aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase66
1 files changed, 33 insertions, 33 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 1b83efa7..9ad46d52 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2279297 . 3485898200)
+(2279666 . 3485902597)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -88,7 +88,7 @@ NIL
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1392 UP UPUP -2030)
+(-40 -1392 UP UPUP -2382)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4455 |has| (-419 |#2|) (-374)) (-4460 |has| (-419 |#2|) (-374)) (-4454 |has| (-419 |#2|) (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2825 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2825 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2825 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2825 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2825 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2825 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))))
@@ -472,11 +472,11 @@ NIL
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
(((-4464 "*") . T))
NIL
-(-136 |minix| -4137 S T$)
+(-136 |minix| -4138 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-137 |minix| -4137 R)
+(-137 |minix| -4138 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -896,19 +896,19 @@ NIL
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-242 S -4137 R)
+(-242 S -4138 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasAttribute| |#3| (QUOTE -4459)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1119))))
-(-243 -4137 R)
+(-243 -4138 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T))
NIL
-(-244 -4137 A B)
+(-244 -4138 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-245 -4137 R)
+(-245 -4138 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T))
((-2825 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2825 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2825 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-2825 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-2825 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
@@ -1124,7 +1124,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-299 S R |Mod| -2156 -4181 |exactQuo|)
+(-299 S R |Mod| -4223 -2257 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
@@ -1247,7 +1247,7 @@ NIL
(-329 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
(-330 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1568,7 +1568,7 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-410 -2055 |returnType| -1567 |symbols|)
+(-410 -2055 |returnType| -1568 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
@@ -1875,7 +1875,7 @@ NIL
(-486 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
(-487 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4463 . T))
@@ -1904,7 +1904,7 @@ NIL
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T))
((|HasCategory| |#2| (QUOTE (-926))) (-2825 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2825 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2825 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2825 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-2825 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146)))))
-(-494 -4137 S)
+(-494 -4138 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T))
((-2825 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2825 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2825 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-2825 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-2825 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
@@ -2533,7 +2533,7 @@ NIL
NIL
((-2100 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374))))
(-651 R)
-((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
+((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
(-652 S)
@@ -2608,7 +2608,7 @@ NIL
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-670 A -4199)
+(-670 A -4355)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4456 . T) (-4457 . T) (-4459 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374))))
@@ -2800,7 +2800,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-718 S -3567 I)
+(-718 S -3566 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2820,7 +2820,7 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-723 R |Mod| -2156 -4181 |exactQuo|)
+(-723 R |Mod| -4223 -2257 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T))
NIL
@@ -2836,7 +2836,7 @@ NIL
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T))
((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))))
-(-727 R |Mod| -2156 -4181 |exactQuo|)
+(-727 R |Mod| -4223 -2257 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4459 . T))
NIL
@@ -3236,7 +3236,7 @@ NIL
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-827 -4137 S |f|)
+(-827 -4138 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T))
((-2825 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2825 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2825 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-2825 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-2825 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-2825 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))))
@@ -3356,7 +3356,7 @@ NIL
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-857 -4137 S)
+(-857 -4138 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3540,7 +3540,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-903 R -3567)
+(-903 R -3566)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3744,11 +3744,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -899) (|devaluate| |#1|))))
-(-954 R -1392 -3567)
+(-954 R -1392 -3566)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-955 -3567)
+(-955 -3566)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -4679,7 +4679,7 @@ NIL
(-1187 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4464 "*") -2825 (-2111 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2111 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-926)))) (-4455 -2825 (-2111 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2111 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
-((-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1188 R -1392)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
@@ -4703,11 +4703,11 @@ NIL
(-1193 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
(-1194 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
(-1195)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4931,11 +4931,11 @@ NIL
(-1250 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
-((-2825 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2825 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-2825 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2825 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-2825 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-2825 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-926))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2825 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-2825 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))))
+((-2825 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2825 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-2825 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2825 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-2825 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-2825 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-926))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2825 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-2825 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))))
(-1251 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
(((-4464 "*") -2825 (-2111 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2111 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-926)))) (-4455 -2825 (-2111 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2111 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
-((-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))))
+((-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-2825 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))))
(-1252 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -5015,11 +5015,11 @@ NIL
(-1271 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
-((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
+((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))
(-1272 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2825 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
(-1273 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
(((-4464 "*") |has| (-1272 |#2| |#3| |#4|) (-174)) (-4455 |has| (-1272 |#2| |#3| |#4|) (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
@@ -5039,7 +5039,7 @@ NIL
(-1277 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasSignature| |#2| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3247) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1196))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasSignature| |#2| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2039) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1196))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))))
(-1278 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
@@ -5047,7 +5047,7 @@ NIL
(-1279 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3247) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2825 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -2933) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2825 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -2039) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -4361) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))))
(-1280 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
