341642 1341656 1341809 1341814) (-894 "PTCAT.spad" 1340897 1340907 1341610 1341637) (-893 "PSQFR.spad" 1340212 1340236 1340887 1340892) (-892 "PSEUDLIN.spad" 1339098 1339108 1340202 1340207) (-891 "PSETPK.spad" 1325803 1325819 1338976 1338981) (-890 "PSETCAT.spad" 1320203 1320226 1325783 1325798) (-889 "PSETCAT.spad" 1314577 1314602 1320159 1320164) (-888 "PSCURVE.spad" 1313576 1313584 1314567 1314572) (-887 "PSCAT.spad" 1312359 1312388 1313474 1313571) (-886 "PSCAT.spad" 1311232 1311263 1312349 1312354) (-885 "PRTITION.spad" 1309930 1309938 1311222 1311227) (-884 "PRTDAST.spad" 1309649 1309657 1309920 1309925) (-883 "PRS.spad" 1299267 1299284 1309605 1309610) (-882 "PRQAGG.spad" 1298702 1298712 1299235 1299262) (-881 "PROPLOG.spad" 1298306 1298314 1298692 1298697) (-880 "PROPFUN2.spad" 1297929 1297942 1298296 1298301) (-879 "PROPFUN1.spad" 1297335 1297346 1297919 1297924) (-878 "PROPFRML.spad" 1295903 1295914 1297325 1297330) (-877 "PROPERTY.spad" 1295399 1295407 1295893 1295898) (-876 "PRODUCT.spad" 1293096 1293108 1293380 1293435) (-875 "PRINT.spad" 1292848 1292856 1293086 1293091) (-874 "PRIMES.spad" 1291109 1291119 1292838 1292843) (-873 "PRIMELT.spad" 1289230 1289244 1291099 1291104) (-872 "PRIMCAT.spad" 1288873 1288881 1289220 1289225) (-871 "PRIMARR2.spad" 1287640 1287652 1288863 1288868) (-870 "PRIMARR.spad" 1286695 1286705 1286865 1286892) (-869 "PREASSOC.spad" 1286077 1286089 1286685 1286690) (-868 "PR.spad" 1284595 1284607 1285294 1285421) (-867 "PPCURVE.spad" 1283732 1283740 1284585 1284590) (-866 "PORTNUM.spad" 1283523 1283531 1283722 1283727) (-865 "POLYROOT.spad" 1282372 1282394 1283479 1283484) (-864 "POLYLIFT.spad" 1281637 1281660 1282362 1282367) (-863 "POLYCATQ.spad" 1279763 1279785 1281627 1281632) (-862 "POLYCAT.spad" 1273265 1273286 1279631 1279758) (-861 "POLYCAT.spad" 1266287 1266310 1272655 1272660) (-860 "POLY2UP.spad" 1265739 1265753 1266277 1266282) (-859 "POLY2.spad" 1265336 1265348 1265729 1265734) (-858 "POLY.spad" 1263004 1263014 1263519 1263646) (-857 "POLUTIL.spad" 1261969 1261998 1262960 1262965) (-856 "POLTOPOL.spad" 1260717 1260732 1261959 1261964) (-855 "POINT.spad" 1259600 1259610 1259687 1259714) (-854 "PNTHEORY.spad" 1256302 1256310 1259590 1259595) (-853 "PMTOOLS.spad" 1255077 1255091 1256292 1256297) (-852 "PMSYM.spad" 1254626 1254636 1255067 1255072) (-851 "PMQFCAT.spad" 1254217 1254231 1254616 1254621) (-850 "PMPREDFS.spad" 1253679 1253701 1254207 1254212) (-849 "PMPRED.spad" 1253166 1253180 1253669 1253674) (-848 "PMPLCAT.spad" 1252243 1252261 1253095 1253100) (-847 "PMLSAGG.spad" 1251828 1251842 1252233 1252238) (-846 "PMKERNEL.spad" 1251407 1251419 1251818 1251823) (-845 "PMINS.spad" 1250987 1250997 1251397 1251402) (-844 "PMFS.spad" 1250564 1250582 1250977 1250982) (-843 "PMDOWN.spad" 1249854 1249868 1250554 1250559) (-842 "PMASSFS.spad" 1248829 1248845 1249844 1249849) (-841 "PMASS.spad" 1247847 1247855 1248819 1248824) (-840 "PLOTTOOL.spad" 1247627 1247635 1247837 1247842) (-839 "PLOT3D.spad" 1244091 1244099 1247617 1247622) (-838 "PLOT1.spad" 1243264 1243274 1244081 1244086) (-837 "PLOT.spad" 1238187 1238195 1243254 1243259) (-836 "PLEQN.spad" 1225589 1225616 1238177 1238182) (-835 "PINTERPA.spad" 1225373 1225389 1225579 1225584) (-834 "PINTERP.spad" 1224995 1225014 1225363 1225368) (-833 "PID.spad" 1223969 1223977 1224921 1224990) (-832 "PICOERCE.spad" 1223626 1223636 1223959 1223964) (-831 "PI.spad" 1223243 1223251 1223600 1223621) (-830 "PGROEB.spad" 1221852 1221866 1223233 1223238) (-829 "PGE.spad" 1213525 1213533 1221842 1221847) (-828 "PGCD.spad" 1212479 1212496 1213515 1213520) (-827 "PFRPAC.spad" 1211628 1211638 1212469 1212474) (-826 "PFR.spad" 1208331 1208341 1211530 1211623) (-825 "PFOTOOLS.spad" 1207589 1207605 1208321 1208326) (-824 "PFOQ.spad" 1206959 1206977 1207579 1207584) (-823 "PFO.spad" 1206378 1206405 1206949 1206954) (-822 "PFECAT.spad" 1204088 1204096 1206304 1206373) (-821 "PFECAT.spad" 1201826 1201836 1204044 1204049) (-820 "PFBRU.spad" 1199714 1199726 1201816 1201821) (-819 "PFBR.spad" 1197274 1197297 1199704 1199709) (-818 "PF.spad" 1196848 1196860 1197079 1197172) (-817 "PERMGRP.spad" 1191618 1191628 1196838 1196843) (-816 "PERMCAT.spad" 1190279 1190289 1191598 1191613) (-815 "PERMAN.spad" 1188835 1188849 1190269 1190274) (-814 "PERM.spad" 1184645 1184655 1188668 1188683) (-813 "PENDTREE.spad" 1184059 1184069 1184339 1184344) (-812 "PDSPC.spad" 1182872 1182882 1184049 1184054) (-811 "PDSPC.spad" 1181683 1181695 1182862 1182867) (-810 "PDRING.spad" 1181525 1181535 1181663 1181678) (-809 "PDMOD.spad" 1181341 1181353 1181493 1181520) (-808 "PDECOMP.spad" 1180811 1180828 1181331 1181336) (-807 "PDDOM.spad" 1180249 1180262 1180801 1180806) (-806 "PDDOM.spad" 1179685 1179700 1180239 1180244) (-805 "PCOMP.spad" 1179538 1179551 1179675 1179680) (-804 "PBWLB.spad" 1178136 1178153 1179528 1179533) (-803 "PATTERN2.spad" 1177874 1177886 1178126 1178131) (-802 "PATTERN1.spad" 1176218 1176234 1177864 1177869) (-801 "PATTERN.spad" 1170793 1170803 1176208 1176213) (-800 "PATRES2.spad" 1170465 1170479 1170783 1170788) (-799 "PATRES.spad" 1168048 1168060 1170455 1170460) (-798 "PATMATCH.spad" 1166289 1166320 1167800 1167805) (-797 "PATMAB.spad" 1165718 1165728 1166279 1166284) (-796 "PATLRES.spad" 1164804 1164818 1165708 1165713) (-795 "PATAB.spad" 1164568 1164578 1164794 1164799) (-794 "PARTPERM.spad" 1162624 1162632 1164558 1164563) (-793 "PARSURF.spad" 1162058 1162086 1162614 1162619) (-792 "PARSU2.spad" 1161855 1161871 1162048 1162053) (-791 "script-parser.spad" 1161375 1161383 1161845 1161850) (-790 "PARSCURV.spad" 1160809 1160837 1161365 1161370) (-789 "PARSC2.spad" 1160600 1160616 1160799 1160804) (-788 "PARPCURV.spad" 1160062 1160090 1160590 1160595) (-787 "PARPC2.spad" 1159853 1159869 1160052 1160057) (-786 "PARAMAST.spad" 1158981 1158989 1159843 1159848) (-785 "PAN2EXPR.spad" 1158393 1158401 1158971 1158976) (-784 "PALETTE.spad" 1157507 1157515 1158383 1158388) (-783 "PAIR.spad" 1156581 1156594 1157150 1157155) (-782 "PADICRC.spad" 1153986 1154004 1155149 1155242) (-781 "PADICRAT.spad" 1152046 1152058 1152259 1152352) (-780 "PADICCT.spad" 1150595 1150607 1151972 1152041) (-779 "PADIC.spad" 1150298 1150310 1150521 1150590) (-778 "PADEPAC.spad" 1148987 1149006 1150288 1150293) (-777 "PADE.spad" 1147739 1147755 1148977 1148982) (-776 "OWP.spad" 1146987 1147017 1147597 1147664) (-775 "OVERSET.spad" 1146560 1146568 1146977 1146982) (-774 "OVAR.spad" 1146341 1146364 1146550 1146555) (-773 "OUTFORM.spad" 1135749 1135757 1146331 1146336) (-772 "OUTBFILE.spad" 1135183 1135191 1135739 1135744) (-771 "OUTBCON.spad" 1134253 1134261 1135173 1135178) (-770 "OUTBCON.spad" 1133321 1133331 1134243 1134248) (-769 "OUT.spad" 1132439 1132447 1133311 1133316) (-768 "OSI.spad" 1131914 1131922 1132429 1132434) (-767 "OSGROUP.spad" 1131832 1131840 1131904 1131909) (-766 "ORTHPOL.spad" 1130343 1130353 1131775 1131780) (-765 "OREUP.spad" 1129837 1129865 1130064 1130103) (-764 "ORESUP.spad" 1129179 1129203 1129558 1129597) (-763 "OREPCTO.spad" 1127068 1127080 1129099 1129104) (-762 "OREPCAT.spad" 1121255 1121265 1127024 1127063) (-761 "OREPCAT.spad" 1115332 1115344 1121103 1121108) (-760 "ORDTYPE.spad" 1114569 1114577 1115322 1115327) (-759 "ORDTYPE.spad" 1113804 1113814 1114559 1114564) (-758 "ORDSTRCT.spad" 1113590 1113605 1113753 1113758) (-757 "ORDSET.spad" 1113290 1113298 1113580 1113585) (-756 "ORDRING.spad" 1113107 1113115 1113270 1113285) (-755 "ORDMON.spad" 1112962 1112970 1113097 1113102) (-754 "ORDFUNS.spad" 1112094 1112110 1112952 1112957) (-753 "ORDFIN.spad" 1111914 1111922 1112084 1112089) (-752 "ORDCOMP2.spad" 1111207 1111219 1111904 1111909) (-751 "ORDCOMP.spad" 1109733 1109743 1110815 1110844) (-750 "OPSIG.spad" 1109395 1109403 1109723 1109728) (-749 "OPQUERY.spad" 1108976 1108984 1109385 1109390) (-748 "OPERCAT.spad" 1108442 1108452 1108966 1108971) (-747 "OPERCAT.spad" 1107906 1107918 1108432 1108437) (-746 "OP.spad" 1107648 1107658 1107728 1107795) (-745 "ONECOMP2.spad" 1107072 1107084 1107638 1107643) (-744 "ONECOMP.spad" 1105878 1105888 1106680 1106709) (-743 "OMSAGG.spad" 1105666 1105676 1105834 1105873) (-742 "OMLO.spad" 1105099 1105111 1105552 1105591) (-741 "OINTDOM.spad" 1104862 1104870 1105025 1105094) (-740 "OFMONOID.spad" 1103001 1103011 1104818 1104823) (-739 "ODVAR.spad" 1102262 1102272 1102991 1102996) (-738 "ODR.spad" 1101906 1101932 1102074 1102223) (-737 "ODPOL.spad" 1099554 1099564 1099894 1100021) (-736 "ODP.spad" 1089191 1089211 1089564 1089661) (-735 "ODETOOLS.spad" 1087840 1087859 1089181 1089186) (-734 "ODESYS.spad" 1085534 1085551 1087830 1087835) (-733 "ODERTRIC.spad" 1081567 1081584 1085491 1085496) (-732 "ODERED.spad" 1080966 1080990 1081557 1081562) (-731 "ODERAT.spad" 1078599 1078616 1080956 1080961) (-730 "ODEPRRIC.spad" 1075692 1075714 1078589 1078594) (-729 "ODEPRIM.spad" 1073090 1073112 1075682 1075687) (-728 "ODEPAL.spad" 1072476 1072500 1073080 1073085) (-727 "ODEINT.spad" 1071911 1071927 1072466 1072471) (-726 "ODEEF.spad" 1067406 1067422 1071901 1071906) (-725 "ODECONST.spad" 1066951 1066969 1067396 1067401) (-724 "OCTCT2.spad" 1066592 1066610 1066941 1066946) (-723 "OCT.spad" 1064907 1064917 1065621 1065660) (-722 "OCAMON.spad" 1064755 1064763 1064897 1064902) (-721 "OC.spad" 1062551 1062561 1064711 1064750) (-720 "OC.spad" 1060086 1060098 1062248 1062253) (-719 "OASGP.spad" 1059901 1059909 1060076 1060081) (-718 "OAMONS.spad" 1059423 1059431 1059891 1059896) (-717 "OAMON.spad" 1059181 1059189 1059413 1059418) (-716 "OAMON.spad" 1058937 1058947 1059171 1059176) (-715 "OAGROUP.spad" 1058475 1058483 1058927 1058932) (-714 "OAGROUP.spad" 1058011 1058021 1058465 1058470) (-713 "NUMTUBE.spad" 1057602 1057618 1058001 1058006) (-712 "NUMQUAD.spad" 1045578 1045586 1057592 1057597) (-711 "NUMODE.spad" 1036930 1036938 1045568 1045573) (-710 "NUMFMT.spad" 1035770 1035778 1036920 1036925) (-709 "NUMERIC.spad" 1027885 1027895 1035576 1035581) (-708 "NTSCAT.spad" 1026393 1026409 1027853 1027880) (-707 "NTPOLFN.spad" 1025970 1025980 1026336 1026341) (-706 "NSUP2.spad" 1025362 1025374 1025960 1025965) (-705 "NSUP.spad" 1018799 1018809 1023219 1023372) (-704 "NSMP.spad" 1015711 1015730 1016003 1016130) (-703 "NREP.spad" 1014113 1014127 1015701 1015706) (-702 "NPCOEF.spad" 1013359 1013379 1014103 1014108) (-701 "NORMRETR.spad" 1012957 1012996 1013349 1013354) (-700 "NORMPK.spad" 1010899 1010918 1012947 1012952) (-699 "NORMMA.spad" 1010587 1010613 1010889 1010894) (-698 "NONE1.spad" 1010263 1010273 1010577 1010582) (-697 "NONE.spad" 1010004 1010012 1010253 1010258) (-696 "NODE1.spad" 1009491 1009507 1009994 1009999) (-695 "NNI.spad" 1008386 1008394 1009465 1009486) (-694 "NLINSOL.spad" 1007012 1007022 1008376 1008381) (-693 "NFINTBAS.spad" 1004572 1004589 1007002 1007007) (-692 "NETCLT.spad" 1004546 1004557 1004562 1004567) (-691 "NCODIV.spad" 1002770 1002786 1004536 1004541) (-690 "NCNTFRAC.spad" 1002412 1002426 1002760 1002765) (-689 "NCEP.spad" 1000578 1000592 1002402 1002407) (-688 "NASRING.spad" 1000182 1000190 1000568 1000573) (-687 "NASRING.spad" 999784 999794 1000172 1000177) (-686 "NARNG.spad" 999184 999192 999774 999779) (-685 "NARNG.spad" 998582 998592 999174 999179) (-684 "NAALG.spad" 998147 998157 998550 998577) (-683 "NAALG.spad" 997732 997744 998137 998142) (-682 "MULTSQFR.spad" 994690 994707 997722 997727) (-681 "MULTFACT.spad" 994073 994090 994680 994685) (-680 "MTSCAT.spad" 992167 992188 993971 994068) (-679 "MTHING.spad" 991826 991836 992157 992162) (-678 "MSYSCMD.spad" 991260 991268 991816 991821) (-677 "MSETAGG.spad" 991105 991115 991228 991255) (-676 "MSET.spad" 989051 989061 990799 990838) (-675 "MRING.spad" 986028 986040 988759 988826) (-674 "MRF2.spad" 985590 985604 986018 986023) (-673 "MRATFAC.spad" 985136 985153 985580 985585) (-672 "MPRFF.spad" 983176 983195 985126 985131) (-671 "MPOLY.spad" 980980 980995 981339 981466) (-670 "MPCPF.spad" 980244 980263 980970 980975) (-669 "MPC3.spad" 980061 980101 980234 980239) (-668 "MPC2.spad" 979715 979748 980051 980056) (-667 "MONOTOOL.spad" 978066 978083 979705 979710) (-666 "catdef.spad" 977499 977510 977720 978061) (-665 "catdef.spad" 976897 976908 977153 977494) (-664 "MONOID.spad" 976218 976226 976887 976892) (-663 "MONOID.spad" 975537 975547 976208 976213) (-662 "MONOGEN.spad" 974285 974298 975397 975532) (-661 "MONOGEN.spad" 973055 973070 974169 974174) (-660 "MONADWU.spad" 971135 971143 973045 973050) (-659 "MONADWU.spad" 969213 969223 971125 971130) (-658 "MONAD.spad" 968373 968381 969203 969208) (-657 "MONAD.spad" 967531 967541 968363 968368) (-656 "MOEBIUS.spad" 966267 966281 967511 967526) (-655 "MODULE.spad" 966137 966147 966235 966262) (-654 "MODULE.spad" 966027 966039 966127 966132) (-653 "MODRING.spad" 965362 965401 966007 966022) (-652 "MODOP.spad" 964019 964031 965184 965251) (-651 "MODMONOM.spad" 963750 963768 964009 964014) (-650 "MODMON.spad" 960820 960832 961535 961688) (-649 "MODFIELD.spad" 960182 960221 960722 960815) (-648 "MMLFORM.spad" 959042 959050 960172 960177) (-647 "MMAP.spad" 958784 958818 959032 959037) (-646 "MLO.spad" 957243 957253 958740 958779) (-645 "MLIFT.spad" 955855 955872 957233 957238) (-644 "MKUCFUNC.spad" 955390 955408 955845 955850) (-643 "MKRECORD.spad" 954978 954991 955380 955385) (-642 "MKFUNC.spad" 954385 954395 954968 954973) (-641 "MKFLCFN.spad" 953353 953363 954375 954380) (-640 "MKBCFUNC.spad" 952848 952866 953343 953348) (-639 "MHROWRED.spad" 951359 951369 952838 952843) (-638 "MFINFACT.spad" 950759 950781 951349 951354) (-637 "MESH.spad" 948554 948562 950749 950754) (-636 "MDDFACT.spad" 946773 946783 948544 948549) (-635 "MDAGG.spad" 946064 946074 946753 946768) (-634 "MCDEN.spad" 945274 945286 946054 946059) (-633 "MAYBE.spad" 944574 944585 945264 945269) (-632 "MATSTOR.spad" 941890 941900 944564 944569) (-631 "MATRIX.spad" 940669 940679 941153 941180) (-630 "MATLIN.spad" 938037 938061 940553 940558) (-629 "MATCAT2.spad" 937319 937367 938027 938032) (-628 "MATCAT.spad" 929015 929037 937287 937314) (-627 "MATCAT.spad" 920583 920607 928857 928862) (-626 "MAPPKG3.spad" 919498 919512 920573 920578) (-625 "MAPPKG2.spad" 918836 918848 919488 919493) (-624 "MAPPKG1.spad" 917664 917674 918826 918831) (-623 "MAPPAST.spad" 917003 917011 917654 917659) (-622 "MAPHACK3.spad" 916815 916829 916993 916998) (-621 "MAPHACK2.spad" 916584 916596 916805 916810) (-620 "MAPHACK1.spad" 916228 916238 916574 916579) (-619 "MAGMA.spad" 914034 914051 916218 916223) (-618 "MACROAST.spad" 913629 913637 914024 914029) (-617 "LZSTAGG.spad" 910883 910893 913619 913624) (-616 "LZSTAGG.spad" 908135 908147 910873 910878) (-615 "LWORD.spad" 904880 904897 908125 908130) (-614 "LSTAST.spad" 904664 904672 904870 904875) (-613 "LSQM.spad" 902942 902956 903336 903387) (-612 "LSPP.spad" 902477 902494 902932 902937) (-611 "LSMP1.spad" 900320 900334 902467 902472) (-610 "LSMP.spad" 899177 899205 900310 900315) (-609 "LSAGG.spad" 898846 898856 899145 899172) (-608 "LSAGG.spad" 898535 898547 898836 898841) (-607 "LPOLY.spad" 897497 897516 898391 898460) (-606 "LPEFRAC.spad" 896768 896778 897487 897492) (-605 "LOGIC.spad" 896370 896378 896758 896763) (-604 "LOGIC.spad" 895970 895980 896360 896365) (-603 "LODOOPS.spad" 894900 894912 895960 895965) (-602 "LODOF.spad" 893946 893963 894857 894862) (-601 "LODOCAT.spad" 892612 892622 893902 893941) (-600 "LODOCAT.spad" 891276 891288 892568 892573) (-599 "LODO2.spad" 890590 890602 890997 891036) (-598 "LODO1.spad" 890031 890041 890311 890350) (-597 "LODO.spad" 889456 889472 889752 889791) (-596 "LODEEF.spad" 888258 888276 889446 889451) (-595 "LO.spad" 887659 887673 888192 888219) (-594 "LNAGG.spad" 883846 883856 887649 887654) (-593 "LNAGG.spad" 879997 880009 883802 883807) (-592 "LMOPS.spad" 876765 876782 879987 879992) (-591 "LMODULE.spad" 876549 876559 876755 876760) (-590 "LMDICT.spad" 875930 875940 876178 876205) (-589 "LLINSET.spad" 875637 875647 875920 875925) (-588 "LITERAL.spad" 875543 875554 875627 875632) (-587 "LIST3.spad" 874854 874868 875533 875538) (-586 "LIST2MAP.spad" 871781 871793 874844 874849) (-585 "LIST2.spad" 870483 870495 871771 871776) (-584 "LIST.spad" 868365 868375 869708 869735) (-583 "LINSET.spad" 868144 868154 868355 868360) (-582 "LINFORM.spad" 867607 867619 868112 868139) (-581 "LINEXP.spad" 866350 866360 867597 867602) (-580 "LINELT.spad" 865721 865733 866233 866260) (-579 "LINDEP.spad" 864570 864582 865633 865638) (-578 "LINBASIS.spad" 864206 864221 864560 864565) (-577 "LIMITRF.spad" 862153 862163 864196 864201) (-576 "LIMITPS.spad" 861063 861076 862143 862148) (-575 "LIECAT.spad" 860547 860557 860989 861058) (-574 "LIECAT.spad" 860059 860071 860503 860508) (-573 "LIE.spad" 858063 858075 859337 859479) (-572 "LIB.spad" 856222 856230 856668 856695) (-571 "LGROBP.spad" 853575 853594 856212 856217) (-570 "LFCAT.spad" 852634 852642 853565 853570) (-569 "LF.spad" 851589 851605 852624 852629) (-568 "LEXTRIPK.spad" 847212 847227 851579 851584) (-567 "LEXP.spad" 845231 845258 847192 847207) (-566 "LETAST.spad" 844930 844938 845221 845226) (-565 "LEADCDET.spad" 843336 843353 844920 844925) (-564 "LAZM3PK.spad" 842080 842102 843326 843331) (-563 "LAUPOL.spad" 840747 840760 841647 841716) (-562 "LAPLACE.spad" 840330 840346 840737 840742) (-561 "LALG.spad" 840106 840116 840310 840325) (-560 "LALG.spad" 839890 839902 840096 840101) (-559 "LA.spad" 839330 839344 839812 839851) (-558 "KVTFROM.spad" 839073 839083 839320 839325) (-557 "KTVLOGIC.spad" 838617 838625 839063 839068) (-556 "KRCFROM.spad" 838363 838373 838607 838612) (-555 "KOVACIC.spad" 837094 837111 838353 838358) (-554 "KONVERT.spad" 836816 836826 837084 837089) (-553 "KOERCE.spad" 836553 836563 836806 836811) (-552 "KERNEL2.spad" 836256 836268 836543 836548) (-551 "KERNEL.spad" 834976 834986 836105 836110) (-550 "KDAGG.spad" 834085 834107 834956 834971) (-549 "KDAGG.spad" 833202 833226 834075 834080) (-548 "KAFILE.spad" 832092 832108 832327 832354) (-547 "JVMOP.spad" 832005 832013 832082 832087) (-546 "JVMMDACC.spad" 831059 831067 831995 832000) (-545 "JVMFDACC.spad" 830375 830383 831049 831054) (-544 "JVMCSTTG.spad" 829104 829112 830365 830370) (-543 "JVMCFACC.spad" 828550 828558 829094 829099) (-542 "JVMBCODE.spad" 828461 828469 828540 828545) (-541 "JORDAN.spad" 826278 826290 827739 827881) (-540 "JOINAST.spad" 825980 825988 826268 826273) (-539 "IXAGG.spad" 824113 824137 825970 825975) (-538 "IXAGG.spad" 822101 822127 823960 823965) (-537 "ITUPLE.spad" 821277 821287 822091 822096) (-536 "ITRIGMNP.spad" 820124 820143 821267 821272) (-535 "ITFUN3.spad" 819630 819644 820114 820119) (-534 "ITFUN2.spad" 819374 819386 819620 819625) (-533 "ITFORM.spad" 818729 818737 819364 819369) (-532 "ITAYLOR.spad" 816723 816738 818593 818690) (-531 "ISUPS.spad" 809172 809187 815709 815806) (-530 "ISUMP.spad" 808673 808689 809162 809167) (-529 "ISAST.spad" 808392 808400 808663 808668) (-528 "IRURPK.spad" 807109 807128 808382 808387) (-527 "IRSN.spad" 805113 805121 807099 807104) (-526 "IRRF2F.spad" 803606 803616 805069 805074) (-525 "IRREDFFX.spad" 803207 803218 803596 803601) (-524 "IROOT.spad" 801546 801556 803197 803202) (-523 "IRFORM.spad" 800870 800878 801536 801541) (-522 "IR2F.spad" 800084 800100 800860 800865) (-521 "IR2.spad" 799112 799128 800074 800079) (-520 "IR.spad" 796948 796962 798994 799021) (-519 "IPRNTPK.spad" 796708 796716 796938 796943) (-518 "IPF.spad" 796273 796285 796513 796606) (-517 "IPADIC.spad" 796042 796068 796199 796268) (-516 "IP4ADDR.spad" 795599 795607 796032 796037) (-515 "IOMODE.spad" 795121 795129 795589 795594) (-514 "IOBFILE.spad" 794506 794514 795111 795116) (-513 "IOBCON.spad" 794371 794379 794496 794501) (-512 "INVLAPLA.spad" 794020 794036 794361 794366) (-511 "INTTR.spad" 787414 787431 794010 794015) (-510 "INTTOOLS.spad" 785222 785238 787041 787046) (-509 "INTSLPE.spad" 784550 784558 785212 785217) (-508 "INTRVL.spad" 784116 784126 784464 784545) (-507 "INTRF.spad" 782548 782562 784106 784111) (-506 "INTRET.spad" 781980 781990 782538 782543) (-505 "INTRAT.spad" 780715 780732 781970 781975) (-504 "INTPM.spad" 779178 779194 780436 780441) (-503 "INTPAF.spad" 777054 777072 779107 779112) (-502 "INTHERTR.spad" 776328 776345 777044 777049) (-501 "INTHERAL.spad" 775998 776022 776318 776323) (-500 "INTHEORY.spad" 772437 772445 775988 775993) (-499 "INTG0.spad" 766201 766219 772366 772371) (-498 "INTFACT.spad" 765268 765278 766191 766196) (-497 "INTEF.spad" 763679 763695 765258 765263) (-496 "INTDOM.spad" 762302 762310 763605 763674) (-495 "INTDOM.spad" 760987 760997 762292 762297) (-494 "INTCAT.spad" 759254 759264 760901 760982) (-493 "INTBIT.spad" 758761 758769 759244 759249) (-492 "INTALG.spad" 757949 757976 758751 758756) (-491 "INTAF.spad" 757449 757465 757939 757944) (-490 "INTABL.spad" 755831 755862 755994 756021) (-489 "INT8.spad" 755711 755719 755821 755826) (-488 "INT64.spad" 755590 755598 755701 755706) (-487 "INT32.spad" 755469 755477 755580 755585) (-486 "INT16.spad" 755348 755356 755459 755464) (-485 "INT.spad" 754874 754882 755214 755343) (-484 "INS.spad" 752377 752385 754776 754869) (-483 "INS.spad" 749966 749976 752367 752372) (-482 "INPSIGN.spad" 749436 749449 749956 749961) (-481 "INPRODPF.spad" 748532 748551 749426 749431) (-480 "INPRODFF.spad" 747620 747644 748522 748527) (-479 "INNMFACT.spad" 746595 746612 747610 747615) (-478 "INMODGCD.spad" 746099 746129 746585 746590) (-477 "INFSP.spad" 744396 744418 746089 746094) (-476 "INFPROD0.spad" 743476 743495 744386 744391) (-475 "INFORM1.spad" 743101 743111 743466 743471) (-474 "INFORM.spad" 740312 740320 743091 743096) (-473 "INFINITY.spad" 739864 739872 740302 740307) (-472 "INETCLTS.spad" 739841 739849 739854 739859) (-471 "INEP.spad" 738387 738409 739831 739836) (-470 "INDE.spad" 738036 738053 738297 738302) (-469 "INCRMAPS.spad" 737473 737483 738026 738031) (-468 "INBFILE.spad" 736569 736577 737463 737468) (-467 "INBFF.spad" 732419 732430 736559 736564) (-466 "INBCON.spad" 730685 730693 732409 732414) (-465 "INBCON.spad" 728949 728959 730675 730680) (-464 "INAST.spad" 728610 728618 728939 728944) (-463 "IMPTAST.spad" 728318 728326 728600 728605) (-462 "IMATQF.spad" 727412 727456 728274 728279) (-461 "IMATLIN.spad" 726033 726057 727368 727373) (-460 "IFF.spad" 725446 725462 725717 725810) (-459 "IFAST.spad" 725060 725068 725436 725441) (-458 "IFARRAY.spad" 722587 722602 724285 724312) (-457 "IFAMON.spad" 722449 722466 722543 722548) (-456 "IEVALAB.spad" 721862 721874 722439 722444) (-455 "IEVALAB.spad" 721273 721287 721852 721857) (-454 "indexedp.spad" 720829 720841 721263 721268) (-453 "IDPOAMS.spad" 720507 720519 720741 720746) (-452 "IDPOAM.spad" 720149 720161 720419 720424) (-451 "IDPO.spad" 719563 719575 720061 720066) (-450 "IDPC.spad" 718278 718290 719553 719558) (-449 "IDPAM.spad" 717945 717957 718190 718195) (-448 "IDPAG.spad" 717614 717626 717857 717862) (-447 "IDENT.spad" 717266 717274 717604 717609) (-446 "catdef.spad" 717037 717048 717149 717261) (-445 "IDECOMP.spad" 714276 714294 717027 717032) (-444 "IDEAL.spad" 709238 709277 714224 714229) (-443 "ICDEN.spad" 708451 708467 709228 709233) (-442 "ICARD.spad" 707844 707852 708441 708446) (-441 "IBPTOOLS.spad" 706451 706468 707834 707839) (-440 "IBITS.spad" 705964 705977 706097 706124) (-439 "IBATOOL.spad" 702949 702968 705954 705959) (-438 "IBACHIN.spad" 701456 701471 702939 702944) (-437 "array2.spad" 700941 700963 701128 701155) (-436 "IARRAY1.spad" 700020 700035 700166 700193) (-435 "IAN.spad" 698402 698410 699851 699944) (-434 "IALGFACT.spad" 698013 698046 698392 698397) (-433 "HYPCAT.spad" 697437 697445 698003 698008) (-432 "HYPCAT.spad" 696859 696869 697427 697432) (-431 "HOSTNAME.spad" 696675 696683 696849 696854) (-430 "HOMOTOP.spad" 696418 696428 696665 696670) (-429 "HOAGG.spad" 693700 693710 696408 696413) (-428 "HOAGG.spad" 690732 690744 693442 693447) (-427 "HEXADEC.spad" 688957 688965 689322 689415) (-426 "HEUGCD.spad" 688048 688059 688947 688952) (-425 "HELLFDIV.spad" 687654 687678 688038 688043) (-424 "HEAP.spad" 687111 687121 687326 687353) (-423 "HEADAST.spad" 686652 686660 687101 687106) (-422 "HDP.spad" 676285 676301 676662 676759) (-421 "HDMP.spad" 673832 673847 674448 674575) (-420 "HB.spad" 672107 672115 673822 673827) (-419 "HASHTBL.spad" 670441 670472 670652 670679) (-418 "HASAST.spad" 670157 670165 670431 670436) (-417 "HACKPI.spad" 669648 669656 670059 670152) (-416 "GTSET.spad" 668575 668591 669282 669309) (-415 "GSTBL.spad" 666946 666981 667120 667147) (-414 "GSERIES.spad" 664318 664345 665137 665286) (-413 "GROUP.spad" 663591 663599 664298 664313) (-412 "GROUP.spad" 662872 662882 663581 663586) (-411 "GROEBSOL.spad" 661366 661387 662862 662867) (-410 "GRMOD.spad" 659947 659959 661356 661361) (-409 "GRMOD.spad" 658526 658540 659937 659942) (-408 "GRIMAGE.spad" 651439 651447 658516 658521) (-407 "GRDEF.spad" 649818 649826 651429 651434) (-406 "GRAY.spad" 648289 648297 649808 649813) (-405 "GRALG.spad" 647384 647396 648279 648284) (-404 "GRALG.spad" 646477 646491 647374 647379) (-403 "GPOLSET.spad" 645935 645958 646147 646174) (-402 "GOSPER.spad" 645212 645230 645925 645930) (-401 "GMODPOL.spad" 644360 644387 645180 645207) (-400 "GHENSEL.spad" 643443 643457 644350 644355) (-399 "GENUPS.spad" 639736 639749 643433 643438) (-398 "GENUFACT.spad" 639313 639323 639726 639731) (-397 "GENPGCD.spad" 638915 638932 639303 639308) (-396 "GENMFACT.spad" 638367 638386 638905 638910) (-395 "GENEEZ.spad" 636326 636339 638357 638362) (-394 "GDMP.spad" 633715 633732 634489 634616) (-393 "GCNAALG.spad" 627638 627665 633509 633576) (-392 "GCDDOM.spad" 626830 626838 627564 627633) (-391 "GCDDOM.spad" 626084 626094 626820 626825) (-390 "GBINTERN.spad" 622104 