@@ -5212,4 +5212,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2279277 2279282 2279287 2279292) (-2 NIL 2279257 2279262 2279267 2279272) (-1 NIL 2279237 2279242 2279247 2279252) (0 NIL 2279217 2279222 2279227 2279232) (-1316 "ZMOD.spad" 2279026 2279039 2279155 2279212) (-1315 "ZLINDEP.spad" 2278092 2278103 2279016 2279021) (-1314 "ZDSOLVE.spad" 2268037 2268059 2278082 2278087) (-1313 "YSTREAM.spad" 2267532 2267543 2268027 2268032) (-1312 "YDIAGRAM.spad" 2267166 2267175 2267522 2267527) (-1311 "XRPOLY.spad" 2266386 2266406 2267022 2267091) (-1310 "XPR.spad" 2264181 2264194 2266104 2266203) (-1309 "XPOLY.spad" 2263736 2263747 2264037 2264106) (-1308 "XPOLYC.spad" 2263055 2263071 2263662 2263731) (-1307 "XPBWPOLY.spad" 2261492 2261512 2262835 2262904) (-1306 "XF.spad" 2259955 2259970 2261394 2261487) (-1305 "XF.spad" 2258398 2258415 2259839 2259844) (-1304 "XFALG.spad" 2255446 2255462 2258324 2258393) (-1303 "XEXPPKG.spad" 2254697 2254723 2255436 2255441) (-1302 "XDPOLY.spad" 2254311 2254327 2254553 2254622) (-1301 "XALG.spad" 2253971 2253982 2254267 2254306) (-1300 "WUTSET.spad" 2249810 2249827 2253617 2253644) (-1299 "WP.spad" 2249009 2249053 2249668 2249735) (-1298 "WHILEAST.spad" 2248807 2248816 2248999 2249004) (-1297 "WHEREAST.spad" 2248478 2248487 2248797 2248802) (-1296 "WFFINTBS.spad" 2246141 2246163 2248468 2248473) (-1295 "WEIER.spad" 2244363 2244374 2246131 2246136) (-1294 "VSPACE.spad" 2244036 2244047 2244331 2244358) (-1293 "VSPACE.spad" 2243729 2243742 2244026 2244031) (-1292 "VOID.spad" 2243406 2243415 2243719 2243724) (-1291 "VIEW.spad" 2241086 2241095 2243396 2243401) (-1290 "VIEWDEF.spad" 2236287 2236296 2241076 2241081) (-1289 "VIEW3D.spad" 2220248 2220257 2236277 2236282) (-1288 "VIEW2D.spad" 2208139 2208148 2220238 2220243) (-1287 "VECTOR.spad" 2206813 2206824 2207064 2207091) (-1286 "VECTOR2.spad" 2205452 2205465 2206803 2206808) (-1285 "VECTCAT.spad" 2203356 2203367 2205420 2205447) (-1284 "VECTCAT.spad" 2201067 2201080 2203133 2203138) (-1283 "VARIABLE.spad" 2200847 2200862 2201057 2201062) (-1282 "UTYPE.spad" 2200491 2200500 2200837 2200842) (-1281 "UTSODETL.spad" 2199786 2199810 2200447 2200452) (-1280 "UTSODE.spad" 2198002 2198022 2199776 2199781) (-1279 "UTS.spad" 2192949 2192977 2196469 2196566) (-1278 "UTSCAT.spad" 2190428 2190444 2192847 2192944) (-1277 "UTSCAT.spad" 2187551 2187569 2189972 2189977) (-1276 "UTS2.spad" 2187146 2187181 2187541 2187546) (-1275 "URAGG.spad" 2181819 2181830 2187136 2187141) (-1274 "URAGG.spad" 2176456 2176469 2181775 2181780) (-1273 "UPXSSING.spad" 2174101 2174127 2175537 2175670) (-1272 "UPXS.spad" 2171397 2171425 2172233 2172382) (-1271 "UPXSCONS.spad" 2169156 2169176 2169529 2169678) (-1270 "UPXSCCA.spad" 2167727 2167747 2169002 2169151) (-1269 "UPXSCCA.spad" 2166440 2166462 2167717 2167722) (-1268 "UPXSCAT.spad" 2165029 2165045 2166286 2166435) (-1267 "UPXS2.spad" 2164572 2164625 2165019 2165024) (-1266 "UPSQFREE.spad" 2162986 2163000 2164562 2164567) (-1265 "UPSCAT.spad" 2160773 2160797 2162884 2162981) (-1264 "UPSCAT.spad" 2158266 2158292 2160379 2160384) (-1263 "UPOLYC.spad" 2153306 2153317 2158108 2158261) (-1262 "UPOLYC.spad" 2148238 2148251 2153042 2153047) (-1261 "UPOLYC2.spad" 2147709 2147728 2148228 2148233) (-1260 "UP.spad" 2144815 2144830 2145202 2145355) (-1259 "UPMP.spad" 2143715 2143728 2144805 2144810) (-1258 "UPDIVP.spad" 2143280 2143294 2143705 2143710) (-1257 "UPDECOMP.spad" 2141525 2141539 2143270 2143275) (-1256 "UPCDEN.spad" 2140734 2140750 2141515 2141520) (-1255 "UP2.spad" 2140098 2140119 2140724 2140729) (-1254 "UNISEG.spad" 2139451 2139462 2140017 2140022) (-1253 "UNISEG2.spad" 2138948 2138961 2139407 2139412) (-1252 "UNIFACT.spad" 2138051 2138063 2138938 2138943) (-1251 "ULS.spad" 2127835 2127863 2128780 2129209) (-1250 "ULSCONS.spad" 2118969 2118989 2119339 2119488) (-1249 "ULSCCAT.spad" 2116706 2116726 2118815 2118964) (-1248 "ULSCCAT.spad" 2114551 2114573 2116662 2116667) (-1247 "ULSCAT.spad" 2112783 2112799 2114397 2114546) (-1246 "ULS2.spad" 2112297 2112350 2112773 2112778) (-1245 "UINT8.spad" 2112174 2112183 2112287 2112292) (-1244 "UINT64.spad" 2112050 2112059 2112164 2112169) (-1243 "UINT32.spad" 2111926 2111935 2112040 2112045) (-1242 "UINT16.spad" 2111802 2111811 2111916 2111921) (-1241 "UFD.spad" 2110867 2110876 2111728 2111797) (-1240 "UFD.spad" 2109994 2110005 2110857 2110862) (-1239 "UDVO.spad" 2108875 2108884 2109984 2109989) (-1238 "UDPO.spad" 2106368 2106379 2108831 2108836) (-1237 "TYPE.spad" 2106300 2106309 2106358 2106363) (-1236 "TYPEAST.spad" 2106219 2106228 2106290 2106295) (-1235 "TWOFACT.spad" 2104871 2104886 2106209 2106214) (-1234 "TUPLE.spad" 2104357 2104368 2104770 2104775) (-1233 "TUBETOOL.spad" 2101224 2101233 2104347 2104352) (-1232 "TUBE.spad" 2099871 2099888 2101214 2101219) (-1231 "TS.spad" 2098470 2098486 2099436 2099533) (-1230 "TSETCAT.spad" 2085597 2085614 2098438 2098465) (-1229 "TSETCAT.spad" 2072710 2072729 2085553 2085558) (-1228 "TRMANIP.spad" 2067076 2067093 2072416 2072421) (-1227 "TRIMAT.spad" 2066039 2066064 2067066 2067071) (-1226 "TRIGMNIP.spad" 2064566 2064583 2066029 2066034) (-1225 "TRIGCAT.spad" 2064078 2064087 2064556 2064561) (-1224 "TRIGCAT.spad" 2063588 2063599 2064068 2064073) (-1223 "TREE.spad" 2062163 2062174 2063195 2063222) (-1222 "TRANFUN.spad" 2062002 2062011 2062153 2062158) (-1221 "TRANFUN.spad" 2061839 2061850 2061992 2061997) (-1220 "TOPSP.spad" 2061513 2061522 2061829 2061834) (-1219 "TOOLSIGN.spad" 2061176 2061187 2061503 2061508) (-1218 "TEXTFILE.spad" 2059737 2059746 2061166 2061171) (-1217 "TEX.spad" 2056883 2056892 2059727 2059732) (-1216 "TEX1.spad" 2056439 2056450 2056873 2056878) (-1215 "TEMUTL.spad" 2055994 2056003 2056429 2056434) (-1214 "TBCMPPK.spad" 2054087 2054110 2055984 2055989) (-1213 "TBAGG.spad" 2053137 2053160 2054067 2054082) (-1212 "TBAGG.spad" 2052195 2052220 2053127 2053132) (-1211 "TANEXP.spad" 2051603 2051614 2052185 2052190) (-1210 "TALGOP.spad" 2051327 2051338 2051593 2051598) (-1209 "TABLE.spad" 2049738 2049761 2050008 2050035) (-1208 "TABLEAU.spad" 2049219 2049230 2049728 2049733) (-1207 "TABLBUMP.spad" 2046022 2046033 2049209 2049214) (-1206 "SYSTEM.spad" 2045250 2045259 2046012 2046017) (-1205 "SYSSOLP.spad" 2042733 2042744 2045240 2045245) (-1204 "SYSPTR.spad" 2042632 2042641 2042723 2042728) (-1203 "SYSNNI.spad" 2041814 2041825 2042622 2042627) (-1202 "SYSINT.spad" 2041218 2041229 2041804 2041809) (-1201 "SYNTAX.spad" 2037424 2037433 2041208 2041213) (-1200 "SYMTAB.spad" 2035492 2035501 2037414 2037419) (-1199 "SYMS.spad" 2031515 2031524 2035482 2035487) (-1198 "SYMPOLY.spad" 2030522 2030533 2030604 2030731) (-1197 "SYMFUNC.spad" 2030023 2030034 2030512 2030517) (-1196 "SYMBOL.spad" 2027526 2027535 2030013 2030018) (-1195 "SWITCH.spad" 2024297 2024306 2027516 2027521) (-1194 "SUTS.spad" 2021345 2021373 2022764 2022861) (-1193 "SUPXS.spad" 2018628 2018656 2019477 2019626) (-1192 "SUP.spad" 2015348 2015359 2016121 2016274) (-1191 "SUPFRACF.spad" 2014453 2014471 2015338 2015343) (-1190 "SUP2.spad" 2013845 2013858 2014443 2014448) (-1189 "SUMRF.spad" 2012819 2012830 2013835 2013840) (-1188 "SUMFS.spad" 2012456 2012473 2012809 2012814) (-1187 "SULS.spad" 2002227 2002255 2003185 2003614) (-1186 "SUCHTAST.spad" 2001996 2002005 2002217 2002222) (-1185 "SUCH.spad" 2001678 2001693 2001986 2001991) (-1184 "SUBSPACE.spad" 1993793 1993808 2001668 2001673) (-1183 "SUBRESP.spad" 1992963 1992977 1993749 1993754) (-1182 "STTF.spad" 1989062 1989078 1992953 1992958) (-1181 "STTFNC.spad" 1985530 1985546 1989052 1989057) (-1180 "STTAYLOR.spad" 1978165 1978176 1985411 1985416) (-1179 "STRTBL.spad" 1976670 1976687 1976819 1976846) (-1178 "STRING.spad" 1976079 1976088 1976093 1976120) (-1177 "STRICAT.spad" 1975867 1975876 1976047 1976074) (-1176 "STREAM.spad" 1972785 1972796 1975392 1975407) (-1175 "STREAM3.spad" 1972358 1972373 1972775 1972780) (-1174 "STREAM2.spad" 1971486 1971499 1972348 1972353) (-1173 "STREAM1.spad" 1971192 1971203 1971476 1971481) (-1172 "STINPROD.spad" 1970128 1970144 1971182 1971187) (-1171 "STEP.spad" 1969329 1969338 1970118 1970123) (-1170 "STEPAST.spad" 1968563 1968572 1969319 1969324) (-1169 "STBL.spad" 1967089 1967117 1967256 1967271) (-1168 "STAGG.spad" 1966164 1966175 1967079 1967084) (-1167 "STAGG.spad" 1965237 1965250 1966154 1966159) (-1166 "STACK.spad" 1964594 1964605 1964844 1964871) (-1165 "SREGSET.spad" 1962298 1962315 1964240 1964267) (-1164 "SRDCMPK.spad" 1960859 1960879 1962288 1962293) (-1163 "SRAGG.spad" 1956002 1956011 1960827 1960854) (-1162 "SRAGG.spad" 1951165 1951176 1955992 1955997) (-1161 "SQMATRIX.spad" 1948744 1948762 1949660 1949747) (-1160 "SPLTREE.spad" 1943296 1943309 1948180 1948207) (-1159 "SPLNODE.spad" 1939884 1939897 1943286 1943291) (-1158 "SPFCAT.spad" 1938693 1938702 1939874 1939879) (-1157 "SPECOUT.spad" 1937245 1937254 1938683 1938688) (-1156 "SPADXPT.spad" 1928840 1928849 1937235 1937240) (-1155 "spad-parser.spad" 1928305 1928314 1928830 1928835) (-1154 "SPADAST.spad" 1928006 1928015 1928295 1928300) (-1153 "SPACEC.spad" 1912205 1912216 1927996 1928001) (-1152 "SPACE3.spad" 1911981 1911992 1912195 1912200) (-1151 "SORTPAK.spad" 1911530 1911543 1911937 1911942) (-1150 "SOLVETRA.spad" 1909293 1909304 1911520 1911525) (-1149 "SOLVESER.spad" 1907821 1907832 1909283 1909288) (-1148 "SOLVERAD.spad" 1903847 1903858 1907811 1907816) (-1147 "SOLVEFOR.spad" 1902309 1902327 1903837 1903842) (-1146 "SNTSCAT.spad" 1901909 1901926 1902277 1902304) (-1145 "SMTS.spad" 1900181 1900207 1901474 1901571) (-1144 "SMP.spad" 1897656 1897676 1898046 1898173) (-1143 "SMITH.spad" 1896501 1896526 1897646 1897651) (-1142 "SMATCAT.spad" 1894611 1894641 1896445 1896496) (-1141 "SMATCAT.spad" 1892653 1892685 1894489 1894494) (-1140 "SKAGG.spad" 1891616 1891627 1892621 1892648) (-1139 "SINT.spad" 1890556 1890565 1891482 1891611) (-1138 "SIMPAN.spad" 1890284 1890293 1890546 1890551) (-1137 "SIG.spad" 1889614 1889623 1890274 1890279) (-1136 "SIGNRF.spad" 1888732 1888743 1889604 1889609) (-1135 "SIGNEF.spad" 1888011 1888028 1888722 1888727) (-1134 "SIGAST.spad" 1887396 1887405 1888001 1888006) (-1133 "SHP.spad" 1885324 1885339 1887352 1887357) (-1132 "SHDP.spad" 1873606 1873633 1874115 1874214) (-1131 "SGROUP.spad" 1873214 1873223 1873596 1873601) (-1130 "SGROUP.spad" 1872820 1872831 1873204 1873209) (-1129 "SGCF.spad" 1865959 1865968 1872810 1872815) (-1128 "SFRTCAT.spad" 1864889 1864906 1865927 1865954) (-1127 "SFRGCD.spad" 1863952 1863972 1864879 1864884) (-1126 "SFQCMPK.spad" 1858589 1858609 1863942 1863947) (-1125 "SFORT.spad" 1858028 1858042 1858579 1858584) (-1124 "SEXOF.spad" 1857871 1857911 1858018 1858023) (-1123 "SEX.spad" 1857763 1857772 1857861 1857866) (-1122 "SEXCAT.spad" 1855544 1855584 1857753 1857758) (-1121 "SET.spad" 1853868 1853879 1854965 1855004) (-1120 "SETMN.spad" 1852318 1852335 1853858 1853863) (-1119 "SETCAT.spad" 1851640 1851649 1852308 1852313) (-1118 "SETCAT.spad" 1850960 1850971 1851630 1851635) (-1117 "SETAGG.spad" 1847509 1847520 1850940 1850955) (-1116 "SETAGG.spad" 1844066 1844079 1847499 1847504) (-1115 "SEQAST.spad" 1843769 1843778 1844056 1844061) (-1114 "SEGXCAT.spad" 1842925 1842938 1843759 1843764) (-1113 "SEG.spad" 1842738 1842749 1842844 1842849) (-1112 "SEGCAT.spad" 1841663 1841674 1842728 1842733) (-1111 "SEGBIND.spad" 1841421 1841432 1841610 1841615) (-1110 "SEGBIND2.spad" 1841119 1841132 1841411 1841416) (-1109 "SEGAST.spad" 1840833 1840842 1841109 1841114) (-1108 "SEG2.spad" 1840268 1840281 1840789 1840794) (-1107 "SDVAR.spad" 1839544 1839555 1840258 1840263) (-1106 "SDPOL.spad" 1836877 1836888 1837168 1837295) (-1105 "SCPKG.spad" 1834966 1834977 1836867 1836872) (-1104 "SCOPE.spad" 1834119 1834128 1834956 1834961) (-1103 "SCACHE.spad" 1832815 1832826 1834109 1834114) (-1102 "SASTCAT.spad" 1832724 1832733 1832805 1832810) (-1101 "SAOS.spad" 1832596 1832605 1832714 1832719) (-1100 "SAERFFC.spad" 1832309 1832329 1832586 1832591) (-1099 "SAE.spad" 1829779 1829795 1830390 1830525) (-1098 "SAEFACT.spad" 1829480 1829500 1829769 1829774) (-1097 "RURPK.spad" 1827139 1827155 1829470 1829475) (-1096 "RULESET.spad" 1826592 1826616 1827129 1827134) (-1095 "RULE.spad" 1824832 1824856 1826582 1826587) (-1094 "RULECOLD.spad" 1824684 1824697 1824822 1824827) (-1093 "RTVALUE.spad" 1824419 1824428 1824674 1824679) (-1092 "RSTRCAST.spad" 1824136 1824145 1824409 1824414) (-1091 "RSETGCD.spad" 1820514 1820534 1824126 1824131) (-1090 "RSETCAT.spad" 1810450 1810467 1820482 1820509) (-1089 "RSETCAT.spad" 1800406 1800425 1810440 1810445) (-1088 "RSDCMPK.spad" 1798858 1798878 1800396 1800401) (-1087 "RRCC.spad" 1797242 1797272 1798848 1798853) (-1086 "RRCC.spad" 1795624 1795656 1797232 1797237) (-1085 "RPTAST.spad" 1795326 1795335 1795614 1795619) (-1084 "RPOLCAT.spad" 1774686 1774701 1795194 1795321) (-1083 "RPOLCAT.spad" 1753759 1753776 1774269 1774274) (-1082 "ROUTINE.spad" 1749642 1749651 1752406 1752433) (-1081 "ROMAN.spad" 1748970 1748979 1749508 1749637) (-1080 "ROIRC.spad" 1748050 1748082 1748960 1748965) (-1079 "RNS.spad" 1746953 1746962 1747952 1748045) (-1078 "RNS.spad" 1745942 1745953 1746943 1746948) (-1077 "RNG.spad" 1745677 1745686 1745932 1745937) (-1076 "RNGBIND.spad" 1744837 1744851 1745632 1745637) (-1075 "RMODULE.spad" 1744602 1744613 1744827 1744832) (-1074 "RMCAT2.spad" 1744022 1744079 1744592 1744597) (-1073 "RMATRIX.spad" 1742846 1742865 1743189 1743228) (-1072 "RMATCAT.spad" 1738425 1738456 1742802 1742841) (-1071 "RMATCAT.spad" 1733894 1733927 1738273 1738278) (-1070 "RLINSET.spad" 1733598 1733609 1733884 1733889) (-1069 "RINTERP.spad" 1733486 1733506 1733588 1733593) (-1068 "RING.spad" 1732956 1732965 1733466 1733481) (-1067 "RING.spad" 1732434 1732445 1732946 1732951) (-1066 "RIDIST.spad" 1731826 1731835 1732424 1732429) (-1065 "RGCHAIN.spad" 1730409 1730425 1731311 1731338) (-1064 "RGBCSPC.spad" 1730190 1730202 1730399 1730404) (-1063 "RGBCMDL.spad" 1729720 1729732 1730180 1730185) (-1062 "RF.spad" 1727362 1727373 1729710 1729715) (-1061 "RFFACTOR.spad" 1726824 1726835 1727352 1727357) (-1060 "RFFACT.spad" 1726559 1726571 1726814 1726819) (-1059 "RFDIST.spad" 1725555 1725564 1726549 1726554) (-1058 "RETSOL.spad" 1724974 1724987 1725545 1725550) (-1057 "RETRACT.spad" 1724402 1724413 1724964 1724969) (-1056 "RETRACT.spad" 1723828 1723841 1724392 1724397) (-1055 "RETAST.spad" 1723640 1723649 1723818 1723823) (-1054 "RESULT.spad" 1721700 1721709 1722287 1722314) (-1053 "RESRING.spad" 1721047 1721094 1721638 1721695) (-1052 "RESLATC.spad" 1720371 1720382 1721037 1721042) (-1051 "REPSQ.spad" 1720102 1720113 1720361 1720366) (-1050 "REP.spad" 1717656 1717665 1720092 1720097) (-1049 "REPDB.spad" 1717363 1717374 1717646 1717651) (-1048 "REP2.spad" 1707021 1707032 1717205 1717210) (-1047 "REP1.spad" 1701217 1701228 1706971 1706976) (-1046 "REGSET.spad" 1699014 1699031 1700863 1700890) (-1045 "REF.spad" 1698349 1698360 1698969 1698974) (-1044 "REDORDER.spad" 1697555 1697572 1698339 1698344) (-1043 "RECLOS.spad" 1696338 1696358 1697042 1697135) (-1042 "REALSOLV.spad" 1695478 1695487 1696328 1696333) (-1041 "REAL.spad" 1695350 1695359 1695468 1695473) (-1040 "REAL0Q.spad" 1692648 1692663 1695340 1695345) (-1039 "REAL0.spad" 1689492 1689507 1692638 1692643) (-1038 "RDUCEAST.spad" 1689213 1689222 1689482 1689487) (-1037 "RDIV.spad" 1688868 1688893 1689203 1689208) (-1036 "RDIST.spad" 1688435 1688446 1688858 1688863) (-1035 "RDETRS.spad" 1687299 1687317 1688425 1688430) (-1034 "RDETR.spad" 1685438 1685456 1687289 1687294) (-1033 "RDEEFS.spad" 1684537 1684554 1685428 1685433) (-1032 "RDEEF.spad" 1683547 1683564 1684527 1684532) (-1031 "RCFIELD.spad" 1680733 1680742 1683449 1683542) (-1030 "RCFIELD.spad" 1678005 1678016 1680723 1680728) (-1029 "RCAGG.spad" 1675933 1675944 1677995 1678000) (-1028 "RCAGG.spad" 1673788 1673801 1675852 1675857) (-1027 "RATRET.spad" 1673148 1673159 1673778 1673783) (-1026 "RATFACT.spad" 1672840 1672852 1673138 1673143) (-1025 "RANDSRC.spad" 1672159 1672168 1672830 1672835) (-1024 "RADUTIL.spad" 1671915 1671924 1672149 1672154) (-1023 "RADIX.spad" 1668739 1668753 1670285 1670378) (-1022 "RADFF.spad" 1666478 1666515 1666597 1666753) (-1021 "RADCAT.spad" 1666073 1666082 1666468 1666473) (-1020 "RADCAT.spad" 1665666 1665677 1666063 1666068) (-1019 "QUEUE.spad" 1665014 1665025 1665273 1665300) (-1018 "QUAT.spad" 1663502 1663513 1663845 1663910) (-1017 "QUATCT2.spad" 1663122 1663141 1663492 1663497) (-1016 "QUATCAT.spad" 1661292 1661303 1663052 1663117) (-1015 "QUATCAT.spad" 1659213 1659226 1660975 1660980) (-1014 "QUAGG.spad" 1658040 1658051 1659181 1659208) (-1013 "QQUTAST.spad" 1657808 1657817 1658030 1658035) (-1012 "QFORM.spad" 1657426 1657441 1657798 1657803) (-1011 "QFCAT.spad" 1656128 1656139 1657328 1657421) (-1010 "QFCAT.spad" 1654421 1654434 1655623 1655628) (-1009 "QFCAT2.spad" 1654113 1654130 1654411 1654416) (-1008 "QEQUAT.spad" 1653671 1653680 1654103 1654108) (-1007 "QCMPACK.spad" 1648417 1648437 1653661 1653666) (-1006 "QALGSET.spad" 1644495 1644528 1648331 1648336) (-1005 "QALGSET2.spad" 1642490 1642509 1644485 1644490) (-1004 "PWFFINTB.spad" 1639905 1639927 1642480 1642485) (-1003 "PUSHVAR.spad" 1639243 1639263 1639895 1639900) (-1002 "PTRANFN.spad" 1635370 1635381 1639233 1639238) (-1001 "PTPACK.spad" 1632457 1632468 1635360 1635365) (-1000 "PTFUNC2.spad" 1632279 1632294 1632447 1632452) (-999 "PTCAT.spad" 1631534 1631544 1632247 1632274) (-998 "PSQFR.spad" 1630841 1630865 1631524 1631529) (-997 "PSEUDLIN.spad" 1629727 1629737 1630831 1630836) (-996 "PSETPK.spad" 1615160 1615176 1629605 1629610) (-995 "PSETCAT.spad" 1609080 1609103 1615140 1615155) (-994 "PSETCAT.spad" 1602974 1602999 1609036 1609041) (-993 "PSCURVE.spad" 1601957 1601965 1602964 1602969) (-992 "PSCAT.spad" 1600740 1600769 1601855 1601952) (-991 "PSCAT.spad" 1599613 1599644 1600730 1600735) (-990 "PRTITION.spad" 1598311 1598319 1599603 1599608) (-989 "PRTDAST.spad" 1598030 1598038 1598301 1598306) (-988 "PRS.spad" 1587592 1587609 1597986 1597991) (-987 "PRQAGG.spad" 1587027 1587037 1587560 1587587) (-986 "PROPLOG.spad" 1586599 1586607 1587017 1587022) (-985 "PROPFUN2.spad" 1586222 1586235 1586589 1586594) (-984 "PROPFUN1.spad" 1585620 1585631 1586212 1586217) (-983 "PROPFRML.spad" 1584188 1584199 1585610 1585615) (-982 "PROPERTY.spad" 1583676 1583684 1584178 1584183) (-981 "PRODUCT.spad" 1581358 1581370 1581642 1581697) (-980 "PR.spad" 1579750 1579762 1580449 1580576) (-979 "PRINT.spad" 1579502 1579510 1579740 1579745) (-978 "PRIMES.spad" 1577755 1577765 1579492 1579497) (-977 "PRIMELT.spad" 1575836 1575850 1577745 1577750) (-976 "PRIMCAT.spad" 1575463 1575471 1575826 1575831) (-975 "PRIMARR.spad" 1574468 1574478 1574646 1574673) (-974 "PRIMARR2.spad" 1573235 1573247 1574458 1574463) (-973 "PREASSOC.spad" 1572617 1572629 1573225 1573230) (-972 "PPCURVE.spad" 1571754 1571762 1572607 1572612) (-971 "PORTNUM.spad" 1571529 1571537 1571744 1571749) (-970 "POLYROOT.spad" 1570378 1570400 1571485 1571490) (-969 "POLY.spad" 1567713 1567723 1568228 1568355) (-968 "POLYLIFT.spad" 1566978 1567001 1567703 1567708) (-967 "POLYCATQ.spad" 1565096 1565118 1566968 1566973) (-966 "POLYCAT.spad" 1558566 1558587 1564964 1565091) (-965 "POLYCAT.spad" 1551374 1551397 1557774 1557779) (-964 "POLY2UP.spad" 1550826 1550840 1551364 1551369) (-963 "POLY2.spad" 1550423 1550435 1550816 1550821) (-962 "POLUTIL.spad" 1549364 1549393 1550379 1550384) (-961 "POLTOPOL.spad" 1548112 1548127 1549354 1549359) (-960 "POINT.spad" 1546950 1546960 1547037 1547064) (-959 "PNTHEORY.spad" 1543652 1543660 1546940 1546945) (-958 "PMTOOLS.spad" 1542427 1542441 1543642 1543647) (-957 "PMSYM.spad" 1541976 1541986 1542417 1542422) (-956 "PMQFCAT.spad" 1541567 1541581 1541966 1541971) (-955 "PMPRED.spad" 1541046 1541060 1541557 1541562) (-954 "PMPREDFS.spad" 1540500 1540522 1541036 1541041) (-953 "PMPLCAT.spad" 1539580 1539598 1540432 1540437) (-952 "PMLSAGG.spad" 1539165 1539179 1539570 1539575) (-951 "PMKERNEL.spad" 1538744 1538756 1539155 1539160) (-950 "PMINS.spad" 1538324 1538334 1538734 1538739) (-949 "PMFS.spad" 1537901 1537919 1538314 1538319) (-948 "PMDOWN.spad" 1537191 1537205 1537891 1537896) (-947 "PMASS.spad" 1536201 1536209 1537181 1537186) (-946 "PMASSFS.spad" 1535168 1535184 1536191 1536196) (-945 "PLOTTOOL.spad" 1534948 1534956 1535158 1535163) (-944 "PLOT.spad" 1529871 1529879 1534938 1534943) (-943 "PLOT3D.spad" 1526335 1526343 1529861 1529866) (-942 "PLOT1.spad" 1525492 1525502 1526325 1526330) (-941 "PLEQN.spad" 1512782 1512809 1525482 1525487) (-940 "PINTERP.spad" 1512404 1512423 1512772 1512777) (-939 "PINTERPA.spad" 1512188 1512204 1512394 1512399) (-938 "PI.spad" 1511797 1511805 1512162 1512183) (-937 "PID.spad" 1510767 1510775 1511723 1511792) (-936 "PICOERCE.spad" 1510424 1510434 1510757 1510762) (-935 "PGROEB.spad" 1509025 1509039 1510414 1510419) (-934 "PGE.spad" 1500642 1500650 1509015 1509020) (-933 "PGCD.spad" 1499532 1499549 1500632 1500637) (-932 "PFRPAC.spad" 1498681 1498691 1499522 1499527) (-931 "PFR.spad" 1495344 1495354 1498583 1498676) (-930 "PFOTOOLS.spad" 1494602 1494618 1495334 1495339) (-929 "PFOQ.spad" 1493972 1493990 1494592 1494597) (-928 "PFO.spad" 1493391 1493418 1493962 1493967) (-927 "PF.spad" 1492965 1492977 1493196 1493289) (-926 "PFECAT.spad" 1490647 1490655 1492891 1492960) (-925 "PFECAT.spad" 1488357 1488367 1490603 1490608) (-924 "PFBRU.spad" 1486245 1486257 1488347 1488352) (-923 "PFBR.spad" 1483805 1483828 1486235 1486240) (-922 "PERM.spad" 1479612 1479622 1483635 1483650) (-921 "PERMGRP.spad" 1474382 1474392 1479602 1479607) (-920 "PERMCAT.spad" 1473043 1473053 1474362 1474377) (-919 "PERMAN.spad" 1471575 1471589 1473033 1473038) (-918 "PENDTREE.spad" 1470916 1470926 1471204 1471209) (-917 "PDSPC.spad" 1469729 1469739 1470906 1470911) (-916 "PDSPC.spad" 1468540 1468552 1469719 1469724) (-915 "PDRING.spad" 1468382 1468392 1468520 1468535) (-914 "PDMOD.spad" 1468198 1468210 1468350 1468377) (-913 "PDEPROB.spad" 1467213 1467221 1468188 1468193) (-912 "PDEPACK.spad" 1461253 1461261 1467203 1467208) (-911 "PDECOMP.spad" 1460723 1460740 1461243 1461248) (-910 "PDECAT.spad" 1459079 1459087 1460713 1460718) (-909 "PDDOM.spad" 1458517 1458530 1459069 1459074) (-908 "PDDOM.spad" 1457953 1457968 1458507 1458512) (-907 "PCOMP.spad" 1457806 1457819 1457943 1457948) (-906 "PBWLB.spad" 1456394 1456411 1457796 1457801) (-905 "PATTERN.spad" 1450933 1450943 1456384 1456389) (-904 "PATTERN2.spad" 1450671 1450683 1450923 1450928) (-903 "PATTERN1.spad" 1449007 1449023 1450661 1450666) (-902 "PATRES.spad" 1446582 1446594 1448997 1449002) (-901 "PATRES2.spad" 1446254 1446268 1446572 1446577) (-900 "PATMATCH.spad" 1444451 1444482 1445962 1445967) (-899 "PATMAB.spad" 1443880 1443890 1444441 1444446) (-898 "PATLRES.spad" 1442966 1442980 1443870 1443875) (-897 "PATAB.spad" 1442730 1442740 1442956 1442961) (-896 "PARTPERM.spad" 1440738 1440746 1442720 1442725) (-895 "PARSURF.spad" 1440172 1440200 1440728 1440733) (-894 "PARSU2.spad" 1439969 1439985 1440162 