622142 626074 626079) (-389 "GBF.spad" 617887 617925 622094 622099) (-388 "GBEUCLID.spad" 615769 615807 617877 617882) (-387 "GB.spad" 613295 613333 615725 615730) (-386 "GAUSSFAC.spad" 612608 612616 613285 613290) (-385 "GALUTIL.spad" 610934 610944 612564 612569) (-384 "GALPOLYU.spad" 609388 609401 610924 610929) (-383 "GALFACTU.spad" 607601 607620 609378 609383) (-382 "GALFACT.spad" 597814 597825 607591 607596) (-381 "FUNDESC.spad" 597492 597500 597804 597809) (-380 "FUNCTION.spad" 597341 597353 597482 597487) (-379 "FT.spad" 595641 595649 597331 597336) (-378 "FSUPFACT.spad" 594555 594574 595591 595596) (-377 "FST.spad" 592641 592649 594545 594550) (-376 "FSRED.spad" 592121 592137 592631 592636) (-375 "FSPRMELT.spad" 590987 591003 592078 592083) (-374 "FSPECF.spad" 589078 589094 590977 590982) (-373 "FSINT.spad" 588738 588754 589068 589073) (-372 "FSERIES.spad" 587929 587941 588558 588657) (-371 "FSCINT.spad" 587246 587262 587919 587924) (-370 "FSAGG2.spad" 585981 585997 587236 587241) (-369 "FSAGG.spad" 585098 585108 585937 585976) (-368 "FSAGG.spad" 584177 584189 585018 585023) (-367 "FS2UPS.spad" 578692 578726 584167 584172) (-366 "FS2EXPXP.spad" 577833 577856 578682 578687) (-365 "FS2.spad" 577488 577504 577823 577828) (-364 "FS.spad" 571760 571770 577267 577483) (-363 "FS.spad" 565834 565846 571343 571348) (-362 "FRUTIL.spad" 564788 564798 565824 565829) (-361 "FRNAALG.spad" 560065 560075 564730 564783) (-360 "FRNAALG.spad" 555354 555366 560021 560026) (-359 "FRNAAF2.spad" 554802 554820 555344 555349) (-358 "FRMOD.spad" 554210 554240 554731 554736) (-357 "FRIDEAL2.spad" 553814 553846 554200 554205) (-356 "FRIDEAL.spad" 553039 553060 553794 553809) (-355 "FRETRCT.spad" 552558 552568 553029 553034) (-354 "FRETRCT.spad" 551984 551996 552457 552462) (-353 "FRAMALG.spad" 550364 550377 551940 551979) (-352 "FRAMALG.spad" 548776 548791 550354 550359) (-351 "FRAC2.spad" 548381 548393 548766 548771) (-350 "FRAC.spad" 546368 546378 546755 546928) (-349 "FR2.spad" 545704 545716 546358 546363) (-348 "FR.spad" 539492 539502 544765 544834) (-347 "FPS.spad" 536331 536339 539382 539487) (-346 "FPS.spad" 533198 533208 536251 536256) (-345 "FPC.spad" 532244 532252 533100 533193) (-344 "FPC.spad" 531376 531386 532234 532239) (-343 "FPATMAB.spad" 531138 531148 531366 531371) (-342 "FPARFRAC.spad" 529980 529997 531128 531133) (-341 "FORDER.spad" 529671 529695 529970 529975) (-340 "FNLA.spad" 529095 529117 529639 529666) (-339 "FNCAT.spad" 527690 527698 529085 529090) (-338 "FNAME.spad" 527582 527590 527680 527685) (-337 "FMONOID.spad" 527263 527273 527538 527543) (-336 "FMONCAT.spad" 524432 524442 527253 527258) (-335 "FMCAT.spad" 522108 522126 524400 524427) (-334 "FM1.spad" 521473 521485 522042 522069) (-333 "FM.spad" 521088 521100 521327 521354) (-332 "FLOATRP.spad" 518831 518845 521078 521083) (-331 "FLOATCP.spad" 516270 516284 518821 518826) (-330 "FLOAT.spad" 513361 513369 516136 516265) (-329 "FLINEXP.spad" 513083 513093 513351 513356) (-328 "FLINEXP.spad" 512762 512774 513032 513037) (-327 "FLASORT.spad" 512088 512100 512752 512757) (-326 "FLALG.spad" 509758 509777 512014 512083) (-325 "FLAGG2.spad" 508475 508491 509748 509753) (-324 "FLAGG.spad" 505541 505551 508455 508470) (-323 "FLAGG.spad" 502508 502520 505424 505429) (-322 "FINRALG.spad" 500593 500606 502464 502503) (-321 "FINRALG.spad" 498604 498619 500477 500482) (-320 "FINITE.spad" 497756 497764 498594 498599) (-319 "FINITE.spad" 496906 496916 497746 497751) (-318 "aggcat.spad" 495072 495082 496886 496901) (-317 "FINAGG.spad" 493213 493225 495029 495034) (-316 "FINAALG.spad" 482398 482408 493155 493208) (-315 "FINAALG.spad" 471595 471607 482354 482359) (-314 "FILECAT.spad" 470129 470146 471585 471590) (-313 "FILE.spad" 469712 469722 470119 470124) (-312 "FIELD.spad" 469118 469126 469614 469707) (-311 "FIELD.spad" 468610 468620 469108 469113) (-310 "FGROUP.spad" 467273 467283 468590 468605) (-309 "FGLMICPK.spad" 466068 466083 467263 467268) (-308 "FFX.spad" 465454 465469 465787 465880) (-307 "FFSLPE.spad" 464965 464986 465444 465449) (-306 "FFPOLY2.spad" 464025 464042 464955 464960) (-305 "FFPOLY.spad" 455367 455378 464015 464020) (-304 "FFP.spad" 454775 454795 455086 455179) (-303 "FFNBX.spad" 453298 453318 454494 454587) (-302 "FFNBP.spad" 451822 451839 453017 453110) (-301 "FFNB.spad" 450290 450311 451506 451599) (-300 "FFINTBAS.spad" 447804 447823 450280 450285) (-299 "FFIELDC.spad" 445389 445397 447706 447799) (-298 "FFIELDC.spad" 443060 443070 445379 445384) (-297 "FFHOM.spad" 441832 441849 443050 443055) (-296 "FFF.spad" 439275 439286 441822 441827) (-295 "FFCGX.spad" 438133 438153 438994 439087) (-294 "FFCGP.spad" 437033 437053 437852 437945) (-293 "FFCG.spad" 435828 435849 436717 436810) (-292 "FFCAT2.spad" 435575 435615 435818 435823) (-291 "FFCAT.spad" 428740 428762 435414 435570) (-290 "FFCAT.spad" 421984 422008 428660 428665) (-289 "FF.spad" 421435 421451 421668 421761) (-288 "FEVALAB.spad" 421143 421153 421425 421430) (-287 "FEVALAB.spad" 420627 420639 420911 420916) (-286 "FDIVCAT.spad" 418723 418747 420617 420622) (-285 "FDIVCAT.spad" 416817 416843 418713 418718) (-284 "FDIV2.spad" 416473 416513 416807 416812) (-283 "FDIV.spad" 415931 415955 416463 416468) (-282 "FCTRDATA.spad" 414939 414947 415921 415926) (-281 "FCOMP.spad" 414318 414328 414929 414934) (-280 "FAXF.spad" 407353 407367 414220 414313) (-279 "FAXF.spad" 400440 400456 407309 407314) (-278 "FARRAY.spad" 398632 398642 399665 399692) (-277 "FAMR.spad" 396776 396788 398530 398627) (-276 "FAMR.spad" 394904 394918 396660 396665) (-275 "FAMONOID.spad" 394588 394598 394858 394863) (-274 "FAMONC.spad" 392908 392920 394578 394583) (-273 "FAGROUP.spad" 392548 392558 392804 392831) (-272 "FACUTIL.spad" 390760 390777 392538 392543) (-271 "FACTFUNC.spad" 389962 389972 390750 390755) (-270 "EXPUPXS.spad" 386854 386877 388153 388302) (-269 "EXPRTUBE.spad" 384142 384150 386844 386849) (-268 "EXPRODE.spad" 381310 381326 384132 384137) (-267 "EXPR2UPS.spad" 377432 377445 381300 381305) (-266 "EXPR2.spad" 377137 377149 377422 377427) (-265 "EXPR.spad" 372782 372792 373496 373783) (-264 "EXPEXPAN.spad" 369727 369752 370359 370452) (-263 "EXITAST.spad" 369463 369471 369717 369722) (-262 "EXIT.spad" 369134 369142 369453 369458) (-261 "EVALCYC.spad" 368594 368608 369124 369129) (-260 "EVALAB.spad" 368174 368184 368584 368589) (-259 "EVALAB.spad" 367752 367764 368164 368169) (-258 "EUCDOM.spad" 365342 365350 367678 367747) (-257 "EUCDOM.spad" 362994 363004 365332 365337) (-256 "ES2.spad" 362507 362523 362984 362989) (-255 "ES1.spad" 362077 362093 362497 362502) (-254 "ES.spad" 354948 354956 362067 362072) (-253 "ES.spad" 347740 347750 354861 354866) (-252 "ERROR.spad" 345067 345075 347730 347735) (-251 "EQTBL.spad" 343403 343425 343612 343639) (-250 "EQ2.spad" 343121 343133 343393 343398) (-249 "EQ.spad" 338027 338037 340822 340928) (-248 "EP.spad" 334353 334363 338017 338022) (-247 "ENV.spad" 333031 333039 334343 334348) (-246 "ENTIRER.spad" 332699 332707 332975 333026) (-245 "ENTIRER.spad" 332411 332421 332689 332694) (-244 "EMR.spad" 331699 331740 332337 332406) (-243 "ELTAGG.spad" 329953 329972 331689 331694) (-242 "ELTAGG.spad" 328171 328192 329909 329914) (-241 "ELTAB.spad" 327646 327659 328161 328166) (-240 "ELFUTS.spad" 327081 327100 327636 327641) (-239 "ELEMFUN.spad" 326770 326778 327071 327076) (-238 "ELEMFUN.spad" 326457 326467 326760 326765) (-237 "ELAGG.spad" 324428 324438 326437 326452) (-236 "ELAGG.spad" 322336 322348 324347 324352) (-235 "ELABOR.spad" 321682 321690 322326 322331) (-234 "ELABEXPR.spad" 320614 320622 321672 321677) (-233 "EFUPXS.spad" 317390 317420 320570 320575) (-232 "EFULS.spad" 314226 314249 317346 317351) (-231 "EFSTRUC.spad" 312241 312257 314216 314221) (-230 "EF.spad" 307017 307033 312231 312236) (-229 "EAB.spad" 305317 305325 307007 307012) (-228 "DVARCAT.spad" 302323 302333 305307 305312) (-227 "DVARCAT.spad" 299327 299339 302313 302318) (-226 "DSMP.spad" 297060 297074 297365 297492) (-225 "DSEXT.spad" 296362 296372 297050 297055) (-224 "DSEXT.spad" 295584 295596 296274 296279) (-223 "DROPT1.spad" 295249 295259 295574 295579) (-222 "DROPT0.spad" 290114 290122 295239 295244) (-221 "DROPT.spad" 284073 284081 290104 290109) (-220 "DRAWPT.spad" 282246 282254 284063 284068) (-219 "DRAWHACK.spad" 281554 281564 282236 282241) (-218 "DRAWCX.spad" 279032 279040 281544 281549) (-217 "DRAWCURV.spad" 278579 278594 279022 279027) (-216 "DRAWCFUN.spad" 268111 268119 278569 278574) (-215 "DRAW.spad" 260987 261000 268101 268106) (-214 "DQAGG.spad" 259165 259175 260955 260982) (-213 "DPOLCAT.spad" 254522 254538 259033 259160) (-212 "DPOLCAT.spad" 249965 249983 254478 254483) (-211 "DPMO.spad" 242668 242684 242806 243012) (-210 "DPMM.spad" 235384 235402 235509 235715) (-209 "DOMTMPLT.spad" 235155 235163 235374 235379) (-208 "DOMCTOR.spad" 234910 234918 235145 235150) (-207 "DOMAIN.spad" 234021 234029 234900 234905) (-206 "DMP.spad" 231614 231629 232184 232311) (-205 "DMEXT.spad" 231481 231491 231582 231609) (-204 "DLP.spad" 230841 230851 231471 231476) (-203 "DLIST.spad" 229462 229472 230066 230093) (-202 "DLAGG.spad" 227879 227889 229452 229457) (-201 "DIVRING.spad" 227421 227429 227823 227874) (-200 "DIVRING.spad" 227007 227017 227411 227416) (-199 "DISPLAY.spad" 225197 225205 226997 227002) (-198 "DIRPROD2.spad" 224015 224033 225187 225192) (-197 "DIRPROD.spad" 213385 213401 214025 214122) (-196 "DIRPCAT.spad" 212668 212684 213283 213380) (-195 "DIRPCAT.spad" 211577 211595 212194 212199) (-194 "DIOSP.spad" 210402 210410 211567 211572) (-193 "DIOPS.spad" 209398 209408 210382 210397) (-192 "DIOPS.spad" 208368 208380 209354 209359) (-191 "catdef.spad" 208226 208234 208358 208363) (-190 "DIFRING.spad" 208064 208072 208206 208221) (-189 "DIFFSPC.spad" 207643 207651 208054 208059) (-188 "DIFFSPC.spad" 207220 207230 207633 207638) (-187 "DIFFMOD.spad" 206709 206719 207188 207215) (-186 "DIFFDOM.spad" 205874 205885 206699 206704) (-185 "DIFFDOM.spad" 205037 205050 205864 205869) (-184 "DIFEXT.spad" 204856 204866 205017 205032) (-183 "DIAGG.spad" 204486 204496 204836 204851) (-182 "DIAGG.spad" 204124 204136 204476 204481) (-181 "DHMATRIX.spad" 202501 202511 203646 203673) (-180 "DFSFUN.spad" 196141 196149 202491 202496) (-179 "DFLOAT.spad" 192748 192756 196031 196136) (-178 "DFINTTLS.spad" 190979 190995 192738 192743) (-177 "DERHAM.spad" 188893 188925 190959 190974) (-176 "DEQUEUE.spad" 188282 188292 188565 188592) (-175 "DEGRED.spad" 187899 187913 188272 188277) (-174 "DEFINTRF.spad" 185481 185491 187889 187894) (-173 "DEFINTEF.spad" 184019 184035 185471 185476) (-172 "DEFAST.spad" 183403 183411 184009 184014) (-171 "DECIMAL.spad" 181632 181640 181993 182086) (-170 "DDFACT.spad" 179453 179470 181622 181627) (-169 "DBLRESP.spad" 179053 179077 179443 179448) (-168 "DBASIS.spad" 178679 178694 179043 179048) (-167 "DBASE.spad" 177343 177353 178669 178674) (-166 "DATAARY.spad" 176829 176842 177333 177338) (-165 "CYCLOTOM.spad" 176335 176343 176819 176824) (-164 "CYCLES.spad" 173127 173135 176325 176330) (-163 "CVMP.spad" 172544 172554 173117 173122) (-162 "CTRIGMNP.spad" 171044 171060 172534 172539) (-161 "CTORKIND.spad" 170647 170655 171034 171039) (-160 "CTORCAT.spad" 169888 169896 170637 170642) (-159 "CTORCAT.spad" 169127 169137 169878 169883) (-158 "CTORCALL.spad" 168716 168726 169117 169122) (-157 "CTOR.spad" 168407 168415 168706 168711) (-156 "CSTTOOLS.spad" 167652 167665 168397 168402) (-155 "CRFP.spad" 161424 161437 167642 167647) (-154 "CRCEAST.spad" 161144 161152 161414 161419) (-153 "CRAPACK.spad" 160211 160221 161134 161139) (-152 "CPMATCH.spad" 159712 159727 160133 160138) (-151 "CPIMA.spad" 159417 159436 159702 159707) (-150 "COORDSYS.spad" 154426 154436 159407 159412) (-149 "CONTOUR.spad" 153853 153861 154416 154421) (-148 "CONTFRAC.spad" 149603 149613 153755 153848) (-147 "CONDUIT.spad" 149361 149369 149593 149598) (-146 "COMRING.spad" 149035 149043 149299 149356) (-145 "COMPPROP.spad" 148553 148561 149025 149030) (-144 "COMPLPAT.spad" 148320 148335 148543 148548) (-143 "COMPLEX2.spad" 148035 148047 148310 148315) (-142 "COMPLEX.spad" 143741 143751 143985 144243) (-141 "COMPILER.spad" 143290 143298 143731 143736) (-140 "COMPFACT.spad" 142892 142906 143280 143285) (-139 "COMPCAT.spad" 140967 140977 142629 142887) (-138 "COMPCAT.spad" 138783 138795 140447 140452) (-137 "COMMUPC.spad" 138531 138549 138773 138778) (-136 "COMMONOP.spad" 138064 138072 138521 138526) (-135 "COMMAAST.spad" 137827 137835 138054 138059) (-134 "COMM.spad" 137638 137646 137817 137822) (-133 "COMBOPC.spad" 136561 136569 137628 137633) (-132 "COMBINAT.spad" 135328 135338 136551 136556) (-131 "COMBF.spad" 132750 132766 135318 135323) (-130 "COLOR.spad" 131587 131595 132740 132745) (-129 "COLONAST.spad" 131253 131261 131577 131582) (-128 "CMPLXRT.spad" 130964 130981 131243 131248) (-127 "CLLCTAST.spad" 130626 130634 130954 130959) (-126 "CLIP.spad" 126734 126742 130616 130621) (-125 "CLIF.spad" 125389 125405 126690 126729) (-124 "CLAGG.spad" 121926 121936 125379 125384) (-123 "CLAGG.spad" 118347 118359 121802 121807) (-122 "CINTSLPE.spad" 117702 117715 118337 118342) (-121 "CHVAR.spad" 115840 115862 117692 117697) (-120 "CHARZ.spad" 115755 115763 115820 115835) (-119 "CHARPOL.spad" 115281 115291 115745 115750) (-118 "CHARNZ.spad" 115043 115051 115261 115276) (-117 "CHAR.spad" 112411 112419 115033 115038) (-116 "CFCAT.spad" 111739 111747 112401 112406) (-115 "CDEN.spad" 110959 110973 111729 111734) (-114 "CCLASS.spad" 109139 109147 110401 110440) (-113 "CATEGORY.spad" 108213 108221 109129 109134) (-112 "CATCTOR.spad" 108104 108112 108203 108208) (-111 "CATAST.spad" 107730 107738 108094 108099) (-110 "CASEAST.spad" 107444 107452 107720 107725) (-109 "CARTEN2.spad" 106834 106861 107434 107439) (-108 "CARTEN.spad" 102586 102610 106824 106829) (-107 "CARD.spad" 99881 99889 102560 102581) (-106 "CAPSLAST.spad" 99663 99671 99871 99876) (-105 "CACHSET.spad" 99287 99295 99653 99658) (-104 "CABMON.spad" 98842 98850 99277 99282) (-103 "BYTEORD.spad" 98517 98525 98832 98837) (-102 "BYTEBUF.spad" 96564 96572 97770 97797) (-101 "BYTE.spad" 96039 96047 96554 96559) (-100 "BTREE.spad" 95177 95187 95711 95738) (-99 "BTOURN.spad" 94248 94257 94849 94876) (-98 "BTCAT.spad" 93727 93736 94216 94243) (-97 "BTCAT.spad" 93226 93237 93717 93722) (-96 "BTAGG.spad" 92693 92700 93194 93221) (-95 "BTAGG.spad" 92180 92189 92683 92688) (-94 "BSTREE.spad" 90987 90996 91852 91879) (-93 "BRILL.spad" 89193 89203 90977 90982) (-92 "BRAGG.spad" 88150 88159 89183 89188) (-91 "BRAGG.spad" 87071 87082 88106 88111) (-90 "BPADICRT.spad" 85131 85142 85377 85470) (-89 "BPADIC.spad" 84804 84815 85057 85126) (-88 "BOUNDZRO.spad" 84461 84477 84794 84799) (-87 "BOP1.spad" 81920 81929 84451 84456) (-86 "BOP.spad" 77063 77070 81910 81915) (-85 "BOOLEAN.spad" 76612 76619 77053 77058) (-84 "BOOLE.spad" 76263 76270 76602 76607) (-83 "BOOLE.spad" 75912 75921 76253 76258) (-82 "BMODULE.spad" 75625 75636 75880 75907) (-81 "BITS.spad" 75057 75064 75271 75298) (-80 "catdef.spad" 74940 74950 75047 75052) (-79 "catdef.spad" 74691 74701 74930 74935) (-78 "BINDING.spad" 74113 74120 74681 74686) (-77 "BINARY.spad" 72348 72355 72703 72796) (-76 "BGAGG.spad" 71554 71563 72328 72343) (-75 "BGAGG.spad" 70768 70779 71544 71549) (-74 "BEZOUT.spad" 69909 69935 70718 70723) (-73 "BBTREE.spad" 66852 66861 69581 69608) (-72 "BASTYPE.spad" 66352 66359 66842 66847) (-71 "BASTYPE.spad" 65850 65859 66342 66347) (-70 "BALFACT.spad" 65310 65322 65840 65845) (-69 "AUTOMOR.spad" 64761 64770 65290 65305) (-68 "ATTREG.spad" 61484 61491 64513 64756) (-67 "ATTRAST.spad" 61201 61208 61474 61479) (-66 "ATRIG.spad" 60671 60678 61191 61196) (-65 "ATRIG.spad" 60139 60148 60661 60666) (-64 "ASTCAT.spad" 60043 60050 60129 60134) (-63 "ASTCAT.spad" 59945 59954 60033 60038) (-62 "ASTACK.spad" 59349 59358 59617 59644) (-61 "ASSOCEQ.spad" 58183 58194 59305 59310) (-60 "ARRAY2.spad" 57706 57715 57855 57882) (-59 "ARRAY12.spad" 56419 56430 57696 57701) (-58 "ARRAY1.spad" 55298 55307 55644 55671) (-57 "ARR2CAT.spad" 51264 51285 55266 55293) (-56 "ARR2CAT.spad" 47250 47273 51254 51259) (-55 "ARITY.spad" 46622 46629 47240 47245) (-54 "APPRULE.spad" 45906 45928 46612 46617) (-53 "APPLYORE.spad" 45525 45538 45896 45901) (-52 "ANY1.spad" 44596 44605 45515 45520) (-51 "ANY.spad" 43447 43454 44586 44591) (-50 "ANTISYM.spad" 41892 41908 43427 43442) (-49 "ANON.spad" 41601 41608 41882 41887) (-48 "AN.spad" 40069 40076 41432 41525) (-47 "AMR.spad" 38254 38265 39967 40064) (-46 "AMR.spad" 36302 36315 38017 38022) (-45 "ALIST.spad" 33540 33561 33890 33917) (-44 "ALGSC.spad" 32675 32701 33412 33465) (-43 "ALGPKG.spad" 28458 28469 32631 32636) (-42 "ALGMFACT.spad" 27651 27665 28448 28453) (-41 "ALGMANIP.spad" 25152 25167 27495 27500) (-40 "ALGFF.spad" 22970 22997 23187 23343) (-39 "ALGFACT.spad" 22089 22099 22960 22965) (-38 "ALGEBRA.spad" 21922 21931 22045 22084) (-37 "ALGEBRA.spad" 21787 21798 21912 21917) (-36 "ALAGG.spad" 21303 21324 21755 21782) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 1963082 1963087 1963092 1963097) (-2 NIL 1963062 1963067 1963072 1963077) (-1 NIL 1963042 1963047 1963052 1963057) (0 NIL 1963022 1963027 1963032 1963037) (-1210 "ZMOD.spad" 1962831 1962844 1962960 1963017) (-1209 "ZLINDEP.spad" 1961929 1961940 1962821 1962826) (-1208 "ZDSOLVE.spad" 1951890 1951912 1961919 1961924) (-1207 "YSTREAM.spad" 1951385 1951396 1951880 1951885) (-1206 "YDIAGRAM.spad" 1951019 1951028 1951375 1951380) (-1205 "XRPOLY.spad" 1950239 1950259 1950875 1950944) (-1204 "XPR.spad" 1948034 1948047 1949957 1950056) (-1203 "XPOLYC.spad" 1947353 1947369 1947960 1948029) (-1202 "XPOLY.spad" 1946908 1946919 1947209 1947278) (-1201 "XPBWPOLY.spad" 1945379 1945399 1946714 1946783) (-1200 "XFALG.spad" 1942427 1942443 1945305 1945374) (-1199 "XF.spad" 1940890 1940905 1942329 1942422) (-1198 "XF.spad" 1939333 1939350 1940774 1940779) (-1197 "XEXPPKG.spad" 1938592 1938618 1939323 1939328) (-1196 "XDPOLY.spad" 1938206 1938222 1938448 1938517) (-1195 "XALG.spad" 1937874 1937885 1938162 1938201) (-1194 "WUTSET.spad" 1933877 1933894 1937508 1937535) (-1193 "WP.spad" 1933084 1933128 1933735 1933802) (-1192 "WHILEAST.spad" 1932882 1932891 1933074 1933079) (-1191 "WHEREAST.spad" 1932553 1932562 1932872 1932877) (-1190 "WFFINTBS.spad" 1930216 1930238 1932543 1932548) (-1189 "WEIER.spad" 1928438 1928449 1930206 1930211) (-1188 "VSPACE.spad" 1928111 1928122 1928406 1928433) (-1187 "VSPACE.spad" 1927804 1927817 1928101 1928106) (-1186 "VOID.spad" 1927481 1927490 1927794 1927799) (-1185 "VIEWDEF.spad" 1922682 1922691 1927471 1927476) (-1184 "VIEW3D.spad" 1906643 1906652 1922672 1922677) (-1183 "VIEW2D.spad" 1894542 1894551 1906633 1906638) (-1182 "VIEW.spad" 1892262 1892271 1894532 1894537) (-1181 "VECTOR2.spad" 1890901 1890914 1892252 1892257) (-1180 "VECTOR.spad" 1889620 1889631 1889871 1889898) (-1179 "VECTCAT.spad" 1887532 1887543 1889588 1889615) (-1178 "VECTCAT.spad" 1885253 1885266 1887311 1887316) (-1177 "VARIABLE.spad" 1885033 1885048 1885243 1885248) (-1176 "UTYPE.spad" 1884677 1884686 1885023 1885028) (-1175 "UTSODETL.spad" 1883972 1883996 1884633 1884638) (-1174 "UTSODE.spad" 1882188 1882208 1883962 1883967) (-1173 "UTSCAT.spad" 1879667 1879683 1882086 1882183) (-1172 "UTSCAT.spad" 1876814 1876832 1879235 1879240) (-1171 "UTS2.spad" 1876409 1876444 1876804 1876809) (-1170 "UTS.spad" 1871421 1871449 1874941 1875038) (-1169 "URAGG.spad" 1866142 1866153 1871411 1871416) (-1168 "URAGG.spad" 1860827 1860840 1866098 1866103) (-1167 "UPXSSING.spad" 1858595 1858621 1860031 1860164) (-1166 "UPXSCONS.spad" 1856413 1856433 1856786 1856935) (-1165 "UPXSCCA.spad" 1854984 1855004 1856259 1856408) (-1164 "UPXSCCA.spad" 1853697 1853719 1854974 1854979) (-1163 "UPXSCAT.spad" 1852286 1852302 1853543 1853692) (-1162 "UPXS2.spad" 1851829 1851882 1852276 1852281) (-1161 "UPXS.spad" 1849184 1849212 1850020 1850169) (-1160 "UPSQFREE.spad" 1847599 1847613 1849174 1849179) (-1159 "UPSCAT.spad" 1845394 1845418 1847497 1847594) (-1158 "UPSCAT.spad" 1842890 1842916 1844995 1845000) (-1157 "UPOLYC2.spad" 1842361 1842380 1842880 1842885) (-1156 "UPOLYC.spad" 1837441 1837452 1842203 1842356) (-1155 "UPOLYC.spad" 1832439 1832452 1837203 1837208) (-1154 "UPMP.spad" 1831371 1831384 1832429 1832434) (-1153 "UPDIVP.spad" 1830936 1830950 1831361 1831366) (-1152 "UPDECOMP.spad" 1829197 1829211 1830926 1830931) (-1151 "UPCDEN.spad" 1828414 1828430 1829187 1829192) (-1150 "UP2.spad" 1827778 1827799 1828404 1828409) (-1149 "UP.spad" 1825248 1825263 1825635 1825788) (-1148 "UNISEG2.spad" 1824745 1824758 1825204 1825209) (-1147 "UNISEG.spad" 1824098 1824109 1824664 1824669) (-1146 "UNIFACT.spad" 1823201 1823213 1824088 1824093) (-1145 "ULSCONS.spad" 1817047 1817067 1817417 1817566) (-1144 "ULSCCAT.spad" 1814784 1814804 1816893 1817042) (-1143 "ULSCCAT.spad" 1812629 1812651 1814740 1814745) (-1142 "ULSCAT.spad" 1810869 1810885 1812475 1812624) (-1141 "ULS2.spad" 1810383 1810436 1810859 1810864) (-1140 "ULS.spad" 1802416 1802444 1803361 1803784) (-1139 "UINT8.spad" 1802293 1802302 1802406 1802411) (-1138 "UINT64.spad" 1802169 1802178 1802283 1802288) (-1137 "UINT32.spad" 1802045 1802054 1802159 1802164) (-1136 "UINT16.spad" 1801921 1801930 1802035 1802040) (-1135 "UFD.spad" 1800986 1800995 1801847 1801916) (-1134 "UFD.spad" 1800113 1800124 1800976 1800981) (-1133 "UDVO.spad" 1798994 1799003 1800103 1800108) (-1132 "UDPO.spad" 1796575 1796586 1798950 1798955) (-1131 "TYPEAST.spad" 1796494 1796503 1796565 1796570) (-1130 "TYPE.spad" 1796426 1796435 1796484 1796489) (-1129 "TWOFACT.spad" 1795078 1795093 1796416 1796421) (-1128 "TUPLE.spad" 1794585 1794596 1794990 1794995) (-1127 "TUBETOOL.spad" 1791452 1791461 1794575 1794580) (-1126 "TUBE.spad" 1790099 1790116 1791442 1791447) (-1125 "TSETCAT.spad" 1778170 1778187 1790067 1790094) (-1124 "TSETCAT.spad" 1766227 1766246 1778126 1778131) (-1123 "TS.spad" 1764855 1764871 1765821 1765918) (-1122 "TRMANIP.spad" 1759219 1759236 1764543 1764548) (-1121 "TRIMAT.spad" 1758182 1758207 1759209 1759214) (-1120 "TRIGMNIP.spad" 1756709 1756726 1758172 1758177) (-1119 "TRIGCAT.spad" 1756221 1756230 1756699 1756704) (-1118 "TRIGCAT.spad" 1755731 1755742 1756211 1756216) (-1117 "TREE.spad" 1754371 1754382 1755403 1755430) (-1116 "TRANFUN.spad" 1754210 1754219 1754361 1754366) (-1115 "TRANFUN.spad" 1754047 1754058 1754200 1754205) (-1114 "TOPSP.spad" 1753721 1753730 1754037 1754042) (-1113 "TOOLSIGN.spad" 1753384 1753395 1753711 1753716) (-1112 "TEXTFILE.spad" 1751945 1751954 1753374 1753379) (-1111 "TEX1.spad" 1751501 1751512 1751935 1751940) (-1110 "TEX.spad" 1748695 1748704 1751491 1751496) (-1109 "TBCMPPK.spad" 1746796 1746819 1748685 1748690) (-1108 "TBAGG.spad" 1746039 1746062 1746764 1746791) (-1107 "TBAGG.spad" 1745302 1745327 1746029 1746034) (-1106 "TANEXP.spad" 1744710 1744721 1745292 1745297) (-1105 "TALGOP.spad" 1744434 1744445 1744700 1744705) (-1104 "TABLEAU.spad" 1743915 1743926 1744424 1744429) (-1103 "TABLE.spad" 1742190 1742213 1742460 1742487) (-1102 "TABLBUMP.spad" 1738969 1738980 1742180 1742185) (-1101 "SYSTEM.spad" 1738197 1738206 1738959 1738964) (-1100 "SYSSOLP.spad" 1735680 1735691 1738187 1738192) (-1099 "SYSPTR.spad" 1735579 1735588 1735670 1735675) (-1098 "SYSNNI.spad" 1734802 1734813 1735569 1735574) (-1097 "SYSINT.spad" 1734206 1734217 1734792 1734797) (-1096 "SYNTAX.spad" 1730540 1730549 1734196 1734201) (-1095 "SYMTAB.spad" 1728608 1728617 1730530 1730535) (-1094 "SYMS.spad" 1724637 1724646 1728598 1728603) (-1093 "SYMPOLY.spad" 1723770 1723781 1723852 1723979) (-1092 "SYMFUNC.spad" 1723271 1723282 1723760 1723765) (-1091 "SYMBOL.spad" 1720766 1720775 1723261 1723266) (-1090 "SUTS.spad" 1717879 1717907 1719298 1719395) (-1089 "SUPXS.spad" 1715221 1715249 1716070 1716219) (-1088 "SUPFRACF.spad" 1714326 1714344 1715211 1715216) (-1087 "SUP2.spad" 1713718 1713731 1714316 1714321) (-1086 "SUP.spad" 1710802 1710813 1711575 1711728) (-1085 "SUMRF.spad" 1709776 1709787 1710792 1710797) (-1084 "SUMFS.spad" 1709405 1709422 1709766 1709771) (-1083 "SULS.spad" 1701425 1701453 1702383 1702806) (-1082 "syntax.spad" 1701194 1701203 1701415 1701420) (-1081 "SUCH.spad" 1700884 1700899 1701184 1701189) (-1080 "SUBSPACE.spad" 1693015 1693030 1700874 1700879) (-1079 "SUBRESP.spad" 1692185 1692199 1692971 1692976) (-1078 "STTFNC.spad" 1688653 1688669 1692175 1692180) (-1077 "STTF.spad" 1684752 1684768 1688643 1688648) (-1076 "STTAYLOR.spad" 1677429 1677440 1684659 1684664) (-1075 "STRTBL.spad" 1675816 1675833 1675965 1675992) (-1074 "STRING.spad" 1674684 1674693 1675069 1675096) (-1073 "STREAM3.spad" 1674257 1674272 1674674 1674679) (-1072 "STREAM2.spad" 1673385 1673398 1674247 1674252) (-1071 "STREAM1.spad" 1673091 1673102 1673375 1673380) (-1070 "STREAM.spad" 1670087 1670098 1672694 1672709) (-1069 "STINPROD.spad" 1669023 1669039 1670077 1670082) (-1068 "STEPAST.spad" 1668257 1668266 1669013 1669018) (-1067 "STEP.spad" 1667574 1667583 1668247 1668252) (-1066 "STBL.spad" 1665952 1665980 1666119 1666146) (-1065 "STAGG.spad" 1664651 1664662 1665942 1665947) (-1064 "STAGG.spad" 1663348 1663361 1664641 1664646) (-1063 "STACK.spad" 1662770 1662781 1663020 1663047) (-1062 "SRING.spad" 1662530 1662539 1662760 1662765) (-1061 "SREGSET.spad" 1660262 1660279 1662164 1662191) (-1060 "SRDCMPK.spad" 1658839 1658859 1660252 1660257) (-1059 "SRAGG.spad" 1654022 1654031 1658807 1658834) (-1058 "SRAGG.spad" 1649225 1649236 1654012 1654017) (-1057 "SQMATRIX.spad" 1646902 1646920 1647818 1647905) (-1056 "SPLTREE.spad" 1641644 1641657 1646440 1646467) (-1055 "SPLNODE.spad" 1638264 1638277 1641634 1641639) (-1054 "SPFCAT.spad" 1637073 