1440167) (-893 "script-parser.spad" 1439489 1439497 1439959 1439964) (-892 "PARSCURV.spad" 1438923 1438951 1439479 1439484) (-891 "PARSC2.spad" 1438714 1438730 1438913 1438918) (-890 "PARPCURV.spad" 1438176 1438204 1438704 1438709) (-889 "PARPC2.spad" 1437967 1437983 1438166 1438171) (-888 "PARAMAST.spad" 1437095 1437103 1437957 1437962) (-887 "PAN2EXPR.spad" 1436507 1436515 1437085 1437090) (-886 "PALETTE.spad" 1435477 1435485 1436497 1436502) (-885 "PAIR.spad" 1434464 1434477 1435065 1435070) (-884 "PADICRC.spad" 1431705 1431723 1432876 1432969) (-883 "PADICRAT.spad" 1429613 1429625 1429834 1429927) (-882 "PADIC.spad" 1429308 1429320 1429539 1429608) (-881 "PADICCT.spad" 1427857 1427869 1429234 1429303) (-880 "PADEPAC.spad" 1426546 1426565 1427847 1427852) (-879 "PADE.spad" 1425298 1425314 1426536 1426541) (-878 "OWP.spad" 1424538 1424568 1425156 1425223) (-877 "OVERSET.spad" 1424111 1424119 1424528 1424533) (-876 "OVAR.spad" 1423892 1423915 1424101 1424106) (-875 "OUT.spad" 1422978 1422986 1423882 1423887) (-874 "OUTFORM.spad" 1412370 1412378 1422968 1422973) (-873 "OUTBFILE.spad" 1411788 1411796 1412360 1412365) (-872 "OUTBCON.spad" 1410794 1410802 1411778 1411783) (-871 "OUTBCON.spad" 1409798 1409808 1410784 1410789) (-870 "OSI.spad" 1409273 1409281 1409788 1409793) (-869 "OSGROUP.spad" 1409191 1409199 1409263 1409268) (-868 "ORTHPOL.spad" 1407676 1407686 1409108 1409113) (-867 "OREUP.spad" 1407129 1407157 1407356 1407395) (-866 "ORESUP.spad" 1406430 1406454 1406809 1406848) (-865 "OREPCTO.spad" 1404287 1404299 1406350 1406355) (-864 "OREPCAT.spad" 1398434 1398444 1404243 1404282) (-863 "OREPCAT.spad" 1392471 1392483 1398282 1398287) (-862 "ORDSET.spad" 1391643 1391651 1392461 1392466) (-861 "ORDSET.spad" 1390813 1390823 1391633 1391638) (-860 "ORDRING.spad" 1390203 1390211 1390793 1390808) (-859 "ORDRING.spad" 1389601 1389611 1390193 1390198) (-858 "ORDMON.spad" 1389456 1389464 1389591 1389596) (-857 "ORDFUNS.spad" 1388588 1388604 1389446 1389451) (-856 "ORDFIN.spad" 1388408 1388416 1388578 1388583) (-855 "ORDCOMP.spad" 1386873 1386883 1387955 1387984) (-854 "ORDCOMP2.spad" 1386166 1386178 1386863 1386868) (-853 "OPTPROB.spad" 1384804 1384812 1386156 1386161) (-852 "OPTPACK.spad" 1377213 1377221 1384794 1384799) (-851 "OPTCAT.spad" 1374892 1374900 1377203 1377208) (-850 "OPSIG.spad" 1374546 1374554 1374882 1374887) (-849 "OPQUERY.spad" 1374095 1374103 1374536 1374541) (-848 "OP.spad" 1373837 1373847 1373917 1373984) (-847 "OPERCAT.spad" 1373303 1373313 1373827 1373832) (-846 "OPERCAT.spad" 1372767 1372779 1373293 1373298) (-845 "ONECOMP.spad" 1371512 1371522 1372314 1372343) (-844 "ONECOMP2.spad" 1370936 1370948 1371502 1371507) (-843 "OMSERVER.spad" 1369942 1369950 1370926 1370931) (-842 "OMSAGG.spad" 1369730 1369740 1369898 1369937) (-841 "OMPKG.spad" 1368346 1368354 1369720 1369725) (-840 "OM.spad" 1367319 1367327 1368336 1368341) (-839 "OMLO.spad" 1366744 1366756 1367205 1367244) (-838 "OMEXPR.spad" 1366578 1366588 1366734 1366739) (-837 "OMERR.spad" 1366123 1366131 1366568 1366573) (-836 "OMERRK.spad" 1365157 1365165 1366113 1366118) (-835 "OMENC.spad" 1364501 1364509 1365147 1365152) (-834 "OMDEV.spad" 1358810 1358818 1364491 1364496) (-833 "OMCONN.spad" 1358219 1358227 1358800 1358805) (-832 "OINTDOM.spad" 1357982 1357990 1358145 1358214) (-831 "OFMONOID.spad" 1356105 1356115 1357938 1357943) (-830 "ODVAR.spad" 1355366 1355376 1356095 1356100) (-829 "ODR.spad" 1355010 1355036 1355178 1355327) (-828 "ODPOL.spad" 1352299 1352309 1352639 1352766) (-827 "ODP.spad" 1340717 1340737 1341090 1341189) (-826 "ODETOOLS.spad" 1339366 1339385 1340707 1340712) (-825 "ODESYS.spad" 1337060 1337077 1339356 1339361) (-824 "ODERTRIC.spad" 1333069 1333086 1337017 1337022) (-823 "ODERED.spad" 1332468 1332492 1333059 1333064) (-822 "ODERAT.spad" 1330083 1330100 1332458 1332463) (-821 "ODEPRRIC.spad" 1327120 1327142 1330073 1330078) (-820 "ODEPROB.spad" 1326377 1326385 1327110 1327115) (-819 "ODEPRIM.spad" 1323711 1323733 1326367 1326372) (-818 "ODEPAL.spad" 1323097 1323121 1323701 1323706) (-817 "ODEPACK.spad" 1309763 1309771 1323087 1323092) (-816 "ODEINT.spad" 1309198 1309214 1309753 1309758) (-815 "ODEIFTBL.spad" 1306593 1306601 1309188 1309193) (-814 "ODEEF.spad" 1302084 1302100 1306583 1306588) (-813 "ODECONST.spad" 1301621 1301639 1302074 1302079) (-812 "ODECAT.spad" 1300219 1300227 1301611 1301616) (-811 "OCT.spad" 1298355 1298365 1299069 1299108) (-810 "OCTCT2.spad" 1298001 1298022 1298345 1298350) (-809 "OC.spad" 1295797 1295807 1297957 1297996) (-808 "OC.spad" 1293318 1293330 1295480 1295485) (-807 "OCAMON.spad" 1293166 1293174 1293308 1293313) (-806 "OASGP.spad" 1292981 1292989 1293156 1293161) (-805 "OAMONS.spad" 1292503 1292511 1292971 1292976) (-804 "OAMON.spad" 1292364 1292372 1292493 1292498) (-803 "OAGROUP.spad" 1292226 1292234 1292354 1292359) (-802 "NUMTUBE.spad" 1291817 1291833 1292216 1292221) (-801 "NUMQUAD.spad" 1279793 1279801 1291807 1291812) (-800 "NUMODE.spad" 1271147 1271155 1279783 1279788) (-799 "NUMINT.spad" 1268713 1268721 1271137 1271142) (-798 "NUMFMT.spad" 1267553 1267561 1268703 1268708) (-797 "NUMERIC.spad" 1259667 1259677 1267358 1267363) (-796 "NTSCAT.spad" 1258175 1258191 1259635 1259662) (-795 "NTPOLFN.spad" 1257726 1257736 1258092 1258097) (-794 "NSUP.spad" 1250679 1250689 1255219 1255372) (-793 "NSUP2.spad" 1250071 1250083 1250669 1250674) (-792 "NSMP.spad" 1246301 1246320 1246609 1246736) (-791 "NREP.spad" 1244679 1244693 1246291 1246296) (-790 "NPCOEF.spad" 1243925 1243945 1244669 1244674) (-789 "NORMRETR.spad" 1243523 1243562 1243915 1243920) (-788 "NORMPK.spad" 1241425 1241444 1243513 1243518) (-787 "NORMMA.spad" 1241113 1241139 1241415 1241420) (-786 "NONE.spad" 1240854 1240862 1241103 1241108) (-785 "NONE1.spad" 1240530 1240540 1240844 1240849) (-784 "NODE1.spad" 1240017 1240033 1240520 1240525) (-783 "NNI.spad" 1238912 1238920 1239991 1240012) (-782 "NLINSOL.spad" 1237538 1237548 1238902 1238907) (-781 "NIPROB.spad" 1236079 1236087 1237528 1237533) (-780 "NFINTBAS.spad" 1233639 1233656 1236069 1236074) (-779 "NETCLT.spad" 1233613 1233624 1233629 1233634) (-778 "NCODIV.spad" 1231829 1231845 1233603 1233608) (-777 "NCNTFRAC.spad" 1231471 1231485 1231819 1231824) (-776 "NCEP.spad" 1229637 1229651 1231461 1231466) (-775 "NASRING.spad" 1229233 1229241 1229627 1229632) (-774 "NASRING.spad" 1228827 1228837 1229223 1229228) (-773 "NARNG.spad" 1228179 1228187 1228817 1228822) (-772 "NARNG.spad" 1227529 1227539 1228169 1228174) (-771 "NAGSP.spad" 1226606 1226614 1227519 1227524) (-770 "NAGS.spad" 1216267 1216275 1226596 1226601) (-769 "NAGF07.spad" 1214698 1214706 1216257 1216262) (-768 "NAGF04.spad" 1209100 1209108 1214688 1214693) (-767 "NAGF02.spad" 1203169 1203177 1209090 1209095) (-766 "NAGF01.spad" 1198930 1198938 1203159 1203164) (-765 "NAGE04.spad" 1192630 1192638 1198920 1198925) (-764 "NAGE02.spad" 1183290 1183298 1192620 1192625) (-763 "NAGE01.spad" 1179292 1179300 1183280 1183285) (-762 "NAGD03.spad" 1177296 1177304 1179282 1179287) (-761 "NAGD02.spad" 1170043 1170051 1177286 1177291) (-760 "NAGD01.spad" 1164336 1164344 1170033 1170038) (-759 "NAGC06.spad" 1160211 1160219 1164326 1164331) (-758 "NAGC05.spad" 1158712 1158720 1160201 1160206) (-757 "NAGC02.spad" 1157979 1157987 1158702 1158707) (-756 "NAALG.spad" 1157520 1157530 1157947 1157974) (-755 "NAALG.spad" 1157081 1157093 1157510 1157515) (-754 "MULTSQFR.spad" 1154039 1154056 1157071 1157076) (-753 "MULTFACT.spad" 1153422 1153439 1154029 1154034) (-752 "MTSCAT.spad" 1151516 1151537 1153320 1153417) (-751 "MTHING.spad" 1151175 1151185 1151506 1151511) (-750 "MSYSCMD.spad" 1150609 1150617 1151165 1151170) (-749 "MSET.spad" 1148567 1148577 1150315 1150354) (-748 "MSETAGG.spad" 1148412 1148422 1148535 1148562) (-747 "MRING.spad" 1145389 1145401 1148120 1148187) (-746 "MRF2.spad" 1144959 1144973 1145379 1145384) (-745 "MRATFAC.spad" 1144505 1144522 1144949 1144954) (-744 "MPRFF.spad" 1142545 1142564 1144495 1144500) (-743 "MPOLY.spad" 1140016 1140031 1140375 1140502) (-742 "MPCPF.spad" 1139280 1139299 1140006 1140011) (-741 "MPC3.spad" 1139097 1139137 1139270 1139275) (-740 "MPC2.spad" 1138743 1138776 1139087 1139092) (-739 "MONOTOOL.spad" 1137094 1137111 1138733 1138738) (-738 "MONOID.spad" 1136413 1136421 1137084 1137089) (-737 "MONOID.spad" 1135730 1135740 1136403 1136408) (-736 "MONOGEN.spad" 1134478 1134491 1135590 1135725) (-735 "MONOGEN.spad" 1133248 1133263 1134362 1134367) (-734 "MONADWU.spad" 1131278 1131286 1133238 1133243) (-733 "MONADWU.spad" 1129306 1129316 1131268 1131273) (-732 "MONAD.spad" 1128466 1128474 1129296 1129301) (-731 "MONAD.spad" 1127624 1127634 1128456 1128461) (-730 "MOEBIUS.spad" 1126360 1126374 1127604 1127619) (-729 "MODULE.spad" 1126230 1126240 1126328 1126355) (-728 "MODULE.spad" 1126120 1126132 1126220 1126225) (-727 "MODRING.spad" 1125455 1125494 1126100 1126115) (-726 "MODOP.spad" 1124120 1124132 1125277 1125344) (-725 "MODMONOM.spad" 1123851 1123869 1124110 1124115) (-724 "MODMON.spad" 1120553 1120569 1121272 1121425) (-723 "MODFIELD.spad" 1119915 1119954 1120455 1120548) (-722 "MMLFORM.spad" 1118775 1118783 1119905 1119910) (-721 "MMAP.spad" 1118517 1118551 1118765 1118770) (-720 "MLO.spad" 1116976 1116986 1118473 1118512) (-719 "MLIFT.spad" 1115588 1115605 1116966 1116971) (-718 "MKUCFUNC.spad" 1115123 1115141 1115578 1115583) (-717 "MKRECORD.spad" 1114727 1114740 1115113 1115118) (-716 "MKFUNC.spad" 1114134 1114144 1114717 1114722) (-715 "MKFLCFN.spad" 1113102 1113112 1114124 1114129) (-714 "MKBCFUNC.spad" 1112597 1112615 1113092 1113097) (-713 "MINT.spad" 1112036 1112044 1112499 1112592) (-712 "MHROWRED.spad" 1110547 1110557 1112026 1112031) (-711 "MFLOAT.spad" 1109067 1109075 1110437 1110542) (-710 "MFINFACT.spad" 1108467 1108489 1109057 1109062) (-709 "MESH.spad" 1106249 1106257 1108457 1108462) (-708 "MDDFACT.spad" 1104460 1104470 1106239 1106244) (-707 "MDAGG.spad" 1103751 1103761 1104440 1104455) (-706 "MCMPLX.spad" 1099182 1099190 1099796 1099997) (-705 "MCDEN.spad" 1098392 1098404 1099172 1099177) (-704 "MCALCFN.spad" 1095514 1095540 1098382 1098387) (-703 "MAYBE.spad" 1094798 1094809 1095504 1095509) (-702 "MATSTOR.spad" 1092106 1092116 1094788 1094793) (-701 "MATRIX.spad" 1090810 1090820 1091294 1091321) (-700 "MATLIN.spad" 1088154 1088178 1090694 1090699) (-699 "MATCAT.spad" 1079883 1079905 1088122 1088149) (-698 "MATCAT.spad" 1071484 1071508 1079725 1079730) (-697 "MATCAT2.spad" 1070766 1070814 1071474 1071479) (-696 "MAPPKG3.spad" 1069681 1069695 1070756 1070761) (-695 "MAPPKG2.spad" 1069019 1069031 1069671 1069676) (-694 "MAPPKG1.spad" 1067847 1067857 1069009 1069014) (-693 "MAPPAST.spad" 1067162 1067170 1067837 1067842) (-692 "MAPHACK3.spad" 1066974 1066988 1067152 1067157) (-691 "MAPHACK2.spad" 1066743 1066755 1066964 1066969) (-690 "MAPHACK1.spad" 1066387 1066397 1066733 1066738) (-689 "MAGMA.spad" 1064177 1064194 1066377 1066382) (-688 "MACROAST.spad" 1063756 1063764 1064167 1064172) (-687 "M3D.spad" 1061476 1061486 1063134 1063139) (-686 "LZSTAGG.spad" 1058714 1058724 1061466 1061471) (-685 "LZSTAGG.spad" 1055950 1055962 1058704 1058709) (-684 "LWORD.spad" 1052655 1052672 1055940 1055945) (-683 "LSTAST.spad" 1052439 1052447 1052645 1052650) (-682 "LSQM.spad" 1050632 1050646 1051026 1051077) (-681 "LSPP.spad" 1050167 1050184 1050622 1050627) (-680 "LSMP.spad" 1049017 1049045 1050157 1050162) (-679 "LSMP1.spad" 1046835 1046849 1049007 1049012) (-678 "LSAGG.spad" 1046504 1046514 1046803 1046830) (-677 "LSAGG.spad" 1046193 1046205 1046494 1046499) (-676 "LPOLY.spad" 1045147 1045166 1046049 1046118) (-675 "LPEFRAC.spad" 1044418 1044428 1045137 1045142) (-674 "LO.spad" 1043819 1043833 1044352 1044379) (-673 "LOGIC.spad" 1043421 1043429 1043809 1043814) (-672 "LOGIC.spad" 1043021 1043031 1043411 1043416) (-671 "LODOOPS.spad" 1041951 1041963 1043011 1043016) (-670 "LODO.spad" 1041335 1041351 1041631 1041670) (-669 "LODOF.spad" 1040381 1040398 1041292 1041297) (-668 "LODOCAT.spad" 1039047 1039057 1040337 1040376) (-667 "LODOCAT.spad" 1037711 1037723 1039003 1039008) (-666 "LODO2.spad" 1036984 1036996 1037391 1037430) (-665 "LODO1.spad" 1036384 1036394 1036664 1036703) (-664 "LODEEF.spad" 1035186 1035204 1036374 1036379) (-663 "LNAGG.spad" 1031333 1031343 1035176 1035181) (-662 "LNAGG.spad" 1027444 1027456 1031289 1031294) (-661 "LMOPS.spad" 1024212 1024229 1027434 1027439) (-660 "LMODULE.spad" 1023980 1023990 1024202 1024207) (-659 "LMDICT.spad" 1023267 1023277 1023531 1023558) (-658 "LLINSET.spad" 1022974 1022984 1023257 1023262) (-657 "LITERAL.spad" 1022880 1022891 1022964 1022969) (-656 "LIST.spad" 1020615 1020625 1022027 1022054) (-655 "LIST3.spad" 1019926 1019940 1020605 1020610) (-654 "LIST2.spad" 1018628 1018640 1019916 1019921) (-653 "LIST2MAP.spad" 1015531 1015543 1018618 1018623) (-652 "LINSET.spad" 1015310 1015320 1015521 1015526) (-651 "LINEXP.spad" 1014448 1014458 1015300 1015305) (-650 "LINDEP.spad" 1013257 1013269 1014360 1014365) (-649 "LIMITRF.spad" 1011185 1011195 1013247 1013252) (-648 "LIMITPS.spad" 1010088 1010101 1011175 1011180) (-647 "LIE.spad" 1008104 1008116 1009378 1009523) (-646 "LIECAT.spad" 1007580 1007590 1008030 1008099) (-645 "LIECAT.spad" 1007084 1007096 1007536 1007541) (-644 "LIB.spad" 1005297 1005305 1005743 1005758) (-643 "LGROBP.spad" 1002650 1002669 1005287 1005292) (-642 "LF.spad" 1001605 1001621 1002640 1002645) (-641 "LFCAT.spad" 1000664 1000672 1001595 1001600) (-640 "LEXTRIPK.spad" 996167 996182 1000654 1000659) (-639 "LEXP.spad" 994170 994197 996147 996162) (-638 "LETAST.spad" 993869 993877 994160 994165) (-637 "LEADCDET.spad" 992267 992284 993859 993864) (-636 "LAZM3PK.spad" 990971 990993 992257 992262) (-635 "LAUPOL.spad" 989571 989584 990471 990540) (-634 "LAPLACE.spad" 989154 989170 989561 989566) (-633 "LA.spad" 988594 988608 989076 989115) (-632 "LALG.spad" 988370 988380 988574 988589) (-631 "LALG.spad" 988154 988166 988360 988365) (-630 "KVTFROM.spad" 987889 987899 988144 988149) (-629 "KTVLOGIC.spad" 987401 987409 987879 987884) (-628 "KRCFROM.spad" 987139 987149 987391 987396) (-627 "KOVACIC.spad" 985862 985879 987129 987134) (-626 "KONVERT.spad" 985584 985594 985852 985857) (-625 "KOERCE.spad" 985321 985331 985574 985579) (-624 "KERNEL.spad" 983976 983986 985105 985110) (-623 "KERNEL2.spad" 983679 983691 983966 983971) (-622 "KDAGG.spad" 982788 982810 983659 983674) (-621 "KDAGG.spad" 981905 981929 982778 982783) (-620 "KAFILE.spad" 980868 980884 981103 981130) (-619 "JORDAN.spad" 978697 978709 980158 980303) (-618 "JOINAST.spad" 978391 978399 978687 978692) (-617 "JAVACODE.spad" 978257 978265 978381 978386) (-616 "IXAGG.spad" 976390 976414 978247 978252) (-615 "IXAGG.spad" 974378 974404 976237 976242) (-614 "IVECTOR.spad" 973148 973163 973303 973330) (-613 "ITUPLE.spad" 972309 972319 973138 973143) (-612 "ITRIGMNP.spad" 971148 971167 972299 972304) (-611 "ITFUN3.spad" 970654 970668 971138 971143) (-610 "ITFUN2.spad" 970398 970410 970644 970649) (-609 "ITFORM.spad" 969753 969761 970388 970393) (-608 "ITAYLOR.spad" 967747 967762 969617 969714) (-607 "ISUPS.spad" 960184 960199 966721 966818) (-606 "ISUMP.spad" 959685 959701 960174 960179) (-605 "ISTRING.spad" 958773 958786 958854 958881) (-604 "ISAST.spad" 958492 958500 958763 958768) (-603 "IRURPK.spad" 957209 957228 958482 958487) (-602 "IRSN.spad" 955181 955189 957199 957204) (-601 "IRRF2F.spad" 953666 953676 955137 955142) (-600 "IRREDFFX.spad" 953267 953278 953656 953661) (-599 "IROOT.spad" 951606 951616 953257 953262) (-598 "IR.spad" 949407 949421 951461 951488) (-597 "IRFORM.spad" 948731 948739 949397 949402) (-596 "IR2.spad" 947759 947775 948721 948726) (-595 "IR2F.spad" 946965 946981 947749 947754) (-594 "IPRNTPK.spad" 946725 946733 946955 946960) (-593 "IPF.spad" 946290 946302 946530 946623) (-592 "IPADIC.spad" 946051 946077 946216 946285) (-591 "IP4ADDR.spad" 945608 945616 946041 946046) (-590 "IOMODE.spad" 945130 945138 945598 945603) (-589 "IOBFILE.spad" 944491 944499 945120 945125) (-588 "IOBCON.spad" 944356 944364 944481 944486) (-587 "INVLAPLA.spad" 944005 944021 944346 944351) (-586 "INTTR.spad" 937387 937404 943995 944000) (-585 "INTTOOLS.spad" 935142 935158 936961 936966) (-584 "INTSLPE.spad" 934462 934470 935132 935137) (-583 "INTRVL.spad" 934028 934038 934376 934457) (-582 "INTRF.spad" 932452 932466 934018 934023) (-581 "INTRET.spad" 931884 931894 932442 932447) (-580 "INTRAT.spad" 930611 930628 931874 931879) (-579 "INTPM.spad" 928996 929012 930254 930259) (-578 "INTPAF.spad" 926860 926878 928928 928933) (-577 "INTPACK.spad" 917234 917242 926850 926855) (-576 "INT.spad" 916682 916690 917088 917229) (-575 "INTHERTR.spad" 915956 915973 916672 916677) (-574 "INTHERAL.spad" 915626 915650 915946 915951) (-573 "INTHEORY.spad" 912065 912073 915616 915621) (-572 "INTG0.spad" 905798 905816 911997 912002) (-571 "INTFTBL.spad" 899827 899835 905788 905793) (-570 "INTFACT.spad" 898886 898896 899817 899822) (-569 "INTEF.spad" 897271 897287 898876 898881) (-568 "INTDOM.spad" 895894 895902 897197 897266) (-567 "INTDOM.spad" 894579 894589 895884 895889) (-566 "INTCAT.spad" 892838 892848 894493 894574) (-565 "INTBIT.spad" 892345 892353 892828 892833) (-564 "INTALG.spad" 891533 891560 892335 892340) (-563 "INTAF.spad" 891033 891049 891523 891528) (-562 "INTABL.spad" 889551 889582 889714 889741) (-561 "INT8.spad" 889431 889439 889541 889546) (-560 "INT64.spad" 889310 889318 889421 889426) (-559 "INT32.spad" 889189 889197 889300 889305) (-558 "INT16.spad" 889068 889076 889179 889184) (-557 "INS.spad" 886571 886579 888970 889063) (-556 "INS.spad" 884160 884170 886561 886566) (-555 "INPSIGN.spad" 883608 883621 884150 884155) (-554 "INPRODPF.spad" 882704 882723 883598 883603) (-553 "INPRODFF.spad" 881792 881816 882694 882699) (-552 "INNMFACT.spad" 880767 880784 881782 881787) (-551 "INMODGCD.spad" 880255 880285 880757 880762) (-550 "INFSP.spad" 878552 878574 880245 880250) (-549 "INFPROD0.spad" 877632 877651 878542 878547) (-548 "INFORM.spad" 874831 874839 877622 877627) (-547 "INFORM1.spad" 874456 874466 874821 874826) (-546 "INFINITY.spad" 874008 874016 874446 874451) (-545 "INETCLTS.spad" 873985 873993 873998 874003) (-544 "INEP.spad" 872523 872545 873975 873980) (-543 "INDE.spad" 872252 872269 872513 872518) (-542 "INCRMAPS.spad" 871673 871683 872242 872247) (-541 "INBFILE.spad" 870745 870753 871663 871668) (-540 "INBFF.spad" 866539 866550 870735 870740) (-539 "INBCON.spad" 864829 864837 866529 866534) (-538 "INBCON.spad" 863117 863127 864819 864824) (-537 "INAST.spad" 862778 862786 863107 863112) (-536 "IMPTAST.spad" 862486 862494 862768 862773) (-535 "IMATRIX.spad" 861431 861457 861943 861970) (-534 "IMATQF.spad" 860525 860569 861387 861392) (-533 "IMATLIN.spad" 859130 859154 860481 860486) (-532 "ILIST.spad" 857788 857803 858313 858340) (-531 "IIARRAY2.spad" 857176 857214 857395 857422) (-530 "IFF.spad" 856586 856602 856857 856950) (-529 "IFAST.spad" 856200 856208 856576 856581) (-528 "IFARRAY.spad" 853693 853708 855383 855410) (-527 "IFAMON.spad" 853555 853572 853649 853654) (-526 "IEVALAB.spad" 852960 852972 853545 853550) (-525 "IEVALAB.spad" 852363 852377 852950 852955) (-524 "IDPO.spad" 852161 852173 852353 852358) (-523 "IDPOAMS.spad" 851917 851929 852151 852156) (-522 "IDPOAM.spad" 851637 851649 851907 851912) (-521 "IDPC.spad" 850575 850587 851627 851632) (-520 "IDPAM.spad" 850320 850332 850565 850570) (-519 "IDPAG.spad" 850067 850079 850310 850315) (-518 "IDENT.spad" 849717 849725 850057 850062) (-517 "IDECOMP.spad" 846956 846974 849707 849712) (-516 "IDEAL.spad" 841905 841944 846891 846896) (-515 "ICDEN.spad" 841094 841110 841895 841900) (-514 "ICARD.spad" 840285 840293 841084 841089) (-513 "IBPTOOLS.spad" 838892 838909 840275 840280) (-512 "IBITS.spad" 838095 838108 838528 838555) (-511 "IBATOOL.spad" 835072 835091 838085 838090) (-510 "IBACHIN.spad" 833579 833594 835062 835067) (-509 "IARRAY2.spad" 832567 832593 833186 833213) (-508 "IARRAY1.spad" 831612 831627 831750 831777) (-507 "IAN.spad" 829835 829843 831428 831521) (-506 "IALGFACT.spad" 829438 829471 829825 829830) (-505 "HYPCAT.spad" 828862 828870 829428 829433) (-504 "HYPCAT.spad" 828284 828294 828852 828857) (-503 "HOSTNAME.spad" 828092 828100 828274 828279) (-502 "HOMOTOP.spad" 827835 827845 828082 828087) (-501 "HOAGG.spad" 825117 825127 827825 827830) (-500 "HOAGG.spad" 822174 822186 824884 824889) (-499 "HEXADEC.spad" 820179 820187 820544 820637) (-498 "HEUGCD.spad" 819214 819225 820169 820174) (-497 "HELLFDIV.spad" 818804 818828 819204 819209) (-496 "HEAP.spad" 818196 818206 818411 818438) (-495 "HEADAST.spad" 817729 817737 818186 818191) (-494 "HDP.spad" 806143 806159 806520 806619) (-493 "HDMP.spad" 803357 803372 803973 804100) (-492 "HB.spad" 801608 801616 803347 803352) (-491 "HASHTBL.spad" 800078 800109 800289 800316) (-490 "HASAST.spad" 799794 799802 800068 800073) (-489 "HACKPI.spad" 799285 799293 799696 799789) (-488 "GTSET.spad" 798224 798240 798931 798958) (-487 "GSTBL.spad" 796743 796778 796917 796932) (-486 "GSERIES.spad" 794056 794083 794875 795024) (-485 "GROUP.spad" 793329 793337 794036 794051) (-484 "GROUP.spad" 792610 792620 793319 793324) (-483 "GROEBSOL.spad" 791104 791125 792600 792605) (-482 "GRMOD.spad" 789675 789687 791094 791099) (-481 "GRMOD.spad" 788244 788258 789665 789670) (-480 "GRIMAGE.spad" 781133 781141 788234 788239) (-479 "GRDEF.spad" 779512 779520 781123 781128) (-478 "GRAY.spad" 777975 777983 779502 779507) (-477 "GRALG.spad" 777052 777064 777965 777970) (-476 "GRALG.spad" 776127 776141 777042 777047) (-475 "GPOLSET.spad" 775581 775604 775809 775836) (-474 "GOSPER.spad" 774850 774868 775571 775576) (-473 "GMODPOL.spad" 773998 774025 774818 774845) (-472 "GHENSEL.spad" 773081 773095 773988 773993) (-471 "GENUPS.spad" 769374 769387 773071 773076) (-470 "GENUFACT.spad" 768951 768961 769364 769369) (-469 "GENPGCD.spad" 768537 768554 768941 768946) (-468 "GENMFACT.spad" 767989 768008 768527 768532) (-467 "GENEEZ.spad" 765940 765953 767979 767984) (-466 "GDMP.spad" 762996 763013 763770 763897) (-465 "GCNAALG.spad" 756919 756946 762790 762857) (-464 "GCDDOM.spad" 756095 756103 756845 756914) (-463 "GCDDOM.spad" 755333 755343 756085 756090) (-462 "GB.spad" 752859 752897 755289 755294) (-461 "GBINTERN.spad" 748879 748917 752849 752854) (-460 "GBF.spad" 744646 744684 748869 748874) (-459 "GBEUCLID.spad" 742528 742566 744636 744641) (-458 "GAUSSFAC.spad" 741841 741849 742518 742523) (-457 "GALUTIL.spad" 740167 740177 741797 741802) (-456 "GALPOLYU.spad" 738621 738634 740157 740162) (-455 "GALFACTU.spad" 736794 736813 738611 738616) (-454 "GALFACT.spad" 726983 726994 736784 736789) (-453 "FVFUN.spad" 724006 724014 726973 726978) (-452 "FVC.spad" 723058 723066 723996 724001) (-451 "FUNDESC.spad" 722736 722744 723048 723053) (-450 "FUNCTION.spad" 722585 722597 722726 722731) (-449 "FT.spad" 720882 720890 722575 722580) (-448 "FTEM.spad" 720047 720055 720872 720877) (-447 "FSUPFACT.spad" 718947 718966 719983 719988) (-446 "FST.spad" 717033 717041 718937 718942) (-445 "FSRED.spad" 716513 716529 717023 717028) (-444 "FSPRMELT.spad" 715395 715411 716470 716475) (-443 "FSPECF.spad" 713486 713502 715385 715390) (-442 "FS.spad" 707754 707764 713261 713481) (-441 "FS.spad" 701800 701812 707309 707314) (-440 "FSINT.spad" 701460 701476 701790 701795) (-439 "FSERIES.spad" 700651 700663 701280 701379) (-438 "FSCINT.spad" 699968 699984 700641 700646) (-437 "FSAGG.spad" 699085 699095 699924 699963) (-436 "FSAGG.spad" 698164 698176 699005 699010) (-435 "FSAGG2.spad" 696907 696923 698154 698159) (-434 "FS2UPS.spad" 691398 691432 696897 696902) (-433 "FS2.spad" 691045 691061 691388 691393) (-432 "FS2EXPXP.spad" 690170 690193 691035 691040) (-431 "FRUTIL.spad" 689124 689134 690160 690165) (-430 "FR.spad" 682747 682757 688055 688124) (-429 "FRNAALG.spad" 678016 678026 682689 682742) (-428 "FRNAALG.spad" 673297 673309 677972 677977) (-427 "FRNAAF2.spad" 672753 672771 673287 673292) (-426 "FRMOD.spad" 672163 672193 672684 672689) (-425 "FRIDEAL.spad" 671388 671409 672143 672158) (-424 "FRIDEAL2.spad" 670992 671024 671378 671383) (-423 "FRETRCT.spad" 670503 670513 670982 670987) (-422 "FRETRCT.spad" 669880 669892 670361 670366) (-421 "FRAMALG.spad" 668228 668241 669836 669875) (-420 "FRAMALG.spad" 666608 666623 668218 668223) (-419 "FRAC.spad" 663614 663624 664017 664190) (-418 "FRAC2.spad" 663219 663231 663604 663609) (-417 "FR2.spad" 662555 662567 663209 663214) (-416 "FPS.spad" 659370 659378 662445 662550) (-415 "FPS.spad" 656213 656223 659290 659295) (-414 "FPC.spad" 655259 655267 656115 656208) (-413 "FPC.spad" 654391 654401 655249 655254) (-412 "FPATMAB.spad" 654153 654163 654381 654386) (-411 "FPARFRAC.spad" 653003 653020 654143 654148) (-410 "FORTRAN.spad" 651509 651552 652993 652998) (-409 "FORT.spad" 650458 650466 651499 651504) (-408 "FORTFN.spad" 647628 647636 650448 650453) (-407 "FORTCAT.spad" 647312 647320 647618 647623) (-406 "FORMULA.spad" 644786 644794 647302 647307) (-405 "FORMULA1.spad" 644265 644275 644776 644781) (-404 "FORDER.spad" 643956 643980 644255 644260) (-403 "FOP.spad" 643157 643165 643946 643951) (-402 "FNLA.spad" 642581 642603 643125 643152) (-401 "FNCAT.spad" 641176 641184 642571 642576) (-400 "FNAME.spad" 641068 641076 641166 641171) (-399 "FMTC.spad" 640866 640874 640994 641063) (-398 "FMONOID.spad" 640531 640541 640822 640827) (-397 "FMONCAT.spad" 637684 637694 640521 640526) (-396 "FM.spad" 637379 637391 637618 637645) (-395 "FMFUN.spad" 634409 634417 637369 637374) (-394 "FMC.spad" 633461 633469 634399 634404) (-393 "FMCAT.spad" 631129 631147 633429 633456) (-392 "FM1.spad" 630486 630498 631063 631090) (-391 "FLOATRP.spad" 628221 628235 630476 630481) (-390 "FLOAT.spad" 621535 621543 628087 628216) (-389 "FLOATCP.spad" 618966 618980 621525 621530) (-388 "FLINEXP.spad" 618688 618698 618956 618961) (-387 "FLINEXP.spad" 618354 618366 618624 618629) (-386 "FLASORT.spad" 617680 617692 618344 618349) (-385 "FLALG.spad" 615326 615345 617606 617675) (-384 "FLAGG.spad" 612368 612378 615306 615321) (-383 "FLAGG.spad" 609311 609323 612251 612256) (-382 "FLAGG2.spad" 608036 608052 609301 609306) (-381 "FINRALG.spad" 606097 606110 607992 608031) (-380 "FINRALG.spad" 604084 604099 605981 605986) (-379 "FINITE.spad" 603236 603244 604074 604079) (-378 "FINAALG.spad" 592357 592367 603178 603231) (-377 "FINAALG.spad" 581490 581502 592313 592318) (-376 "FILE.spad" 581073 581083 581480 581485) (-375 "FILECAT.spad" 579599 579616 581063 581068) (-374 "FIELD.spad" 579005 579013 579501 579594) (-373 "FIELD.spad" 578497 578507 578995 579000) (-372 "FGROUP.spad" 577144 577154 578477 578492) (-371 "FGLMICPK.spad" 575931 575946 577134 577139) (-370 "FFX.spad" 575306 575321 575647 575740) (-369 "FFSLPE.spad" 574809 574830 575296 575301) (-368 "FFPOLY.spad" 566071 566082 574799 574804) (-367 "FFPOLY2.spad" 565131 565148 566061 566066) (-366 "FFP.spad" 564528 564548 564847 564940) (-365 "FF.spad" 563976 563992 564209 564302) (-364 "FFNBX.spad" 562488 562508 563692 563785) (-363 "FFNBP.spad" 561001 561018 562204 562297) (-362 "FFNB.spad" 559466 559487 560682 560775) (-361 "FFINTBAS.spad" 556980 556999 559456 559461) (-360 "FFIELDC.spad" 554557 554565 556882 556975) (-359 "FFIELDC.spad" 552220 552230 554547 554552) (-358 "FFHOM.spad" 550968 550985 552210 552215) (-357 "FFF.spad" 548403 548414 550958 550963) (-356 "FFCGX.spad" 547250 547270 548119 548212) (-355 "FFCGP.spad" 546139 546159 546966 547059) (-354 "FFCG.spad" 544931 544952 545820 545913) (-353 "FFCAT.spad" 538104 538126 544770 544926) (-352 "FFCAT.spad" 531356 531380 538024 538029) (-351 "FFCAT2.spad" 531103 531143 531346 531351) (-350 "FEXPR.spad" 522820 522866 530859 530898) (-349 "FEVALAB.spad" 522528 522538 522810 522815) (-348 "FEVALAB.spad" 522021 522033 522305 522310) (-347 "FDIV.spad" 521463 521487 522011 522016) (-346 "FDIVCAT.spad" 519527 519551 521453 521458) (-345 "FDIVCAT.spad" 517589 517615 519517 519522) (-344 "FDIV2.spad" 517245 517285 517579 517584) (-343 "FCTRDATA.spad" 516253 516261 517235 517240) (-342 "FCPAK1.spad" 514820 514828 516243 516248) (-341 "FCOMP.spad" 514199 514209 514810 514815) (-340 "FC.spad" 504206 504214 514189 514194) (-339 "FAXF.spad" 497177 497191 504108 504201) (-338 "FAXF.spad" 490200 490216 497133 497138) (-337 "FARRAY.spad" 488350 488360 489383 489410) (-336 "FAMR.spad" 486486 486498 488248 488345) (-335 "FAMR.spad" 484606 484620 486370 486375) (-334 "FAMONOID.spad" 484274 484284 484560 484565) (-333 "FAMONC.spad" 482570 482582 484264 484269) (-332 "FAGROUP.spad" 482194 482204 482466 482493) (-331 "FACUTIL.spad" 480398 480415 482184 482189) (-330 "FACTFUNC.spad" 479592 479602 480388 480393) (-329 "EXPUPXS.spad" 476425 476448 477724 477873) (-328 "EXPRTUBE.spad" 473713 473721 476415 476420) (-327 "EXPRODE.spad" 470873 470889 473703 473708) (-326 "EXPR.spad" 466048 466058 466762 467057) (-325 "EXPR2UPS.spad" 462170 462183 466038 466043) (-324 "EXPR2.spad" 461875 461887 462160 462165) (-323 "EXPEXPAN.spad" 458676 458701 459308 459401) (-322 "EXIT.spad" 458347 458355 458666 458671) (-321 "EXITAST.spad" 458083 458091 458337 458342) (-320 "EVALCYC.spad" 457543 457557 458073 458078) (-319 "EVALAB.spad" 457115 457125 457533 457538) (-318 "EVALAB.spad" 456685 456697 457105 457110) (-317 "EUCDOM.spad" 454259 454267 456611 456680) (-316 "EUCDOM.spad" 451895 451905 454249 454254) (-315 "ESTOOLS.spad" 443741 443749 451885 451890) (-314 "ESTOOLS2.spad" 443344 443358 443731 443736) (-313 "ESTOOLS1.spad" 443029 443040 443334 443339) (-312 "ES.spad" 435844 435852 443019 443024) (-311 "ES.spad" 428565 428575 435742 435747) (-310 "ESCONT.spad" 425358 425366 428555 428560) (-309 "ESCONT1.spad" 425107 425119 425348 425353) (-308 "ES2.spad" 424612 424628 425097 425102) (-307 "ES1.spad" 424182 424198 424602 424607) (-306 "ERROR.spad" 421509 421517 424172 424177) (-305 "EQTBL.spad" 419981 420003 420190 420217) (-304 "EQ.spad" 414786 414796 417573 417685) (-303 "EQ2.spad" 414504 414516 414776 414781) (-302 "EP.spad" 410830 410840 414494 414499) (-301 "ENV.spad" 409508 409516 410820 410825) (-300 "ENTIRER.spad" 409176 409184 409452 409503) (-299 "EMR.spad" 408464 408505 409102 409171) (-298 "ELTAGG.spad" 406718 406737 408454 408459) (-297 "ELTAGG.spad" 404936 404957 406674 406679) (-296 "ELTAB.spad" 404411 404424 404926 404931) (-295 "ELFUTS.spad" 403798 403817 404401 404406) (-294 "ELEMFUN.spad" 403487 403495 403788 403793) (-293 "ELEMFUN.spad" 403174 403184 403477 403482) (-292 "ELAGG.spad" 401145 401155 403154 403169) (-291 "ELAGG.spad" 399053 399065 401064 401069) (-290 "ELABOR.spad" 398399 398407 399043 399048) (-289 "ELABEXPR.spad" 397331 397339 398389 398394) (-288 "EFUPXS.spad" 394107 394137 397287 397292) (-287 "EFULS.spad" 390943 390966 394063 394068) (-286 "EFSTRUC.spad" 388958 388974 390933 390938) (-285 "EF.spad" 383734 383750 388948 388953) (-284 "EAB.spad" 382010 382018 383724 383729) (-283 "E04UCFA.spad" 381546 381554 382000 382005) (-282 "E04NAFA.spad" 381123 381131 381536 381541) (-281 "E04MBFA.spad" 380703 380711 381113 381118) (-280 "E04JAFA.spad" 380239 380247 380693 380698) (-279 "E04GCFA.spad" 379775 379783 380229 380234) (-278 "E04FDFA.spad" 379311 379319 379765 379770) (-277 "E04DGFA.spad" 378847 378855 379301 379306) (-276 "E04AGNT.spad" 374697 374705 378837 378842) (-275 "DVARCAT.spad" 371587 371597 374687 374692) (-274 "DVARCAT.spad" 368475 368487 371577 371582) (-273 "DSMP.spad" 365849 365863 366154 366281) (-272 "DSEXT.spad" 365151 365161 365839 365844) (-271 "DSEXT.spad" 364360 364372 365050 365055) (-270 "DROPT.spad" 358319 358327 364350 364355) (-269 "DROPT1.spad" 357984 357994 358309 358314) (-268 "DROPT0.spad" 352841 352849 357974 357979) (-267 "DRAWPT.spad" 351014 351022 352831 352836) (-266 "DRAW.spad" 343890 343903 351004 351009) (-265 "DRAWHACK.spad" 343198 343208 343880 343885) (-264 "DRAWCX.spad" 340668 340676 343188 343193) (-263 "DRAWCURV.spad" 340215 340230 340658 340663) (-262 "DRAWCFUN.spad" 329747 329755 340205 340210) (-261 "DQAGG.spad" 327925 327935 329715 329742) (-260 "DPOLCAT.spad" 323274 323290 327793 327920) (-259 "DPOLCAT.spad" 318709 318727 323230 323235) (-258 "DPMO.spad" 310505 310521 310643 310856) (-257 "DPMM.spad" 302314 302332 302439 302652) (-256 "DOMTMPLT.spad" 302085 302093 302304 302309) (-255 "DOMCTOR.spad" 301840 301848 302075 302080) (-254 "DOMAIN.spad" 300927 300935 301830 301835) (-253 "DMP.spad" 298187 298202 298757 298884) (-252 "DMEXT.spad" 298054 298064 298155 298182) (-251 "DLP.spad" 297406 297416 298044 298049) (-250 "DLIST.spad" 295985 295995 296589 296616) (-249 "DLAGG.spad" 294402 294412 295975 295980) (-248 "DIVRING.spad" 293944 293952 294346 294397) (-247 "DIVRING.spad" 293530 293540 293934 293939) (-246 "DISPLAY.spad" 291720 291728 293520 293525) (-245 "DIRPROD.spad" 279871 