1637082 1638254 1638259) (-1053 "SPECOUT.spad" 1635625 1635634 1637063 1637068) (-1052 "SPADXPT.spad" 1627716 1627725 1635615 1635620) (-1051 "spad-parser.spad" 1627181 1627190 1627706 1627711) (-1050 "SPADAST.spad" 1626882 1626891 1627171 1627176) (-1049 "SPACEC.spad" 1611097 1611108 1626872 1626877) (-1048 "SPACE3.spad" 1610873 1610884 1611087 1611092) (-1047 "SORTPAK.spad" 1610422 1610435 1610829 1610834) (-1046 "SOLVETRA.spad" 1608185 1608196 1610412 1610417) (-1045 "SOLVESER.spad" 1606641 1606652 1608175 1608180) (-1044 "SOLVERAD.spad" 1602667 1602678 1606631 1606636) (-1043 "SOLVEFOR.spad" 1601129 1601147 1602657 1602662) (-1042 "SNTSCAT.spad" 1600729 1600746 1601097 1601124) (-1041 "SMTS.spad" 1599046 1599072 1600323 1600420) (-1040 "SMP.spad" 1596854 1596874 1597244 1597371) (-1039 "SMITH.spad" 1595699 1595724 1596844 1596849) (-1038 "SMATCAT.spad" 1593817 1593847 1595643 1595694) (-1037 "SMATCAT.spad" 1591867 1591899 1593695 1593700) (-1036 "aggcat.spad" 1591553 1591564 1591857 1591862) (-1035 "SKAGG.spad" 1590522 1590533 1591521 1591548) (-1034 "SINT.spad" 1589821 1589830 1590388 1590517) (-1033 "SIMPAN.spad" 1589549 1589558 1589811 1589816) (-1032 "SIGNRF.spad" 1588674 1588685 1589539 1589544) (-1031 "SIGNEF.spad" 1587960 1587977 1588664 1588669) (-1030 "syntax.spad" 1587377 1587386 1587950 1587955) (-1029 "SIG.spad" 1586739 1586748 1587367 1587372) (-1028 "SHP.spad" 1584683 1584698 1586695 1586700) (-1027 "SHDP.spad" 1574176 1574203 1574693 1574790) (-1026 "SGROUP.spad" 1573784 1573793 1574166 1574171) (-1025 "SGROUP.spad" 1573390 1573401 1573774 1573779) (-1024 "catdef.spad" 1573100 1573112 1573211 1573385) (-1023 "catdef.spad" 1572656 1572668 1572921 1573095) (-1022 "SGCF.spad" 1565795 1565804 1572646 1572651) (-1021 "SFRTCAT.spad" 1564741 1564758 1565763 1565790) (-1020 "SFRGCD.spad" 1563804 1563824 1564731 1564736) (-1019 "SFQCMPK.spad" 1558617 1558637 1563794 1563799) (-1018 "SEXOF.spad" 1558460 1558500 1558607 1558612) (-1017 "SEXCAT.spad" 1556288 1556328 1558450 1558455) (-1016 "SEX.spad" 1556180 1556189 1556278 1556283) (-1015 "SETMN.spad" 1554640 1554657 1556170 1556175) (-1014 "SETCAT.spad" 1554125 1554134 1554630 1554635) (-1013 "SETCAT.spad" 1553608 1553619 1554115 1554120) (-1012 "SETAGG.spad" 1550157 1550168 1553588 1553603) (-1011 "SETAGG.spad" 1546714 1546727 1550147 1550152) (-1010 "SET.spad" 1545023 1545034 1546120 1546159) (-1009 "syntax.spad" 1544726 1544735 1545013 1545018) (-1008 "SEGXCAT.spad" 1543882 1543895 1544716 1544721) (-1007 "SEGCAT.spad" 1542807 1542818 1543872 1543877) (-1006 "SEGBIND2.spad" 1542505 1542518 1542797 1542802) (-1005 "SEGBIND.spad" 1542263 1542274 1542452 1542457) (-1004 "SEGAST.spad" 1541993 1542002 1542253 1542258) (-1003 "SEG2.spad" 1541428 1541441 1541949 1541954) (-1002 "SEG.spad" 1541241 1541252 1541347 1541352) (-1001 "SDVAR.spad" 1540517 1540528 1541231 1541236) (-1000 "SDPOL.spad" 1538209 1538220 1538500 1538627) (-999 "SCPKG.spad" 1536299 1536309 1538199 1538204) (-998 "SCOPE.spad" 1535477 1535485 1536289 1536294) (-997 "SCACHE.spad" 1534174 1534184 1535467 1535472) (-996 "SASTCAT.spad" 1534084 1534092 1534164 1534169) (-995 "SAOS.spad" 1533957 1533965 1534074 1534079) (-994 "SAERFFC.spad" 1533671 1533690 1533947 1533952) (-993 "SAEFACT.spad" 1533373 1533392 1533661 1533666) (-992 "SAE.spad" 1531024 1531039 1531634 1531769) (-991 "RURPK.spad" 1528684 1528699 1531014 1531019) (-990 "RULESET.spad" 1528138 1528161 1528674 1528679) (-989 "RULECOLD.spad" 1527991 1528003 1528128 1528133) (-988 "RULE.spad" 1526240 1526263 1527981 1527986) (-987 "RTVALUE.spad" 1525976 1525984 1526230 1526235) (-986 "syntax.spad" 1525694 1525702 1525966 1525971) (-985 "RSETGCD.spad" 1522137 1522156 1525684 1525689) (-984 "RSETCAT.spad" 1512106 1512122 1522105 1522132) (-983 "RSETCAT.spad" 1502095 1502113 1512096 1512101) (-982 "RSDCMPK.spad" 1500596 1500615 1502085 1502090) (-981 "RRCC.spad" 1498981 1499010 1500586 1500591) (-980 "RRCC.spad" 1497364 1497395 1498971 1498976) (-979 "RPTAST.spad" 1497067 1497075 1497354 1497359) (-978 "RPOLCAT.spad" 1476572 1476586 1496935 1497062) (-977 "RPOLCAT.spad" 1455870 1455886 1476235 1476240) (-976 "ROMAN.spad" 1455199 1455207 1455736 1455865) (-975 "ROIRC.spad" 1454280 1454311 1455189 1455194) (-974 "RNS.spad" 1453257 1453265 1454182 1454275) (-973 "RNS.spad" 1452320 1452330 1453247 1453252) (-972 "RNGBIND.spad" 1451481 1451494 1452275 1452280) (-971 "RNG.spad" 1451090 1451098 1451471 1451476) (-970 "RNG.spad" 1450697 1450707 1451080 1451085) (-969 "RMODULE.spad" 1450479 1450489 1450687 1450692) (-968 "RMCAT2.spad" 1449900 1449956 1450469 1450474) (-967 "RMATRIX.spad" 1448710 1448728 1449052 1449091) (-966 "RMATCAT.spad" 1444348 1444378 1448666 1448705) (-965 "RMATCAT.spad" 1439876 1439908 1444196 1444201) (-964 "RLINSET.spad" 1439581 1439591 1439866 1439871) (-963 "RINTERP.spad" 1439470 1439489 1439571 1439576) (-962 "RING.spad" 1438941 1438949 1439450 1439465) (-961 "RING.spad" 1438420 1438430 1438931 1438936) (-960 "RIDIST.spad" 1437813 1437821 1438410 1438415) (-959 "RGCHAIN.spad" 1436368 1436383 1437261 1437288) (-958 "RGBCSPC.spad" 1436158 1436169 1436358 1436363) (-957 "RGBCMDL.spad" 1435721 1435732 1436148 1436153) (-956 "RFFACTOR.spad" 1435184 1435194 1435711 1435716) (-955 "RFFACT.spad" 1434920 1434931 1435174 1435179) (-954 "RFDIST.spad" 1433917 1433925 1434910 1434915) (-953 "RF.spad" 1431592 1431602 1433907 1433912) (-952 "RETSOL.spad" 1431012 1431024 1431582 1431587) (-951 "RETRACT.spad" 1430441 1430451 1431002 1431007) (-950 "RETRACT.spad" 1429868 1429880 1430431 1430436) (-949 "RETAST.spad" 1429681 1429689 1429858 1429863) (-948 "RESRING.spad" 1429029 1429075 1429619 1429676) (-947 "RESLATC.spad" 1428354 1428364 1429019 1429024) (-946 "REPSQ.spad" 1428086 1428096 1428344 1428349) (-945 "REPDB.spad" 1427794 1427804 1428076 1428081) (-944 "REP2.spad" 1417509 1417519 1427636 1427641) (-943 "REP1.spad" 1411730 1411740 1417459 1417464) (-942 "REP.spad" 1409285 1409293 1411720 1411725) (-941 "REGSET.spad" 1407111 1407127 1408919 1408946) (-940 "REF.spad" 1406630 1406640 1407101 1407106) (-939 "REDORDER.spad" 1405837 1405853 1406620 1406625) (-938 "RECLOS.spad" 1404734 1404753 1405437 1405530) (-937 "REALSOLV.spad" 1403875 1403883 1404724 1404729) (-936 "REAL0Q.spad" 1401174 1401188 1403865 1403870) (-935 "REAL0.spad" 1398019 1398033 1401164 1401169) (-934 "REAL.spad" 1397892 1397900 1398009 1398014) (-933 "RDUCEAST.spad" 1397614 1397622 1397882 1397887) (-932 "RDIV.spad" 1397270 1397294 1397604 1397609) (-931 "RDIST.spad" 1396838 1396848 1397260 1397265) (-930 "RDETRS.spad" 1395703 1395720 1396828 1396833) (-929 "RDETR.spad" 1393843 1393860 1395693 1395698) (-928 "RDEEFS.spad" 1392943 1392959 1393833 1393838) (-927 "RDEEF.spad" 1391954 1391970 1392933 1392938) (-926 "RCFIELD.spad" 1389173 1389181 1391856 1391949) (-925 "RCFIELD.spad" 1386478 1386488 1389163 1389168) (-924 "RCAGG.spad" 1384415 1384425 1386468 1386473) (-923 "RCAGG.spad" 1382279 1382291 1384334 1384339) (-922 "RATRET.spad" 1381640 1381650 1382269 1382274) (-921 "RATFACT.spad" 1381333 1381344 1381630 1381635) (-920 "RANDSRC.spad" 1380653 1380661 1381323 1381328) (-919 "RADUTIL.spad" 1380410 1380418 1380643 1380648) (-918 "RADIX.spad" 1377455 1377468 1379000 1379093) (-917 "RADFF.spad" 1375372 1375408 1375490 1375646) (-916 "RADCAT.spad" 1374968 1374976 1375362 1375367) (-915 "RADCAT.spad" 1374562 1374572 1374958 1374963) (-914 "QUEUE.spad" 1373976 1373986 1374234 1374261) (-913 "QUATCT2.spad" 1373597 1373615 1373966 1373971) (-912 "QUATCAT.spad" 1371768 1371778 1373527 1373592) (-911 "QUATCAT.spad" 1369704 1369716 1371465 1371470) (-910 "QUAT.spad" 1368311 1368321 1368653 1368718) (-909 "QUAGG.spad" 1367145 1367155 1368279 1368306) (-908 "QQUTAST.spad" 1366914 1366922 1367135 1367140) (-907 "QFORM.spad" 1366533 1366547 1366904 1366909) (-906 "QFCAT2.spad" 1366226 1366242 1366523 1366528) (-905 "QFCAT.spad" 1364929 1364939 1366128 1366221) (-904 "QFCAT.spad" 1363265 1363277 1364466 1364471) (-903 "QEQUAT.spad" 1362824 1362832 1363255 1363260) (-902 "QCMPACK.spad" 1357739 1357758 1362814 1362819) (-901 "QALGSET2.spad" 1355735 1355753 1357729 1357734) (-900 "QALGSET.spad" 1351840 1351872 1355649 1355654) (-899 "PWFFINTB.spad" 1349256 1349277 1351830 1351835) (-898 "PUSHVAR.spad" 1348595 1348614 1349246 1349251) (-897 "PTRANFN.spad" 1344731 1344741 1348585 1348590) (-896 "PTPACK.spad" 1341819 1341829 1344721 1344726) (-895 "PTFUNC2.spad" 1341642 1341656 1341809 1341814) (-894 "PTCAT.spad" 1340897 1340907 1341610 1341637) (-893 "PSQFR.spad" 1340212 1340236 1340887 1340892) (-892 "PSEUDLIN.spad" 1339098 1339108 1340202 1340207) (-891 "PSETPK.spad" 1325803 1325819 1338976 1338981) (-890 "PSETCAT.spad" 1320203 1320226 1325783 1325798) (-889 "PSETCAT.spad" 1314577 1314602 1320159 1320164) (-888 "PSCURVE.spad" 1313576 1313584 1314567 1314572) (-887 "PSCAT.spad" 1312359 1312388 1313474 1313571) (-886 "PSCAT.spad" 1311232 1311263 1312349 1312354) (-885 "PRTITION.spad" 1309930 1309938 1311222 1311227) (-884 "PRTDAST.spad" 1309649 1309657 1309920 1309925) (-883 "PRS.spad" 1299267 1299284 1309605 1309610) (-882 "PRQAGG.spad" 1298702 1298712 1299235 1299262) (-881 "PROPLOG.spad" 1298306 1298314 1298692 1298697) (-880 "PROPFUN2.spad" 1297929 1297942 1298296 1298301) (-879 "PROPFUN1.spad" 1297335 1297346 1297919 1297924) (-878 "PROPFRML.spad" 1295903 1295914 1297325 1297330) (-877 "PROPERTY.spad" 1295399 1295407 1295893 1295898) (-876 "PRODUCT.spad" 1293096 1293108 1293380 1293435) (-875 "PRINT.spad" 1292848 1292856 1293086 1293091) (-874 "PRIMES.spad" 1291109 1291119 1292838 1292843) (-873 "PRIMELT.spad" 1289230 1289244 1291099 1291104) (-872 "PRIMCAT.spad" 1288873 1288881 1289220 1289225) (-871 "PRIMARR2.spad" 1287640 1287652 1288863 1288868) (-870 "PRIMARR.spad" 1286695 1286705 1286865 1286892) (-869 "PREASSOC.spad" 1286077 1286089 1286685 1286690) (-868 "PR.spad" 1284595 1284607 1285294 1285421) (-867 "PPCURVE.spad" 1283732 1283740 1284585 1284590) (-866 "PORTNUM.spad" 1283523 1283531 1283722 1283727) (-865 "POLYROOT.spad" 1282372 1282394 1283479 1283484) (-864 "POLYLIFT.spad" 1281637 1281660 1282362 1282367) (-863 "POLYCATQ.spad" 1279763 1279785 1281627 1281632) (-862 "POLYCAT.spad" 1273265 1273286 1279631 1279758) (-861 "POLYCAT.spad" 1266287 1266310 1272655 1272660) (-860 "POLY2UP.spad" 1265739 1265753 1266277 1266282) (-859 "POLY2.spad" 1265336 1265348 1265729 1265734) (-858 "POLY.spad" 1263004 1263014 1263519 1263646) (-857 "POLUTIL.spad" 1261969 1261998 1262960 1262965) (-856 "POLTOPOL.spad" 1260717 1260732 1261959 1261964) (-855 "POINT.spad" 1259600 1259610 1259687 1259714) (-854 "PNTHEORY.spad" 1256302 1256310 1259590 1259595) (-853 "PMTOOLS.spad" 1255077 1255091 1256292 1256297) (-852 "PMSYM.spad" 1254626 1254636 1255067 1255072) (-851 "PMQFCAT.spad" 1254217 1254231 1254616 1254621) (-850 "PMPREDFS.spad" 1253679 1253701 1254207 1254212) (-849 "PMPRED.spad" 1253166 1253180 1253669 1253674) (-848 "PMPLCAT.spad" 1252243 1252261 1253095 1253100) (-847 "PMLSAGG.spad" 1251828 1251842 1252233 1252238) (-846 "PMKERNEL.spad" 1251407 1251419 1251818 1251823) (-845 "PMINS.spad" 1250987 1250997 1251397 1251402) (-844 "PMFS.spad" 1250564 1250582 1250977 1250982) (-843 "PMDOWN.spad" 1249854 1249868 1250554 1250559) (-842 "PMASSFS.spad" 1248829 1248845 1249844 1249849) (-841 "PMASS.spad" 1247847 1247855 1248819 1248824) (-840 "PLOTTOOL.spad" 1247627 1247635 1247837 1247842) (-839 "PLOT3D.spad" 1244091 1244099 1247617 1247622) (-838 "PLOT1.spad" 1243264 1243274 1244081 1244086) (-837 "PLOT.spad" 1238187 1238195 1243254 1243259) (-836 "PLEQN.spad" 1225589 1225616 1238177 1238182) (-835 "PINTERPA.spad" 1225373 1225389 1225579 1225584) (-834 "PINTERP.spad" 1224995 1225014 1225363 1225368) (-833 "PID.spad" 1223969 1223977 1224921 1224990) (-832 "PICOERCE.spad" 1223626 1223636 1223959 1223964) (-831 "PI.spad" 1223243 1223251 1223600 1223621) (-830 "PGROEB.spad" 1221852 1221866 1223233 1223238) (-829 "PGE.spad" 1213525 1213533 1221842 1221847) (-828 "PGCD.spad" 1212479 1212496 1213515 1213520) (-827 "PFRPAC.spad" 1211628 1211638 1212469 1212474) (-826 "PFR.spad" 1208331 1208341 1211530 1211623) (-825 "PFOTOOLS.spad" 1207589 1207605 1208321 1208326) (-824 "PFOQ.spad" 1206959 1206977 1207579 1207584) (-823 "PFO.spad" 1206378 1206405 1206949 1206954) (-822 "PFECAT.spad" 1204088 1204096 1206304 1206373) (-821 "PFECAT.spad" 1201826 1201836 1204044 1204049) (-820 "PFBRU.spad" 1199714 1199726 1201816 1201821) (-819 "PFBR.spad" 1197274 1197297 1199704 1199709) (-818 "PF.spad" 1196848 1196860 1197079 1197172) (-817 "PERMGRP.spad" 1191618 1191628 1196838 1196843) (-816 "PERMCAT.spad" 1190279 1190289 1191598 1191613) (-815 "PERMAN.spad" 1188835 1188849 1190269 1190274) (-814 "PERM.spad" 1184645 1184655 1188668 1188683) (-813 "PENDTREE.spad" 1184059 1184069 1184339 1184344) (-812 "PDSPC.spad" 1182872 1182882 1184049 1184054) (-811 "PDSPC.spad" 1181683 1181695 1182862 1182867) (-810 "PDRING.spad" 1181525 1181535 1181663 1181678) (-809 "PDMOD.spad" 1181341 1181353 1181493 1181520) (-808 "PDECOMP.spad" 1180811 1180828 1181331 1181336) (-807 "PDDOM.spad" 1180249 1180262 1180801 1180806) (-806 "PDDOM.spad" 1179685 1179700 1180239 1180244) (-805 "PCOMP.spad" 1179538 1179551 1179675 1179680) (-804 "PBWLB.spad" 1178136 1178153 1179528 1179533) (-803 "PATTERN2.spad" 1177874 1177886 1178126 1178131) (-802 "PATTERN1.spad" 1176218 1176234 1177864 1177869) (-801 "PATTERN.spad" 1170793 1170803 1176208 1176213) (-800 "PATRES2.spad" 1170465 1170479 1170783 1170788) (-799 "PATRES.spad" 1168048 1168060 1170455 1170460) (-798 "PATMATCH.spad" 1166289 1166320 1167800 1167805) (-797 "PATMAB.spad" 1165718 1165728 1166279 1166284) (-796 "PATLRES.spad" 1164804 1164818 1165708 1165713) (-795 "PATAB.spad" 1164568 1164578 1164794 1164799) (-794 "PARTPERM.spad" 1162624 1162632 1164558 1164563) (-793 "PARSURF.spad" 1162058 1162086 1162614 1162619) (-792 "PARSU2.spad" 1161855 1161871 1162048 1162053) (-791 "script-parser.spad" 1161375 1161383 1161845 1161850) (-790 "PARSCURV.spad" 1160809 1160837 1161365 1161370) (-789 "PARSC2.spad" 1160600 1160616 1160799 1160804) (-788 "PARPCURV.spad" 1160062 1160090 1160590 1160595) (-787 "PARPC2.spad" 1159853 1159869 1160052 1160057) (-786 "PARAMAST.spad" 1158981 1158989 1159843 1159848) (-785 "PAN2EXPR.spad" 1158393 1158401 1158971 1158976) (-784 "PALETTE.spad" 1157507 1157515 1158383 1158388) (-783 "PAIR.spad" 1156581 1156594 1157150 1157155) (-782 "PADICRC.spad" 1153986 1154004 1155149 1155242) (-781 "PADICRAT.spad" 1152046 1152058 1152259 1152352) (-780 "PADICCT.spad" 1150595 1150607 1151972 1152041) (-779 "PADIC.spad" 1150298 1150310 1150521 1150590) (-778 "PADEPAC.spad" 1148987 1149006 1150288 1150293) (-777 "PADE.spad" 1147739 1147755 1148977 1148982) (-776 "OWP.spad" 1146987 1147017 1147597 1147664) (-775 "OVERSET.spad" 1146560 1146568 1146977 1146982) (-774 "OVAR.spad" 1146341 1146364 1146550 1146555) (-773 "OUTFORM.spad" 1135749 1135757 1146331 1146336) (-772 "OUTBFILE.spad" 1135183 1135191 1135739 1135744) (-771 "OUTBCON.spad" 1134253 1134261 1135173 1135178) (-770 "OUTBCON.spad" 1133321 1133331 1134243 1134248) (-769 "OUT.spad" 1132439 1132447 1133311 1133316) (-768 "OSI.spad" 1131914 1131922 1132429 1132434) (-767 "OSGROUP.spad" 1131832 1131840 1131904 1131909) (-766 "ORTHPOL.spad" 1130343 1130353 1131775 1131780) (-765 "OREUP.spad" 1129837 1129865 1130064 1130103) (-764 "ORESUP.spad" 1129179 1129203 1129558 1129597) (-763 "OREPCTO.spad" 1127068 1127080 1129099 1129104) (-762 "OREPCAT.spad" 1121255 1121265 1127024 1127063) (-761 "OREPCAT.spad" 1115332 1115344 1121103 1121108) (-760 "ORDTYPE.spad" 1114569 1114577 1115322 1115327) (-759 "ORDTYPE.spad" 1113804 1113814 1114559 1114564) (-758 "ORDSTRCT.spad" 1113590 1113605 1113753 1113758) (-757 "ORDSET.spad" 1113290 1113298 1113580 1113585) (-756 "ORDRING.spad" 1113107 1113115 1113270 1113285) (-755 "ORDMON.spad" 1112962 1112970 1113097 1113102) (-754 "ORDFUNS.spad" 1112094 1112110 1112952 1112957) (-753 "ORDFIN.spad" 1111914 1111922 1112084 1112089) (-752 "ORDCOMP2.spad" 1111207 1111219 1111904 1111909) (-751 "ORDCOMP.spad" 1109733 1109743 1110815 1110844) (-750 "OPSIG.spad" 1109395 1109403 1109723 1109728) (-749 "OPQUERY.spad" 1108976 1108984 1109385 1109390) (-748 "OPERCAT.spad" 1108442 1108452 1108966 1108971) (-747 "OPERCAT.spad" 1107906 1107918 1108432 1108437) (-746 "OP.spad" 1107648 1107658 1107728 1107795) (-745 "ONECOMP2.spad" 1107072 1107084 1107638 1107643) (-744 "ONECOMP.spad" 1105878 1105888 1106680 1106709) (-743 "OMSAGG.spad" 1105666 1105676 1105834 1105873) (-742 "OMLO.spad" 1105099 1105111 1105552 1105591) (-741 "OINTDOM.spad" 1104862 1104870 1105025 1105094) (-740 "OFMONOID.spad" 1103001 1103011 1104818 1104823) (-739 "ODVAR.spad" 1102262 1102272 1102991 1102996) (-738 "ODR.spad" 1101906 1101932 1102074 1102223) (-737 "ODPOL.spad" 1099554 1099564 1099894 1100021) (-736 "ODP.spad" 1089191 1089211 1089564 1089661) (-735 "ODETOOLS.spad" 1087840 1087859 1089181 1089186) (-734 "ODESYS.spad" 1085534 1085551 1087830 1087835) (-733 "ODERTRIC.spad" 1081567 1081584 1085491 1085496) (-732 "ODERED.spad" 1080966 1080990 1081557 1081562) (-731 "ODERAT.spad" 1078599 1078616 1080956 1080961) (-730 "ODEPRRIC.spad" 1075692 1075714 1078589 1078594) (-729 "ODEPRIM.spad" 1073090 1073112 1075682 1075687) (-728 "ODEPAL.spad" 1072476 1072500 1073080 1073085) (-727 "ODEINT.spad" 1071911 1071927 1072466 1072471) (-726 "ODEEF.spad" 1067406 1067422 1071901 1071906) (-725 "ODECONST.spad" 1066951 1066969 1067396 1067401) (-724 "OCTCT2.spad" 1066592 1066610 1066941 1066946) (-723 "OCT.spad" 1064907 1064917 1065621 1065660) (-722 "OCAMON.spad" 1064755 1064763 1064897 1064902) (-721 "OC.spad" 1062551 1062561 1064711 1064750) (-720 "OC.spad" 1060086 1060098 1062248 1062253) (-719 "OASGP.spad" 1059901 1059909 1060076 1060081) (-718 "OAMONS.spad" 1059423 1059431 1059891 1059896) (-717 "OAMON.spad" 1059181 1059189 1059413 1059418) (-716 "OAMON.spad" 1058937 1058947 1059171 1059176) (-715 "OAGROUP.spad" 1058475 1058483 1058927 1058932) (-714 "OAGROUP.spad" 1058011 1058021 1058465 1058470) (-713 "NUMTUBE.spad" 1057602 1057618 1058001 1058006) (-712 "NUMQUAD.spad" 1045578 1045586 1057592 1057597) (-711 "NUMODE.spad" 1036930 1036938 1045568 1045573) (-710 "NUMFMT.spad" 1035770 1035778 1036920 1036925) (-709 "NUMERIC.spad" 1027885 1027895 1035576 1035581) (-708 "NTSCAT.spad" 1026393 1026409 1027853 1027880) (-707 "NTPOLFN.spad" 1025970 1025980 1026336 1026341) (-706 "NSUP2.spad" 1025362 1025374 1025960 1025965) (-705 "NSUP.spad" 1018799 1018809 1023219 1023372) (-704 "NSMP.spad" 1015711 1015730 1016003 1016130) (-703 "NREP.spad" 1014113 1014127 1015701 1015706) (-702 "NPCOEF.spad" 1013359 1013379 1014103 1014108) (-701 "NORMRETR.spad" 1012957 1012996 1013349 1013354) (-700 "NORMPK.spad" 1010899 1010918 1012947 1012952) (-699 "NORMMA.spad" 1010587 1010613 1010889 1010894) (-698 "NONE1.spad" 1010263 1010273 1010577 1010582) (-697 "NONE.spad" 1010004 1010012 1010253 1010258) (-696 "NODE1.spad" 1009491 1009507 1009994 1009999) (-695 "NNI.spad" 1008386 1008394 1009465 1009486) (-694 "NLINSOL.spad" 1007012 1007022 1008376 1008381) (-693 "NFINTBAS.spad" 1004572 1004589 1007002 1007007) (-692 "NETCLT.spad" 1004546 1004557 1004562 1004567) (-691 "NCODIV.spad" 1002770 1002786 1004536 1004541) (-690 "NCNTFRAC.spad" 1002412 1002426 1002760 1002765) (-689 "NCEP.spad" 1000578 1000592 1002402 1002407) (-688 "NASRING.spad" 1000182 1000190 1000568 1000573) (-687 "NASRING.spad" 999784 999794 1000172 1000177) (-686 "NARNG.spad" 999184 999192 999774 999779) (-685 "NARNG.spad" 998582 998592 999174 999179) (-684 "NAALG.spad" 998147 998157 998550 998577) (-683 "NAALG.spad" 997732 997744 998137 998142) (-682 "MULTSQFR.spad" 994690 994707 997722 997727) (-681 "MULTFACT.spad" 994073 994090 994680 994685) (-680 "MTSCAT.spad" 992167 992188 993971 994068) (-679 "MTHING.spad" 991826 991836 992157 992162) (-678 "MSYSCMD.spad" 991260 991268 991816 991821) (-677 "MSETAGG.spad" 991105 991115 991228 991255) (-676 "MSET.spad" 989051 989061 990799 990838) (-675 "MRING.spad" 986028 986040 988759 988826) (-674 "MRF2.spad" 985590 985604 986018 986023) (-673 "MRATFAC.spad" 985136 985153 985580 985585) (-672 "MPRFF.spad" 983176 983195 985126 985131) (-671 "MPOLY.spad" 980980 980995 981339 981466) (-670 "MPCPF.spad" 980244 980263 980970 980975) (-669 "MPC3.spad" 980061 980101 980234 980239) (-668 "MPC2.spad" 979715 979748 980051 980056) (-667 "MONOTOOL.spad" 978066 978083 979705 979710) (-666 "catdef.spad" 977499 977510 977720 978061) (-665 "catdef.spad" 976897 976908 977153 977494) (-664 "MONOID.spad" 976218 976226 976887 976892) (-663 "MONOID.spad" 975537 975547 976208 976213) (-662 "MONOGEN.spad" 974285 974298 975397 975532) (-661 "MONOGEN.spad" 973055 973070 974169 974174) (-660 "MONADWU.spad" 971135 971143 973045 973050) (-659 "MONADWU.spad" 969213 969223 971125 971130) (-658 "MONAD.spad" 968373 968381 969203 969208) (-657 "MONAD.spad" 967531 967541 968363 968368) (-656 "MOEBIUS.spad" 966267 966281 967511 967526) (-655 "MODULE.spad" 966137 966147 966235 966262) (-654 "MODULE.spad" 966027 966039 966127 966132) (-653 "MODRING.spad" 965362 965401 966007 966022) (-652 "MODOP.spad" 964019 964031 965184 965251) (-651 "MODMONOM.spad" 963750 963768 964009 964014) (-650 "MODMON.spad" 960820 960832 961535 961688) (-649 "MODFIELD.spad" 960182 960221 960722 960815) (-648 "MMLFORM.spad" 959042 959050 960172 960177) (-647 "MMAP.spad" 958784 958818 959032 959037) (-646 "MLO.spad" 957243 957253 958740 958779) (-645 "MLIFT.spad" 955855 955872 957233 957238) (-644 "MKUCFUNC.spad" 955390 955408 955845 955850) (-643 "MKRECORD.spad" 954978 954991 955380 955385) (-642 "MKFUNC.spad" 954385 954395 954968 954973) (-641 "MKFLCFN.spad" 953353 953363 954375 954380) (-640 "MKBCFUNC.spad" 952848 952866 953343 953348) (-639 "MHROWRED.spad" 951359 951369 952838 952843) (-638 "MFINFACT.spad" 950759 950781 951349 951354) (-637 "MESH.spad" 948554 948562 950749 950754) (-636 "MDDFACT.spad" 946773 946783 948544 948549) (-635 "MDAGG.spad" 946064 946074 946753 946768) (-634 "MCDEN.spad" 945274 945286 946054 946059) (-633 "MAYBE.spad" 944574 944585 945264 945269) (-632 "MATSTOR.spad" 941890 941900 944564 944569) (-631 "MATRIX.spad" 940669 940679 941153 941180) (-630 "MATLIN.spad" 938037 938061 940553 940558) (-629 "MATCAT2.spad" 937319 937367 938027 938032) (-628 "MATCAT.spad" 929015 929037 937287 937314) (-627 "MATCAT.spad" 920583 920607 928857 928862) (-626 "MAPPKG3.spad" 919498 919512 920573 920578) (-625 "MAPPKG2.spad" 918836 918848 919488 919493) (-624 "MAPPKG1.spad" 917664 917674 918826 918831) (-623 "MAPPAST.spad" 917003 917011 917654 917659) (-622 "MAPHACK3.spad" 916815 916829 916993 916998) (-621 "MAPHACK2.spad" 916584 916596 916805 916810) (-620 "MAPHACK1.spad" 916228 916238 916574 916579) (-619 "MAGMA.spad" 914034 914051 916218 916223) (-618 "MACROAST.spad" 913629 913637 914024 914029) (-617 "LZSTAGG.spad" 910883 910893 913619 913624) (-616 "LZSTAGG.spad" 908135 908147 910873 910878) (-615 "LWORD.spad" 904880 904897 908125 908130) (-614 "LSTAST.spad" 904664 904672 904870 904875) (-613 "LSQM.spad" 902942 902956 903336 903387) (-612 "LSPP.spad" 902477 902494 902932 902937) (-611 "LSMP1.spad" 900320 900334 902467 902472) (-610 "LSMP.spad" 899177 899205 900310 900315) (-609 "LSAGG.spad" 898846 898856 899145 899172) (-608 "LSAGG.spad" 898535 898547 898836 898841) (-607 "LPOLY.spad" 897497 897516 898391 898460) (-606 "LPEFRAC.spad" 896768 896778 897487 897492) (-605 "LOGIC.spad" 896370 896378 896758 896763) (-604 "LOGIC.spad" 895970 895980 896360 896365) (-603 "LODOOPS.spad" 894900 894912 895960 895965) (-602 "LODOF.spad" 893946 893963 894857 894862) (-601 "LODOCAT.spad" 892612 892622 893902 893941) (-600 "LODOCAT.spad" 891276 891288 892568 892573) (-599 "LODO2.spad" 890590 890602 890997 891036) (-598 "LODO1.spad" 890031 890041 890311 890350) (-597 "LODO.spad" 889456 889472 889752 889791) (-596 "LODEEF.spad" 888258 888276 889446 889451) (-595 "LO.spad" 887659 887673 888192 888219) (-594 "LNAGG.spad" 883846 883856 887649 887654) (-593 "LNAGG.spad" 879997 880009 883802 883807) (-592 "LMOPS.spad" 876765 876782 879987 879992) (-591 "LMODULE.spad" 876549 876559 876755 876760) (-590 "LMDICT.spad" 875930 875940 876178 876205) (-589 "LLINSET.spad" 875637 875647 875920 875925) (-588 "LITERAL.spad" 875543 875554 875627 875632) (-587 "LIST3.spad" 874854 874868 875533 875538) (-586 "LIST2MAP.spad" 871781 871793 874844 874849) (-585 "LIST2.spad" 870483 870495 871771 871776) (-584 "LIST.spad" 868365 868375 869708 869735) (-583 "LINSET.spad" 868144 868154 868355 868360) (-582 "LINFORM.spad" 867607 867619 868112 868139) (-581 "LINEXP.spad" 866350 866360 867597 867602) (-580 "LINELT.spad" 865721 865733 866233 866260) (-579 "LINDEP.spad" 864570 864582 865633 865638) (-578 "LINBASIS.spad" 864206 864221 864560 864565) (-577 "LIMITRF.spad" 862153 862163 864196 864201) (-576 "LIMITPS.spad" 861063 861076 862143 862148) (-575 "LIECAT.spad" 860547 860557 860989 861058) (-574 "LIECAT.spad" 860059 860071 860503 860508) (-573 "LIE.spad" 858063 858075 859337 859479) (-572 "LIB.spad" 856222 856230 856668 856695) (-571 "LGROBP.spad" 853575 853594 856212 856217) (-570 "LFCAT.spad" 852634 852642 853565 853570) (-569 "LF.spad" 851589 851605 852624 852629) (-568 "LEXTRIPK.spad" 847212 847227 851579 851584) (-567 "LEXP.spad" 845231 845258 847192 847207) (-566 "LETAST.spad" 844930 844938 845221 845226) (-565 "LEADCDET.spad" 843336 843353 844920 844925) (-564 "LAZM3PK.spad" 842080 842102 843326 843331) (-563 "LAUPOL.spad" 840747 840760 841647 841716) (-562 "LAPLACE.spad" 840330 840346 840737 840742) (-561 "LALG.spad" 840106 840116 840310 840325) (-560 "LALG.spad" 839890 839902 840096 840101) (-559 "LA.spad" 839330 839344 839812 839851) (-558 "KVTFROM.spad" 839073 839083 839320 839325) (-557 "KTVLOGIC.spad" 838617 838625 839063 839068) (-556 "KRCFROM.spad" 838363 838373 838607 838612) (-555 "KOVACIC.spad" 837094 837111 838353 838358) (-554 "KONVERT.spad" 836816 836826 837084 837089) (-553 "KOERCE.spad" 836553 836563 836806 836811) (-552 "KERNEL2.spad" 836256 836268 836543 836548) (-551 "KERNEL.spad" 834976 834986 836105 836110) (-550 "KDAGG.spad" 834085 834107 834956 834971) (-549 "KDAGG.spad" 833202 833226 834075 834080) (-548 "KAFILE.spad" 832092 832108 832327 832354) (-547 "JVMOP.spad" 832005 832013 832082 832087) (-546 "JVMMDACC.spad" 831059 831067 831995 832000) (-545 "JVMFDACC.spad" 830375 830383 831049 831054) (-544 "JVMCSTTG.spad" 829104 829112 830365 830370) (-543 "JVMCFACC.spad" 828550 828558 829094 829099) (-542 "JVMBCODE.spad" 828461 828469 828540 828545) (-541 "JORDAN.spad" 826278 826290 827739 827881) (-540 "JOINAST.spad" 825980 825988 826268 826273) (-539 "IXAGG.spad" 824113 824137 825970 825975) (-538 "IXAGG.spad" 822101 822127 823960 823965) (-537 "ITUPLE.spad" 821277 821287 822091 822096) (-536 "ITRIGMNP.spad" 820124 820143 821267 821272) (-535 "ITFUN3.spad" 819630 819644 820114 820119) (-534 "ITFUN2.spad" 819374 819386 819620 819625) (-533 "ITFORM.spad" 818729 818737 819364 819369) (-532 "ITAYLOR.spad" 816723 816738 818593 818690) (-531 "ISUPS.spad" 809172 809187 815709 815806) (-530 "ISUMP.spad" 808673 808689 809162 809167) (-529 "ISAST.spad" 808392 808400 808663 808668) (-528 "IRURPK.spad" 807109 807128 808382 808387) (-527 "IRSN.spad" 805113 805121 807099 807104) (-526 "IRRF2F.spad" 803606 803616 805069 805074) (-525 "IRREDFFX.spad" 803207 803218 803596 803601) (-524 "IROOT.spad" 801546 801556 803197 803202) (-523 "IRFORM.spad" 800870 800878 801536 801541) (-522 "IR2F.spad" 800084 800100 800860 800865) (-521 "IR2.spad" 799112 799128 800074 800079) (-520 "IR.spad" 796948 796962 798994 799021) (-519 "IPRNTPK.spad" 796708 796716 796938 796943) (-518 "IPF.spad" 796273 796285 796513 796606) (-517 "IPADIC.spad" 796042 796068 796199 796268) (-516 "IP4ADDR.spad" 795599 795607 796032 796037) (-515 "IOMODE.spad" 795121 795129 795589 795594) (-514 "IOBFILE.spad" 794506 794514 795111 795116) (-513 "IOBCON.spad" 794371 794379 794496 794501) (-512 "INVLAPLA.spad" 794020 794036 794361 794366) (-511 "INTTR.spad" 787414 787431 794010 794015) (-510 "INTTOOLS.spad" 785222 785238 787041 787046) (-509 "INTSLPE.spad" 784550 784558 785212 785217) (-508 "INTRVL.spad" 784116 784126 784464 784545) (-507 "INTRF.spad" 782548 782562 784106 784111) (-506 "INTRET.spad" 781980 781990 782538 782543) (-505 "INTRAT.spad" 780715 780732 781970 781975) (-504 "INTPM.spad" 779178 779194 780436 780441) (-503 "INTPAF.spad" 777054 777072 779107 779112) (-502 "INTHERTR.spad" 776328 776345 777044 777049) (-501 "INTHERAL.spad" 775998 776022 776318 776323) (-500 "INTHEORY.spad" 772437 772445 775988 775993) (-499 "INTG0.spad" 766201 766219 772366 772371) (-498 "INTFACT.spad" 765268 765278 766191 766196) (-497 "INTEF.spad" 763679 763695 765258 765263) (-496 "INTDOM.spad" 762302 762310 763605 763674) (-495 "INTDOM.spad" 760987 760997 762292 762297) (-494 "INTCAT.spad" 759254 759264 760901 760982) (-493 "INTBIT.spad" 758761 758769 759244 759249) (-492 "INTALG.spad" 757949 757976 758751 758756) (-491 "INTAF.spad" 757449 757465 757939 757944) (-490 "INTABL.spad" 755831 755862 755994 756021) (-489 "INT8.spad" 755711 755719 755821 755826) (-488 "INT64.spad" 755590 755598 755701 755706) (-487 "INT32.spad" 755469 755477 755580 755585) (-486 "INT16.spad" 755348 755356 755459 755464) (-485 "INT.spad" 754874 754882 755214 755343) (-484 "INS.spad" 752377 752385 754776 754869) (-483 "INS.spad" 749966 749976 752367 752372) (-482 "INPSIGN.spad" 749436 749449 749956 749961) (-481 "INPRODPF.spad" 748532 748551 749426 749431) (-480 "INPRODFF.spad" 747620 747644 748522 748527) (-479 "INNMFACT.spad" 746595 746612 747610 747615) (-478 "INMODGCD.spad" 746099 746129 746585 746590) (-477 "INFSP.spad" 744396 744418 746089 746094) (-476 "INFPROD0.spad" 743476 743495 744386 744391) (-475 "INFORM1.spad" 743101 743111 743466 743471) (-474 "INFORM.spad" 740312 740320 743091 743096) (-473 "INFINITY.spad" 739864 739872 740302 740307) (-472 "INETCLTS.spad" 739841 739849 739854 739859) (-471 "INEP.spad" 738387 738409 739831 739836) (-470 "INDE.spad" 738036 738053 738297 738302) (-469 "INCRMAPS.spad" 737473 737483 738026 738031) (-468 "INBFILE.spad" 736569 736577 737463 737468) (-467 "INBFF.spad" 732419 732430 736559 736564) (-466 "INBCON.spad" 730685 730693 732409 732414) (-465 "INBCON.spad" 728949 728959 730675 730680) (-464 "INAST.spad" 728610 728618 728939 728944) (-463 "IMPTAST.spad" 728318 728326 728600 728605) (-462 "IMATQF.spad" 727412 727456 728274 728279) (-461 "IMATLIN.spad" 726033 726057 727368 727373) (-460 "IFF.spad" 725446 725462 725717 725810) (-459 "IFAST.spad" 725060 725068 725436 725441) (-458 "IFARRAY.spad" 722587 722602 724285 724312) (-457 "IFAMON.spad" 722449 722466 722543 722548) (-456 "IEVALAB.spad" 721862 721874 722439 722444) (-455 "IEVALAB.spad" 721273 721287 721852 721857) (-454 "indexedp.spad" 720829 720841 721263 721268) (-453 "IDPOAMS.spad" 720507 720519 720741 720746) (-452 "IDPOAM.spad" 720149 720161 720419 720424) (-451 "IDPO.spad" 719563 719575 720061 720066) (-450 "IDPC.spad" 718278 718290 719553 719558) (-449 "IDPAM.spad" 717945 717957 718190 718195) (-448 "IDPAG.spad" 717614 717626 717857 717862) (-447 "IDENT.spad" 717266 717274 717604 717609) (-446 "catdef.spad" 717037 717048 717149 717261) (-445 "IDECOMP.spad" 714276 714294 717027 717032) (-444 "IDEAL.spad" 709238 709277 714224 714229) (-443 "ICDEN.spad" 708451 708467 709228 709233) (-442 "ICARD.spad" 707844 707852 708441 708446) (-441 "IBPTOOLS.spad" 706451 706468 707834 707839) (-440 "IBITS.spad" 705964 705977 706097 706124) (-439 "IBATOOL.spad" 702949 702968 705954 705959) (-438 "IBACHIN.spad" 701456 701471 702939 702944) (-437 "array2.spad" 700941 700963 701128 701155) (-436 "IARRAY1.spad" 700020 700035 700166 700193) (-435 "IAN.spad" 698402 698410 699851 699944) (-434 "IALGFACT.spad" 698013 698046 698392 698397) (-433 "HYPCAT.spad" 697437 697445 698003 698008) (-432 "HYPCAT.spad" 696859 696869 697427 697432) (-431 "HOSTNAME.spad" 696675 696683 696849 696854) (-430 "HOMOTOP.spad" 696418 696428 696665 696670) (-429 "HOAGG.spad" 693700 693710 696408 696413) (-428 "HOAGG.spad" 690732 690744 693442 693447) (-427 "HEXADEC.spad" 688957 688965 689322 689415) (-426 "HEUGCD.spad" 688048 688059 688947 688952) (-425 "HELLFDIV.spad" 687654 687678 688038 688043) (-424 "HEAP.spad" 687111 687121 687326 687353) (-423 "HEADAST.spad" 686652 686660 687101 687106) (-422 "HDP.spad" 676285 676301 676662 676759) (-421 "HDMP.spad" 673832 673847 674448 674575) (-420 "HB.spad" 672107 672115 673822 673827) (-419 "HASHTBL.spad" 670441 670472 670652 670679) (-418 "HASAST.spad" 670157 670165 670431 670436) (-417 "HACKPI.spad" 669648 669656 670059 670152) (-416 "GTSET.spad" 668575 668591 669282 669309) (-415 "GSTBL.spad" 666946 666981 667120 667147) (-414 "GSERIES.spad" 664318 664345 665137 665286) (-413 "GROUP.spad" 663591 663599 664298 664313) (-412 "GROUP.spad" 662872 662882 663581 663586) (-411 "GROEBSOL.spad" 661366 661387 662862 662867) (-410 "GRMOD.spad" 659947 659959 661356 661361) (-409 "GRMOD.spad" 658526 658540 659937 659942) (-408 "GRIMAGE.spad" 651439 651447 658516 658521) (-407 "GRDEF.spad" 649818 649826 651429 651434) (-406 "GRAY.spad" 648289 648297 649808 649813) (-405 "GRALG.spad" 647384 647396 648279 648284) (-404 "GRALG.spad" 646477 646491 647374 647379) (-403 "GPOLSET.spad" 645935 645958 646147 646174) (-402 "GOSPER.spad" 645212 645230 645925 645930) (-401 "GMODPOL.spad" 644360 644387 645180 645207) (-400 "GHENSEL.spad" 643443 643457 644350 644355) (-399 "GENUPS.spad" 639736 639749 643433 643438) (-398 "GENUFACT.spad" 639313 639323 639726 639731) (-397 "GENPGCD.spad" 638915 638932 639303 639308) (-396 "GENMFACT.spad" 638367 638386 638905 638910) (-395 "GENEEZ.spad" 636326 636339 638357 638362) (-394 "GDMP.spad" 633715 633732 634489 634616) (-393 "GCNAALG.spad" 627638 627665 633509 633576) (-392 "GCDDOM.spad" 626830 626838 627564 627633) (-391 "GCDDOM.spad" 626084 626094 626820 626825) (-390 "GBINTERN.spad" 622104 622142 626074 626079) (-389 "GBF.spad" 617887 617925 622094 622099) (-388 "GBEUCLID.spad" 615769 615807 617877 617882) (-387 "GB.spad" 613295 613333 615725 615730) (-386 "GAUSSFAC.spad" 612608 612616 613285 613290) (-385 "GALUTIL.spad" 610934 610944 612564 612569) (-384 "GALPOLYU.spad" 609388 609401 610924 610929) (-383 "GALFACTU.spad" 607601 607620 609378 609383) (-382 "GALFACT.spad" 597814 597825 607591 607596) (-381 "FUNDESC.spad" 597492 597500 597804 597809) (-380 "FUNCTION.spad" 597341 597353 597482 597487) (-379 "FT.spad" 595641 595649 597331 597336) (-378 "FSUPFACT.spad" 594555 594574 595591 595596) (-377 "FST.spad" 592641 592649 594545 594550) (-376 "FSRED.spad" 592121 592137 592631 592636) (-375 "FSPRMELT.spad" 590987 591003 592078 592083) (-374 "FSPECF.spad" 589078 589094 590977 590982) (-373 "FSINT.spad" 588738 588754 589068 589073) (-372 "FSERIES.spad" 587929 587941 588558 588657) (-371 "FSCINT.spad" 587246 587262 587919 587924) (-370 "FSAGG2.spad" 585981 585997 587236 587241) (-369 "FSAGG.spad" 585098 585108 585937 585976) (-368 "FSAGG.spad" 584177 584189 585018 585023) (-367 "FS2UPS.spad" 578692 578726 584167 584172) (-366 "FS2EXPXP.spad" 577833 577856 578682 578687) (-365 "FS2.spad" 577488 577504 577823 577828) (-364 "FS.spad" 571760 571770 577267 577483) (-363 "FS.spad" 565834 565846 571343 571348) (-362 "FRUTIL.spad" 564788 564798 565824 565829) (-361 "FRNAALG.spad" 560065 560075 564730 564783) (-360 "FRNAALG.spad" 555354 555366 560021 560026) (-359 "FRNAAF2.spad" 554802 554820 555344 555349) (-358 "FRMOD.spad" 554210 554240 554731 554736) (-357 "FRIDEAL2.spad" 553814 553846 554200 554205) (-356 "FRIDEAL.spad" 553039 553060 553794 553809) (-355 "FRETRCT.spad" 552558 552568 553029 553034) (-354 "FRETRCT.spad" 551984 551996 552457 552462) (-353 "FRAMALG.spad" 550364 550377 551940 551979) (-352 "FRAMALG.spad" 548776 548791 550354 550359) (-351 "FRAC2.spad" 548381 548393 548766 548771) (-350 "FRAC.spad" 546368 546378 546755 546928) (-349 "FR2.spad" 545704 545716 546358 546363) (-348 "FR.spad" 539492 539502 544765 544834) (-347 "FPS.spad" 536331 536339 539382 539487) (-346 "FPS.spad" 533198 533208 536251 536256) (-345 "FPC.spad" 532244 532252 533100 533193) (-344 "FPC.spad" 531376 531386 532234 532239) (-343 "FPATMAB.spad" 531138 531148 531366 531371) (-342 "FPARFRAC.spad" 529980 529997 531128 531133) (-341 "FORDER.spad" 529671 529695 529970 529975) (-340 "FNLA.spad" 529095 529117 529639 529666) (-339 "FNCAT.spad" 527690 527698 529085 529090) (-338 "FNAME.spad" 527582 527590 527680 527685) (-337 "FMONOID.spad" 527263 527273 527538 527543) (-336 "FMONCAT.spad" 524432 524442 527253 527258) (-335 "FMCAT.spad" 522108 522126 524400 524427) (-334 "FM1.spad" 521473 521485 522042 522069) (-333 "FM.spad" 521088 521100 521327 521354) (-332 "FLOATRP.spad" 518831 518845 521078 521083) (-331 "FLOATCP.spad" 516270 516284 518821 518826) (-330 "FLOAT.spad" 513361 513369 516136 516265) (-329 "FLINEXP.spad" 513083 513093 513351 513356) (-328 "FLINEXP.spad" 512762 512774 513032 513037) (-327 "FLASORT.spad" 512088 512100 512752 512757) (-326 "FLALG.spad" 509758 509777 512014 512083) (-325 "FLAGG2.spad" 508475 508491 509748 509753) (-324 "FLAGG.spad" 505541 505551 508455 508470) (-323 "FLAGG.spad" 502508 502520 505424 505429) (-322 "FINRALG.spad" 500593 500606 502464 502503) (-321 "FINRALG.spad" 498604 498619 500477 500482) (-320 "FINITE.spad" 497756 497764 498594 498599) (-319 "FINITE.spad" 496906 496916 497746 497751) (-318 "aggcat.spad" 495072 495082 496886 496901) (-317 "FINAGG.spad" 493213 493225 495029 495034) (-316 "FINAALG.spad" 482398 482408 493155 493208) (-315 "FINAALG.spad" 471595 471607 482354 482359) (-314 "FILECAT.spad" 470129 470146 471585 471590) (-313 "FILE.spad" 469712 469722 470119 470124) (-312 "FIELD.spad" 469118 469126 469614 469707) (-311 "FIELD.spad" 468610 468620 469108 469113) (-310 "FGROUP.spad" 467273 467283 468590 468605) (-309 "FGLMICPK.spad" 466068 466083 467263 467268) (-308 "FFX.spad" 465454 465469 465787 465880) (-307 "FFSLPE.spad" 464965 464986 465444 465449) (-306 "FFPOLY2.spad" 464025 464042 464955 464960) (-305 "FFPOLY.spad" 455367 455378 464015 464020) (-304 "FFP.spad" 454775 454795 455086 455179) (-303 "FFNBX.spad" 453298 453318 454494 454587) (-302 "FFNBP.spad" 451822 451839 453017 453110) (-301 "FFNB.spad" 450290 450311 451506 451599) (-300 "FFINTBAS.spad" 447804 447823 450280 450285) (-299 "FFIELDC.spad" 445389 445397 447706 447799) (-298 "FFIELDC.spad" 443060 443070 445379 445384) (-297 "FFHOM.spad" 441832 441849 443050 443055) (-296 "FFF.spad" 439275 439286 441822 441827) (-295 "FFCGX.spad" 438133 438153 438994 439087) (-294 "FFCGP.spad" 437033 437053 437852 437945) (-293 "FFCG.spad" 435828 435849 436717 436810) (-292 "FFCAT2.spad" 435575 435615 435818 435823) (-291 "FFCAT.spad" 428740 428762 435414 435570) (-290 "FFCAT.spad" 421984 422008 428660 428665) (-289 "FF.spad" 421435 421451 421668 421761) (-288 "FEVALAB.spad" 421143 421153 421425 421430) (-287 "FEVALAB.spad" 420627 420639 420911 420916) (-286 "FDIVCAT.spad" 418723 418747 420617 420622) (-285 "FDIVCAT.spad" 416817 416843 418713 418718) (-284 "FDIV2.spad" 416473 416513 416807 416812) (-283 "FDIV.spad" 415931 415955 416463 416468) (-282 "FCTRDATA.spad" 414939 414947 415921 415926) (-281 "FCOMP.spad" 414318 414328 414929 414934) (-280 "FAXF.spad" 407353 407367 414220 414313) (-279 "FAXF.spad" 400440 400456 407309 407314) (-278 "FARRAY.spad" 398632 398642 399665 399692) (-277 "FAMR.spad" 396776 396788 398530 398627) (-276 "FAMR.spad" 394904 394918 396660 396665) (-275 "FAMONOID.spad" 394588 394598 394858 394863) (-274 "FAMONC.spad" 392908 392920 394578 394583) (-273 "FAGROUP.spad" 392548 392558 392804 392831) (-272 "FACUTIL.spad" 390760 390777 392538 392543) (-271 "FACTFUNC.spad" 389962 389972 390750 390755) (-270 "EXPUPXS.spad" 386854 386877 388153 388302) (-269 "EXPRTUBE.spad" 384142 384150 386844 386849) (-268 "EXPRODE.spad" 381310 381326 384132 384137) (-267 "EXPR2UPS.spad" 377432 377445 381300 381305) (-266 "EXPR2.spad" 377137 377149 377422 377427) (-265 "EXPR.spad" 372782 372792 373496 373783) (-264 "EXPEXPAN.spad" 369727 369752 370359 370452) (-263 "EXITAST.spad" 369463 369471 369717 369722) (-262 "EXIT.spad" 369134 369142 369453 369458) (-261 "EVALCYC.spad" 368594 368608 369124 369129) (-260 "EVALAB.spad" 368174 368184 368584 368589) (-259 "EVALAB.spad" 367752 367764 368164 368169) (-258 "EUCDOM.spad" 365342 365350 367678 367747) (-257 "EUCDOM.spad" 362994 363004 365332 365337) (-256 "ES2.spad" 362507 362523 362984 362989) (-255 "ES1.spad" 362077 362093 362497 362502) (-254 "ES.spad" 354948 354956 362067 362072) (-253 "ES.spad" 347740 347750 354861 354866) (-252 "ERROR.spad" 345067 345075 347730 347735) (-251 "EQTBL.spad" 343403 343425 343612 343639) (-250 "EQ2.spad" 343121 343133 343393 343398) (-249 "EQ.spad" 338027 338037 340822 340928) (-248 "EP.spad" 334353 334363 338017 338022) (-247 "ENV.spad" 333031 333039 334343 334348) (-246 "ENTIRER.spad" 332699 332707 332975 333026) (-245 "ENTIRER.spad" 332411 332421 332689 332694) (-244 "EMR.spad" 331699 331740 332337 332406) (-243 "ELTAGG.spad" 329953 329972 331689 331694) (-242 "ELTAGG.spad" 328171 328192 329909 329914) (-241 "ELTAB.spad" 327646 327659 328161 328166) (-240 "ELFUTS.spad" 327081 327100 327636 327641) (-239 "ELEMFUN.spad" 326770 326778 327071 327076) (-238 "ELEMFUN.spad" 326457 326467 326760 326765) (-237 "ELAGG.spad" 324428 324438 326437 326452) (-236 "ELAGG.spad" 322336 322348 324347 324352) (-235 "ELABOR.spad" 321682 321690 322326 322331) (-234 "ELABEXPR.spad" 320614 320622 321672 321677) (-233 "EFUPXS.spad" 317390 317420 320570 320575) (-232 "EFULS.spad" 314226 314249 317346 317351) (-231 "EFSTRUC.spad" 312241 312257 314216 314221) (-230 "EF.spad" 307017 307033 312231 312236) (-229 "EAB.spad" 305317 305325 307007 307012) (-228 "DVARCAT.spad" 302323 302333 305307 305312) (-227 "DVARCAT.spad" 299327 299339 302313 302318) (-226 "DSMP.spad" 297060 297074 297365 297492) (-225 "DSEXT.spad" 296362 296372 297050 297055) (-224 "DSEXT.spad" 295584 295596 296274 296279) (-223 "DROPT1.spad" 295249 295259 295574 295579) (-222 "DROPT0.spad" 290114 290122 295239 295244) (-221 "DROPT.spad" 284073 284081 290104 290109) (-220 "DRAWPT.spad" 282246 282254 284063 284068) (-219 "DRAWHACK.spad" 281554 281564 282236 282241) (-218 "DRAWCX.spad" 279032 279040 281544 281549) (-217 "DRAWCURV.spad" 278579 278594 279022 279027) (-216 "DRAWCFUN.spad" 268111 268119 278569 278574) (-215 "DRAW.spad" 260987 261000 268101 268106) (-214 "DQAGG.spad" 259165 259175 260955 260982) (-213 "DPOLCAT.spad" 254522 254538 259033 259160) (-212 "DPOLCAT.spad" 249965 249983 254478 254483) (-211 "DPMO.spad" 242668 242684 242806 243012) (-210 "DPMM.spad" 235384 235402 235509 235715) (-209 "DOMTMPLT.spad" 235155 235163 235374 235379) (-208 "DOMCTOR.spad" 234910 234918 235145 235150) (-207 "DOMAIN.spad" 234021 234029 234900 234905) (-206 "DMP.spad" 231614 231629 232184 232311) (-205 "DMEXT.spad" 231481 231491 231582 231609) (-204 "DLP.spad" 230841 230851 231471 231476) (-203 "DLIST.spad" 229462 229472 230066 230093) (-202 "DLAGG.spad" 227879 227889 229452 229457) (-201 "DIVRING.spad" 227421 227429 227823 227874) (-200 "DIVRING.spad" 227007 227017 227411 227416) (-199 "DISPLAY.spad" 225197 225205 226997 227002) (-198 "DIRPROD2.spad" 224015 224033 225187 225192) (-197 "DIRPROD.spad" 213385 213401 214025 214122) (-196 "DIRPCAT.spad" 212668 212684 213283 213380) (-195 "DIRPCAT.spad" 211577 211595 212194 212199) (-194 "DIOSP.spad" 210402 210410 211567 211572) (-193 "DIOPS.spad" 209398 209408 210382 210397) (-192 "DIOPS.spad" 208368 208380 209354 209359) (-191 "catdef.spad" 208226 208234 208358 208363) (-190 "DIFRING.spad" 208064 208072 208206 208221) (-189 "DIFFSPC.spad" 207643 207651 208054 208059) (-188 "DIFFSPC.spad" 207220 207230 207633 207638) (-187 "DIFFMOD.spad" 206709 206719 207188 207215) (-186 "DIFFDOM.spad" 205874 205885 206699 206704) (-185 "DIFFDOM.spad" 205037 205050 205864 205869) (-184 "DIFEXT.spad" 204856 204866 205017 205032) (-183 "DIAGG.spad" 204486 204496 204836 204851) (-182 "DIAGG.spad" 204124 204136 204476 204481) (-181 "DHMATRIX.spad" 202501 202511 203646 203673) (-180 "DFSFUN.spad" 196141 196149 202491 202496) (-179 "DFLOAT.spad" 192748 192756 196031 196136) (-178 "DFINTTLS.spad" 190979 190995 192738 192743) (-177 "DERHAM.spad" 188893 188925 190959 190974) (-176 "DEQUEUE.spad" 188282 188292 188565 188592) (-175 "DEGRED.spad" 187899 187913 188272 188277) (-174 "DEFINTRF.spad" 185481 185491 187889 187894) (-173 "DEFINTEF.spad" 184019 184035 185471 185476) (-172 "DEFAST.spad" 183403 183411 184009 184014) (-171 "DECIMAL.spad" 181632 181640 181993 182086) (-170 "DDFACT.spad" 179453 179470 181622 181627) (-169 "DBLRESP.spad" 179053 179077 179443 179448) (-168 "DBASIS.spad" 178679 178694 179043 179048) (-167 "DBASE.spad" 177343 177353 178669 178674) (-166 "DATAARY.spad" 176829 176842 177333 177338) (-165 "CYCLOTOM.spad" 176335 176343 176819 176824) (-164 "CYCLES.spad" 173127 173135 176325 176330) (-163 "CVMP.spad" 172544 172554 173117 173122) (-162 "CTRIGMNP.spad" 171044 171060 172534 172539) (-161 "CTORKIND.spad" 170647 170655 171034 171039) (-160 "CTORCAT.spad" 169888 169896 170637 170642) (-159 "CTORCAT.spad" 169127 169137 169878 169883) (-158 "CTORCALL.spad" 168716 168726 169117 169122) (-157 "CTOR.spad" 168407 168415 168706 168711) (-156 "CSTTOOLS.spad" 167652 167665 168397 168402) (-155 "CRFP.spad" 161424 161437 167642 167647) (-154 "CRCEAST.spad" 161144 161152 161414 161419) (-153 "CRAPACK.spad" 160211 160221 161134 161139) (-152 "CPMATCH.spad" 159712 159727 160133 160138) (-151 "CPIMA.spad" 159417 159436 159702 159707) (-150 "COORDSYS.spad" 154426 154436 159407 159412) (-149 "CONTOUR.spad" 153853 153861 154416 154421) (-148 "CONTFRAC.spad" 149603 149613 153755 153848) (-147 "CONDUIT.spad" 149361 149369 149593 149598) (-146 "COMRING.spad" 149035 149043 149299 149356) (-145 "COMPPROP.spad" 148553 148561 149025 149030) (-144 "COMPLPAT.spad" 148320 148335 148543 148548) (-143 "COMPLEX2.spad" 148035 148047 148310 148315) (-142 "COMPLEX.spad" 143741 143751 143985 144243) (-141 "COMPILER.spad" 143290 143298 143731 143736) (-140 "COMPFACT.spad" 142892 142906 143280 143285) (-139 "COMPCAT.spad" 140967 140977 142629 142887) (-138 "COMPCAT.spad" 138783 138795 140447 140452) (-137 "COMMUPC.spad" 138531 138549 138773 138778) (-136 "COMMONOP.spad" 138064 138072 138521 138526) (-135 "COMMAAST.spad" 137827 137835 138054 138059) (-134 "COMM.spad" 137638 137646 137817 137822) (-133 "COMBOPC.spad" 136561 136569 137628 137633) (-132 "COMBINAT.spad" 135328 135338 136551 136556) (-131 "COMBF.spad" 132750 132766 135318 135323) (-130 "COLOR.spad" 131587 131595 132740 132745) (-129 "COLONAST.spad" 131253 131261 131577 131582) (-128 "CMPLXRT.spad" 130964 130981 131243 131248) (-127 "CLLCTAST.spad" 130626 130634 130954 130959) (-126 "CLIP.spad" 126734 126742 130616 130621) (-125 "CLIF.spad" 125389 125405 126690 126729) (-124 "CLAGG.spad" 121926 121936 125379 125384) (-123 "CLAGG.spad" 118347 118359 121802 121807) (-122 "CINTSLPE.spad" 117702 117715 118337 118342) (-121 "CHVAR.spad" 115840 115862 117692 117697) (-120 "CHARZ.spad" 115755 115763 115820 115835) (-119 "CHARPOL.spad" 115281 115291 115745 115750) (-118 "CHARNZ.spad" 115043 115051 115261 115276) (-117 "CHAR.spad" 112411 112419 115033 115038) (-116 "CFCAT.spad" 111739 111747 112401 112406) (-115 "CDEN.spad" 110959 110973 111729 111734) (-114 "CCLASS.spad" 109139 109147 110401 110440) (-113 "CATEGORY.spad" 108213 108221 109129 109134) (-112 "CATCTOR.spad" 108104 108112 108203 108208) (-111 "CATAST.spad" 107730 107738 108094 108099) (-110 "CASEAST.spad" 107444 107452 107720 107725) (-109 "CARTEN2.spad" 106834 106861 107434 107439) (-108 "CARTEN.spad" 102586 102610 106824 106829) (-107 "CARD.spad" 99881 99889 102560 102581) (-106 "CAPSLAST.spad" 99663 99671 99871 99876) (-105 "CACHSET.spad" 99287 99295 99653 99658) (-104 "CABMON.spad" 98842 98850 99277 99282) (-103 "BYTEORD.spad" 98517 98525 98832 98837) (-102 "BYTEBUF.spad" 96564 96572 97770 97797) (-101 "BYTE.spad" 96039 96047 96554 96559) (-100 "BTREE.spad" 95177 95187 95711 95738) (-99 "BTOURN.spad" 94248 94257 94849 94876) (-98 "BTCAT.spad" 93727 93736 94216 94243) (-97 "BTCAT.spad" 93226 93237 93717 93722) (-96 "BTAGG.spad" 92693 92700 93194 93221) (-95 "BTAGG.spad" 92180 92189 92683 92688) (-94 "BSTREE.spad" 90987 90996 91852 91879) (-93 "BRILL.spad" 89193 89203 90977 90982) (-92 "BRAGG.spad" 88150 88159 89183 89188) (-91 "BRAGG.spad" 87071 87082 88106 88111) (-90 "BPADICRT.spad" 85131 85142 85377 85470) (-89 "BPADIC.spad" 84804 84815 85057 85126) (-88 "BOUNDZRO.spad" 84461 84477 84794 84799) (-87 "BOP1.spad" 81920 81929 84451 84456) (-86 "BOP.spad" 77063 77070 81910 81915) (-85 "BOOLEAN.spad" 76612 76619 77053 77058) (-84 "BOOLE.spad" 76263 76270 76602 76607) (-83 "BOOLE.spad" 75912 75921 76253 76258) (-82 "BMODULE.spad" 75625 75636 75880 75907) (-81 "BITS.spad" 75057 75064 75271 75298) (-80 "catdef.spad" 74940 74950 75047 75052) (-79 "catdef.spad" 74691 74701 74930 74935) (-78 "BINDING.spad" 74113 74120 74681 74686) (-77 "BINARY.spad" 72348 72355 72703 72796) (-76 "BGAGG.spad" 71554 71563 72328 72343) (-75 "BGAGG.spad" 70768 70779 71544 71549) (-74 "BEZOUT.spad" 69909 69935 70718 70723) (-73 "BBTREE.spad" 66852 66861 69581 69608) (-72 "BASTYPE.spad" 66352 66359 66842 66847) (-71 "BASTYPE.spad" 65850 65859 66342 66347) (-70 "BALFACT.spad" 65310 65322 65840 65845) (-69 "AUTOMOR.spad" 64761 64770 65290 65305) (-68 "ATTREG.spad" 61484 61491 64513 64756) (-67 "ATTRAST.spad" 61201 61208 61474 61479) (-66 "ATRIG.spad" 60671 60678 61191 61196) (-65 "ATRIG.spad" 60139 60148 60661 60666) (-64 "ASTCAT.spad" 60043 60050 60129 60134) (-63 "ASTCAT.spad" 59945 59954 60033 60038) (-62 "ASTACK.spad" 59349 59358 59617 59644) (-61 "ASSOCEQ.spad" 58183 58194 59305 59310) (-60 "ARRAY2.spad" 57706 57715 57855 57882) (-59 "ARRAY12.spad" 56419 56430 57696 57701) (-58 "ARRAY1.spad" 55298 55307 55644 55671) (-57 "ARR2CAT.spad" 51264 51285 55266 55293) (-56 "ARR2CAT.spad" 47250 47273 51254 51259) (-55 "ARITY.spad" 46622 46629 47240 47245) (-54 "APPRULE.spad" 45906 45928 46612 46617) (-53 "APPLYORE.spad" 45525 45538 45896 45901) (-52 "ANY1.spad" 44596 44605 45515 45520) (-51 "ANY.spad" 43447 43454 44586 44591) (-50 "ANTISYM.spad" 41892 41908 43427 43442) (-49 "ANON.spad" 41601 41608 41882 41887) (-48 "AN.spad" 40069 40076 41432 41525) (-47 "AMR.spad" 38254 38265 39967 40064) (-46 "AMR.spad" 36302 36315 38017 38022) (-45 "ALIST.spad" 33540 33561 33890 33917) (-44 "ALGSC.spad" 32675 32701 33412 33465) (-43 "ALGPKG.spad" 28458 28469 32631 32636) (-42 "ALGMFACT.spad" 27651 27665 28448 28453) (-41 "ALGMANIP.spad" 25152 25167 27495 27500) (-40 "ALGFF.spad" 22970 22997 23187 23343) (-39 "ALGFACT.spad" 22089 22099 22960 22965) (-38 "ALGEBRA.spad" 21922 21931 22045 22084) (-37 "ALGEBRA.spad" 21787 21798 21912 21917) (-36 "ALAGG.spad" 21303 21324 21755 21782) (-35 "AHYP.spad" 20684 20691 21293 21298) (-34 "AGG.spad" 19393 19400 20674 20679) (-33 "AGG.spad" 18066 18075 19349 19354) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file