279887 280511 280610) (-244 "DIRPROD2.spad" 278689 278707 279861 279866) (-243 "DIRPCAT.spad" 277882 277898 278585 278684) (-242 "DIRPCAT.spad" 276702 276720 277407 277412) (-241 "DIOSP.spad" 275527 275535 276692 276697) (-240 "DIOPS.spad" 274523 274533 275507 275522) (-239 "DIOPS.spad" 273493 273505 274479 274484) (-238 "DIFRING.spad" 273331 273339 273473 273488) (-237 "DIFFSPC.spad" 272910 272918 273321 273326) (-236 "DIFFSPC.spad" 272487 272497 272900 272905) (-235 "DIFFMOD.spad" 271976 271986 272455 272482) (-234 "DIFFDOM.spad" 271141 271152 271966 271971) (-233 "DIFFDOM.spad" 270304 270317 271131 271136) (-232 "DIFEXT.spad" 270123 270133 270284 270299) (-231 "DIAGG.spad" 269753 269763 270103 270118) (-230 "DIAGG.spad" 269391 269403 269743 269748) (-229 "DHMATRIX.spad" 267703 267713 268848 268875) (-228 "DFSFUN.spad" 261343 261351 267693 267698) (-227 "DFLOAT.spad" 258074 258082 261233 261338) (-226 "DFINTTLS.spad" 256305 256321 258064 258069) (-225 "DERHAM.spad" 254219 254251 256285 256300) (-224 "DEQUEUE.spad" 253543 253553 253826 253853) (-223 "DEGRED.spad" 253160 253174 253533 253538) (-222 "DEFINTRF.spad" 250697 250707 253150 253155) (-221 "DEFINTEF.spad" 249207 249223 250687 250692) (-220 "DEFAST.spad" 248575 248583 249197 249202) (-219 "DECIMAL.spad" 246584 246592 246945 247038) (-218 "DDFACT.spad" 244397 244414 246574 246579) (-217 "DBLRESP.spad" 243997 244021 244387 244392) (-216 "DBASE.spad" 242661 242671 243987 243992) (-215 "DATAARY.spad" 242123 242136 242651 242656) (-214 "D03FAFA.spad" 241951 241959 242113 242118) (-213 "D03EEFA.spad" 241771 241779 241941 241946) (-212 "D03AGNT.spad" 240857 240865 241761 241766) (-211 "D02EJFA.spad" 240319 240327 240847 240852) (-210 "D02CJFA.spad" 239797 239805 240309 240314) (-209 "D02BHFA.spad" 239287 239295 239787 239792) (-208 "D02BBFA.spad" 238777 238785 239277 239282) (-207 "D02AGNT.spad" 233591 233599 238767 238772) (-206 "D01WGTS.spad" 231910 231918 233581 233586) (-205 "D01TRNS.spad" 231887 231895 231900 231905) (-204 "D01GBFA.spad" 231409 231417 231877 231882) (-203 "D01FCFA.spad" 230931 230939 231399 231404) (-202 "D01ASFA.spad" 230399 230407 230921 230926) (-201 "D01AQFA.spad" 229845 229853 230389 230394) (-200 "D01APFA.spad" 229269 229277 229835 229840) (-199 "D01ANFA.spad" 228763 228771 229259 229264) (-198 "D01AMFA.spad" 228273 228281 228753 228758) (-197 "D01ALFA.spad" 227813 227821 228263 228268) (-196 "D01AKFA.spad" 227339 227347 227803 227808) (-195 "D01AJFA.spad" 226862 226870 227329 227334) (-194 "D01AGNT.spad" 222929 222937 226852 226857) (-193 "CYCLOTOM.spad" 222435 222443 222919 222924) (-192 "CYCLES.spad" 219227 219235 222425 222430) (-191 "CVMP.spad" 218644 218654 219217 219222) (-190 "CTRIGMNP.spad" 217144 217160 218634 218639) (-189 "CTOR.spad" 216835 216843 217134 217139) (-188 "CTORKIND.spad" 216438 216446 216825 216830) (-187 "CTORCAT.spad" 215687 215695 216428 216433) (-186 "CTORCAT.spad" 214934 214944 215677 215682) (-185 "CTORCALL.spad" 214523 214533 214924 214929) (-184 "CSTTOOLS.spad" 213768 213781 214513 214518) (-183 "CRFP.spad" 207492 207505 213758 213763) (-182 "CRCEAST.spad" 207212 207220 207482 207487) (-181 "CRAPACK.spad" 206263 206273 207202 207207) (-180 "CPMATCH.spad" 205767 205782 206188 206193) (-179 "CPIMA.spad" 205472 205491 205757 205762) (-178 "COORDSYS.spad" 200481 200491 205462 205467) (-177 "CONTOUR.spad" 199892 199900 200471 200476) (-176 "CONTFRAC.spad" 195642 195652 199794 199887) (-175 "CONDUIT.spad" 195400 195408 195632 195637) (-174 "COMRING.spad" 195074 195082 195338 195395) (-173 "COMPPROP.spad" 194592 194600 195064 195069) (-172 "COMPLPAT.spad" 194359 194374 194582 194587) (-171 "COMPLEX.spad" 189736 189746 189980 190241) (-170 "COMPLEX2.spad" 189451 189463 189726 189731) (-169 "COMPILER.spad" 189000 189008 189441 189446) (-168 "COMPFACT.spad" 188602 188616 188990 188995) (-167 "COMPCAT.spad" 186674 186684 188336 188597) (-166 "COMPCAT.spad" 184474 184486 186138 186143) (-165 "COMMUPC.spad" 184222 184240 184464 184469) (-164 "COMMONOP.spad" 183755 183763 184212 184217) (-163 "COMM.spad" 183566 183574 183745 183750) (-162 "COMMAAST.spad" 183329 183337 183556 183561) (-161 "COMBOPC.spad" 182244 182252 183319 183324) (-160 "COMBINAT.spad" 181011 181021 182234 182239) (-159 "COMBF.spad" 178393 178409 181001 181006) (-158 "COLOR.spad" 177230 177238 178383 178388) (-157 "COLONAST.spad" 176896 176904 177220 177225) (-156 "CMPLXRT.spad" 176607 176624 176886 176891) (-155 "CLLCTAST.spad" 176269 176277 176597 176602) (-154 "CLIP.spad" 172377 172385 176259 176264) (-153 "CLIF.spad" 171032 171048 172333 172372) (-152 "CLAGG.spad" 167537 167547 171022 171027) (-151 "CLAGG.spad" 163913 163925 167400 167405) (-150 "CINTSLPE.spad" 163244 163257 163903 163908) (-149 "CHVAR.spad" 161382 161404 163234 163239) (-148 "CHARZ.spad" 161297 161305 161362 161377) (-147 "CHARPOL.spad" 160807 160817 161287 161292) (-146 "CHARNZ.spad" 160560 160568 160787 160802) (-145 "CHAR.spad" 158434 158442 160550 160555) (-144 "CFCAT.spad" 157762 157770 158424 158429) (-143 "CDEN.spad" 156958 156972 157752 157757) (-142 "CCLASS.spad" 155107 155115 156369 156408) (-141 "CATEGORY.spad" 154149 154157 155097 155102) (-140 "CATCTOR.spad" 154040 154048 154139 154144) (-139 "CATAST.spad" 153658 153666 154030 154035) (-138 "CASEAST.spad" 153372 153380 153648 153653) (-137 "CARTEN.spad" 148739 148763 153362 153367) (-136 "CARTEN2.spad" 148129 148156 148729 148734) (-135 "CARD.spad" 145424 145432 148103 148124) (-134 "CAPSLAST.spad" 145198 145206 145414 145419) (-133 "CACHSET.spad" 144822 144830 145188 145193) (-132 "CABMON.spad" 144377 144385 144812 144817) (-131 "BYTEORD.spad" 144052 144060 144367 144372) (-130 "BYTE.spad" 143479 143487 144042 144047) (-129 "BYTEBUF.spad" 141338 141346 142648 142675) (-128 "BTREE.spad" 140411 140421 140945 140972) (-127 "BTOURN.spad" 139416 139426 140018 140045) (-126 "BTCAT.spad" 138808 138818 139384 139411) (-125 "BTCAT.spad" 138220 138232 138798 138803) (-124 "BTAGG.spad" 137686 137694 138188 138215) (-123 "BTAGG.spad" 137172 137182 137676 137681) (-122 "BSTREE.spad" 135913 135923 136779 136806) (-121 "BRILL.spad" 134110 134121 135903 135908) (-120 "BRAGG.spad" 133050 133060 134100 134105) (-119 "BRAGG.spad" 131954 131966 133006 133011) (-118 "BPADICRT.spad" 129828 129840 130083 130176) (-117 "BPADIC.spad" 129492 129504 129754 129823) (-116 "BOUNDZRO.spad" 129148 129165 129482 129487) (-115 "BOP.spad" 124330 124338 129138 129143) (-114 "BOP1.spad" 121796 121806 124320 124325) (-113 "BOOLE.spad" 121446 121454 121786 121791) (-112 "BOOLEAN.spad" 120884 120892 121436 121441) (-111 "BMODULE.spad" 120596 120608 120852 120879) (-110 "BITS.spad" 120017 120025 120232 120259) (-109 "BINDING.spad" 119430 119438 120007 120012) (-108 "BINARY.spad" 117444 117452 117800 117893) (-107 "BGAGG.spad" 116649 116659 117424 117439) (-106 "BGAGG.spad" 115862 115874 116639 116644) (-105 "BFUNCT.spad" 115426 115434 115842 115857) (-104 "BEZOUT.spad" 114566 114593 115376 115381) (-103 "BBTREE.spad" 111411 111421 114173 114200) (-102 "BASTYPE.spad" 111083 111091 111401 111406) (-101 "BASTYPE.spad" 110753 110763 111073 111078) (-100 "BALFACT.spad" 110212 110225 110743 110748) (-99 "AUTOMOR.spad" 109663 109672 110192 110207) (-98 "ATTREG.spad" 106386 106393 109415 109658) (-97 "ATTRBUT.spad" 102409 102416 106366 106381) (-96 "ATTRAST.spad" 102126 102133 102399 102404) (-95 "ATRIG.spad" 101596 101603 102116 102121) (-94 "ATRIG.spad" 101064 101073 101586 101591) (-93 "ASTCAT.spad" 100968 100975 101054 101059) (-92 "ASTCAT.spad" 100870 100879 100958 100963) (-91 "ASTACK.spad" 100209 100218 100477 100504) (-90 "ASSOCEQ.spad" 99035 99046 100165 100170) (-89 "ASP9.spad" 98116 98129 99025 99030) (-88 "ASP8.spad" 97159 97172 98106 98111) (-87 "ASP80.spad" 96481 96494 97149 97154) (-86 "ASP7.spad" 95641 95654 96471 96476) (-85 "ASP78.spad" 95092 95105 95631 95636) (-84 "ASP77.spad" 94461 94474 95082 95087) (-83 "ASP74.spad" 93553 93566 94451 94456) (-82 "ASP73.spad" 92824 92837 93543 93548) (-81 "ASP6.spad" 91691 91704 92814 92819) (-80 "ASP55.spad" 90200 90213 91681 91686) (-79 "ASP50.spad" 88017 88030 90190 90195) (-78 "ASP4.spad" 87312 87325 88007 88012) (-77 "ASP49.spad" 86311 86324 87302 87307) (-76 "ASP42.spad" 84718 84757 86301 86306) (-75 "ASP41.spad" 83297 83336 84708 84713) (-74 "ASP35.spad" 82285 82298 83287 83292) (-73 "ASP34.spad" 81586 81599 82275 82280) (-72 "ASP33.spad" 81146 81159 81576 81581) (-71 "ASP31.spad" 80286 80299 81136 81141) (-70 "ASP30.spad" 79178 79191 80276 80281) (-69 "ASP29.spad" 78644 78657 79168 79173) (-68 "ASP28.spad" 69917 69930 78634 78639) (-67 "ASP27.spad" 68814 68827 69907 69912) (-66 "ASP24.spad" 67901 67914 68804 68809) (-65 "ASP20.spad" 67365 67378 67891 67896) (-64 "ASP1.spad" 66746 66759 67355 67360) (-63 "ASP19.spad" 61432 61445 66736 66741) (-62 "ASP12.spad" 60846 60859 61422 61427) (-61 "ASP10.spad" 60117 60130 60836 60841) (-60 "ARRAY2.spad" 59477 59486 59724 59751) (-59 "ARRAY1.spad" 58314 58323 58660 58687) (-58 "ARRAY12.spad" 57027 57038 58304 58309) (-57 "ARR2CAT.spad" 52801 52822 56995 57022) (-56 "ARR2CAT.spad" 48595 48618 52791 52796) (-55 "ARITY.spad" 47967 47974 48585 48590) (-54 "APPRULE.spad" 47227 47249 47957 47962) (-53 "APPLYORE.spad" 46846 46859 47217 47222) (-52 "ANY.spad" 45705 45712 46836 46841) (-51 "ANY1.spad" 44776 44785 45695 45700) (-50 "ANTISYM.spad" 43221 43237 44756 44771) (-49 "ANON.spad" 42914 42921 43211 43216) (-48 "AN.spad" 41223 41230 42730 42823) (-47 "AMR.spad" 39408 39419 41121 41218) (-46 "AMR.spad" 37430 37443 39145 39150) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2279646 2279651 2279656 2279661) (-2 NIL 2279626 2279631 2279636 2279641) (-1 NIL 2279606 2279611 2279616 2279621) (0 NIL 2279586 2279591 2279596 2279601) (-1316 "ZMOD.spad" 2279395 2279408 2279524 2279581) (-1315 "ZLINDEP.spad" 2278461 2278472 2279385 2279390) (-1314 "ZDSOLVE.spad" 2268406 2268428 2278451 2278456) (-1313 "YSTREAM.spad" 2267901 2267912 2268396 2268401) (-1312 "YDIAGRAM.spad" 2267535 2267544 2267891 2267896) (-1311 "XRPOLY.spad" 2266755 2266775 2267391 2267460) (-1310 "XPR.spad" 2264550 2264563 2266473 2266572) (-1309 "XPOLY.spad" 2264105 2264116 2264406 2264475) (-1308 "XPOLYC.spad" 2263424 2263440 2264031 2264100) (-1307 "XPBWPOLY.spad" 2261861 2261881 2263204 2263273) (-1306 "XF.spad" 2260324 2260339 2261763 2261856) (-1305 "XF.spad" 2258767 2258784 2260208 2260213) (-1304 "XFALG.spad" 2255815 2255831 2258693 2258762) (-1303 "XEXPPKG.spad" 2255066 2255092 2255805 2255810) (-1302 "XDPOLY.spad" 2254680 2254696 2254922 2254991) (-1301 "XALG.spad" 2254340 2254351 2254636 2254675) (-1300 "WUTSET.spad" 2250179 2250196 2253986 2254013) (-1299 "WP.spad" 2249378 2249422 2250037 2250104) (-1298 "WHILEAST.spad" 2249176 2249185 2249368 2249373) (-1297 "WHEREAST.spad" 2248847 2248856 2249166 2249171) (-1296 "WFFINTBS.spad" 2246510 2246532 2248837 2248842) (-1295 "WEIER.spad" 2244732 2244743 2246500 2246505) (-1294 "VSPACE.spad" 2244405 2244416 2244700 2244727) (-1293 "VSPACE.spad" 2244098 2244111 2244395 2244400) (-1292 "VOID.spad" 2243775 2243784 2244088 2244093) (-1291 "VIEW.spad" 2241455 2241464 2243765 2243770) (-1290 "VIEWDEF.spad" 2236656 2236665 2241445 2241450) (-1289 "VIEW3D.spad" 2220617 2220626 2236646 2236651) (-1288 "VIEW2D.spad" 2208508 2208517 2220607 2220612) (-1287 "VECTOR.spad" 2207182 2207193 2207433 2207460) (-1286 "VECTOR2.spad" 2205821 2205834 2207172 2207177) (-1285 "VECTCAT.spad" 2203725 2203736 2205789 2205816) (-1284 "VECTCAT.spad" 2201436 2201449 2203502 2203507) (-1283 "VARIABLE.spad" 2201216 2201231 2201426 2201431) (-1282 "UTYPE.spad" 2200860 2200869 2201206 2201211) (-1281 "UTSODETL.spad" 2200155 2200179 2200816 2200821) (-1280 "UTSODE.spad" 2198371 2198391 2200145 2200150) (-1279 "UTS.spad" 2193318 2193346 2196838 2196935) (-1278 "UTSCAT.spad" 2190797 2190813 2193216 2193313) (-1277 "UTSCAT.spad" 2187920 2187938 2190341 2190346) (-1276 "UTS2.spad" 2187515 2187550 2187910 2187915) (-1275 "URAGG.spad" 2182188 2182199 2187505 2187510) (-1274 "URAGG.spad" 2176825 2176838 2182144 2182149) (-1273 "UPXSSING.spad" 2174470 2174496 2175906 2176039) (-1272 "UPXS.spad" 2171766 2171794 2172602 2172751) (-1271 "UPXSCONS.spad" 2169525 2169545 2169898 2170047) (-1270 "UPXSCCA.spad" 2168096 2168116 2169371 2169520) (-1269 "UPXSCCA.spad" 2166809 2166831 2168086 2168091) (-1268 "UPXSCAT.spad" 2165398 2165414 2166655 2166804) (-1267 "UPXS2.spad" 2164941 2164994 2165388 2165393) (-1266 "UPSQFREE.spad" 2163355 2163369 2164931 2164936) (-1265 "UPSCAT.spad" 2161142 2161166 2163253 2163350) (-1264 "UPSCAT.spad" 2158635 2158661 2160748 2160753) (-1263 "UPOLYC.spad" 2153675 2153686 2158477 2158630) (-1262 "UPOLYC.spad" 2148607 2148620 2153411 2153416) (-1261 "UPOLYC2.spad" 2148078 2148097 2148597 2148602) (-1260 "UP.spad" 2145184 2145199 2145571 2145724) (-1259 "UPMP.spad" 2144084 2144097 2145174 2145179) (-1258 "UPDIVP.spad" 2143649 2143663 2144074 2144079) (-1257 "UPDECOMP.spad" 2141894 2141908 2143639 2143644) (-1256 "UPCDEN.spad" 2141103 2141119 2141884 2141889) (-1255 "UP2.spad" 2140467 2140488 2141093 2141098) (-1254 "UNISEG.spad" 2139820 2139831 2140386 2140391) (-1253 "UNISEG2.spad" 2139317 2139330 2139776 2139781) (-1252 "UNIFACT.spad" 2138420 2138432 2139307 2139312) (-1251 "ULS.spad" 2128204 2128232 2129149 2129578) (-1250 "ULSCONS.spad" 2119338 2119358 2119708 2119857) (-1249 "ULSCCAT.spad" 2117075 2117095 2119184 2119333) (-1248 "ULSCCAT.spad" 2114920 2114942 2117031 2117036) (-1247 "ULSCAT.spad" 2113152 2113168 2114766 2114915) (-1246 "ULS2.spad" 2112666 2112719 2113142 2113147) (-1245 "UINT8.spad" 2112543 2112552 2112656 2112661) (-1244 "UINT64.spad" 2112419 2112428 2112533 2112538) (-1243 "UINT32.spad" 2112295 2112304 2112409 2112414) (-1242 "UINT16.spad" 2112171 2112180 2112285 2112290) (-1241 "UFD.spad" 2111236 2111245 2112097 2112166) (-1240 "UFD.spad" 2110363 2110374 2111226 2111231) (-1239 "UDVO.spad" 2109244 2109253 2110353 2110358) (-1238 "UDPO.spad" 2106737 2106748 2109200 2109205) (-1237 "TYPE.spad" 2106669 2106678 2106727 2106732) (-1236 "TYPEAST.spad" 2106588 2106597 2106659 2106664) (-1235 "TWOFACT.spad" 2105240 2105255 2106578 2106583) (-1234 "TUPLE.spad" 2104726 2104737 2105139 2105144) (-1233 "TUBETOOL.spad" 2101593 2101602 2104716 2104721) (-1232 "TUBE.spad" 2100240 2100257 2101583 2101588) (-1231 "TS.spad" 2098839 2098855 2099805 2099902) (-1230 "TSETCAT.spad" 2085966 2085983 2098807 2098834) (-1229 "TSETCAT.spad" 2073079 2073098 2085922 2085927) (-1228 "TRMANIP.spad" 2067445 2067462 2072785 2072790) (-1227 "TRIMAT.spad" 2066408 2066433 2067435 2067440) (-1226 "TRIGMNIP.spad" 2064935 2064952 2066398 2066403) (-1225 "TRIGCAT.spad" 2064447 2064456 2064925 2064930) (-1224 "TRIGCAT.spad" 2063957 2063968 2064437 2064442) (-1223 "TREE.spad" 2062532 2062543 2063564 2063591) (-1222 "TRANFUN.spad" 2062371 2062380 2062522 2062527) (-1221 "TRANFUN.spad" 2062208 2062219 2062361 2062366) (-1220 "TOPSP.spad" 2061882 2061891 2062198 2062203) (-1219 "TOOLSIGN.spad" 2061545 2061556 2061872 2061877) (-1218 "TEXTFILE.spad" 2060106 2060115 2061535 2061540) (-1217 "TEX.spad" 2057252 2057261 2060096 2060101) (-1216 "TEX1.spad" 2056808 2056819 2057242 2057247) (-1215 "TEMUTL.spad" 2056363 2056372 2056798 2056803) (-1214 "TBCMPPK.spad" 2054456 2054479 2056353 2056358) (-1213 "TBAGG.spad" 2053506 2053529 2054436 2054451) (-1212 "TBAGG.spad" 2052564 2052589 2053496 2053501) (-1211 "TANEXP.spad" 2051972 2051983 2052554 2052559) (-1210 "TALGOP.spad" 2051696 2051707 2051962 2051967) (-1209 "TABLE.spad" 2050107 2050130 2050377 2050404) (-1208 "TABLEAU.spad" 2049588 2049599 2050097 2050102) (-1207 "TABLBUMP.spad" 2046391 2046402 2049578 2049583) (-1206 "SYSTEM.spad" 2045619 2045628 2046381 2046386) (-1205 "SYSSOLP.spad" 2043102 2043113 2045609 2045614) (-1204 "SYSPTR.spad" 2043001 2043010 2043092 2043097) (-1203 "SYSNNI.spad" 2042183 2042194 2042991 2042996) (-1202 "SYSINT.spad" 2041587 2041598 2042173 2042178) (-1201 "SYNTAX.spad" 2037793 2037802 2041577 2041582) (-1200 "SYMTAB.spad" 2035861 2035870 2037783 2037788) (-1199 "SYMS.spad" 2031884 2031893 2035851 2035856) (-1198 "SYMPOLY.spad" 2030891 2030902 2030973 2031100) (-1197 "SYMFUNC.spad" 2030392 2030403 2030881 2030886) (-1196 "SYMBOL.spad" 2027895 2027904 2030382 2030387) (-1195 "SWITCH.spad" 2024666 2024675 2027885 2027890) (-1194 "SUTS.spad" 2021714 2021742 2023133 2023230) (-1193 "SUPXS.spad" 2018997 2019025 2019846 2019995) (-1192 "SUP.spad" 2015717 2015728 2016490 2016643) (-1191 "SUPFRACF.spad" 2014822 2014840 2015707 2015712) (-1190 "SUP2.spad" 2014214 2014227 2014812 2014817) (-1189 "SUMRF.spad" 2013188 2013199 2014204 2014209) (-1188 "SUMFS.spad" 2012825 2012842 2013178 2013183) (-1187 "SULS.spad" 2002596 2002624 2003554 2003983) (-1186 "SUCHTAST.spad" 2002365 2002374 2002586 2002591) (-1185 "SUCH.spad" 2002047 2002062 2002355 2002360) (-1184 "SUBSPACE.spad" 1994162 1994177 2002037 2002042) (-1183 "SUBRESP.spad" 1993332 1993346 1994118 1994123) (-1182 "STTF.spad" 1989431 1989447 1993322 1993327) (-1181 "STTFNC.spad" 1985899 1985915 1989421 1989426) (-1180 "STTAYLOR.spad" 1978534 1978545 1985780 1985785) (-1179 "STRTBL.spad" 1977039 1977056 1977188 1977215) (-1178 "STRING.spad" 1976448 1976457 1976462 1976489) (-1177 "STRICAT.spad" 1976236 1976245 1976416 1976443) (-1176 "STREAM.spad" 1973154 1973165 1975761 1975776) (-1175 "STREAM3.spad" 1972727 1972742 1973144 1973149) (-1174 "STREAM2.spad" 1971855 1971868 1972717 1972722) (-1173 "STREAM1.spad" 1971561 1971572 1971845 1971850) (-1172 "STINPROD.spad" 1970497 1970513 1971551 1971556) (-1171 "STEP.spad" 1969698 1969707 1970487 1970492) (-1170 "STEPAST.spad" 1968932 1968941 1969688 1969693) (-1169 "STBL.spad" 1967458 1967486 1967625 1967640) (-1168 "STAGG.spad" 1966533 1966544 1967448 1967453) (-1167 "STAGG.spad" 1965606 1965619 1966523 1966528) (-1166 "STACK.spad" 1964963 1964974 1965213 1965240) (-1165 "SREGSET.spad" 1962667 1962684 1964609 1964636) (-1164 "SRDCMPK.spad" 1961228 1961248 1962657 1962662) (-1163 "SRAGG.spad" 1956371 1956380 1961196 1961223) (-1162 "SRAGG.spad" 1951534 1951545 1956361 1956366) (-1161 "SQMATRIX.spad" 1949113 1949131 1950029 1950116) (-1160 "SPLTREE.spad" 1943665 1943678 1948549 1948576) (-1159 "SPLNODE.spad" 1940253 1940266 1943655 1943660) (-1158 "SPFCAT.spad" 1939062 1939071 1940243 1940248) (-1157 "SPECOUT.spad" 1937614 1937623 1939052 1939057) (-1156 "SPADXPT.spad" 1929209 1929218 1937604 1937609) (-1155 "spad-parser.spad" 1928674 1928683 1929199 1929204) (-1154 "SPADAST.spad" 1928375 1928384 1928664 1928669) (-1153 "SPACEC.spad" 1912574 1912585 1928365 1928370) (-1152 "SPACE3.spad" 1912350 1912361 1912564 1912569) (-1151 "SORTPAK.spad" 1911899 1911912 1912306 1912311) (-1150 "SOLVETRA.spad" 1909662 1909673 1911889 1911894) (-1149 "SOLVESER.spad" 1908190 1908201 1909652 1909657) (-1148 "SOLVERAD.spad" 1904216 1904227 1908180 1908185) (-1147 "SOLVEFOR.spad" 1902678 1902696 1904206 1904211) (-1146 "SNTSCAT.spad" 1902278 1902295 1902646 1902673) (-1145 "SMTS.spad" 1900550 1900576 1901843 1901940) (-1144 "SMP.spad" 1898025 1898045 1898415 1898542) (-1143 "SMITH.spad" 1896870 1896895 1898015 1898020) (-1142 "SMATCAT.spad" 1894980 1895010 1896814 1896865) (-1141 "SMATCAT.spad" 1893022 1893054 1894858 1894863) (-1140 "SKAGG.spad" 1891985 1891996 1892990 1893017) (-1139 "SINT.spad" 1890925 1890934 1891851 1891980) (-1138 "SIMPAN.spad" 1890653 1890662 1890915 1890920) (-1137 "SIG.spad" 1889983 1889992 1890643 1890648) (-1136 "SIGNRF.spad" 1889101 1889112 1889973 1889978) (-1135 "SIGNEF.spad" 1888380 1888397 1889091 1889096) (-1134 "SIGAST.spad" 1887765 1887774 1888370 1888375) (-1133 "SHP.spad" 1885693 1885708 1887721 1887726) (-1132 "SHDP.spad" 1873975 1874002 1874484 1874583) (-1131 "SGROUP.spad" 1873583 1873592 1873965 1873970) (-1130 "SGROUP.spad" 1873189 1873200 1873573 1873578) (-1129 "SGCF.spad" 1866328 1866337 1873179 1873184) (-1128 "SFRTCAT.spad" 1865258 1865275 1866296 1866323) (-1127 "SFRGCD.spad" 1864321 1864341 1865248 1865253) (-1126 "SFQCMPK.spad" 1858958 1858978 1864311 1864316) (-1125 "SFORT.spad" 1858397 1858411 1858948 1858953) (-1124 "SEXOF.spad" 1858240 1858280 1858387 1858392) (-1123 "SEX.spad" 1858132 1858141 1858230 1858235) (-1122 "SEXCAT.spad" 1855913 1855953 1858122 1858127) (-1121 "SET.spad" 1854237 1854248 1855334 1855373) (-1120 "SETMN.spad" 1852687 1852704 1854227 1854232) (-1119 "SETCAT.spad" 1852009 1852018 1852677 1852682) (-1118 "SETCAT.spad" 1851329 1851340 1851999 1852004) (-1117 "SETAGG.spad" 1847878 1847889 1851309 1851324) (-1116 "SETAGG.spad" 1844435 1844448 1847868 1847873) (-1115 "SEQAST.spad" 1844138 1844147 1844425 1844430) (-1114 "SEGXCAT.spad" 1843294 1843307 1844128 1844133) (-1113 "SEG.spad" 1843107 1843118 1843213 1843218) (-1112 "SEGCAT.spad" 1842032 1842043 1843097 1843102) (-1111 "SEGBIND.spad" 1841790 1841801 1841979 1841984) (-1110 "SEGBIND2.spad" 1841488 1841501 1841780 1841785) (-1109 "SEGAST.spad" 1841202 1841211 1841478 1841483) (-1108 "SEG2.spad" 1840637 1840650 1841158 1841163) (-1107 "SDVAR.spad" 1839913 1839924 1840627 1840632) (-1106 "SDPOL.spad" 1837246 1837257 1837537 1837664) (-1105 "SCPKG.spad" 1835335 1835346 1837236 1837241) (-1104 "SCOPE.spad" 1834488 1834497 1835325 1835330) (-1103 "SCACHE.spad" 1833184 1833195 1834478 1834483) (-1102 "SASTCAT.spad" 1833093 1833102 1833174 1833179) (-1101 "SAOS.spad" 1832965 1832974 1833083 1833088) (-1100 "SAERFFC.spad" 1832678 1832698 1832955 1832960) (-1099 "SAE.spad" 1830148 1830164 1830759 1830894) (-1098 "SAEFACT.spad" 1829849 1829869 1830138 1830143) (-1097 "RURPK.spad" 1827508 1827524 1829839 1829844) (-1096 "RULESET.spad" 1826961 1826985 1827498 1827503) (-1095 "RULE.spad" 1825201 1825225 1826951 1826956) (-1094 "RULECOLD.spad" 1825053 1825066 1825191 1825196) (-1093 "RTVALUE.spad" 1824788 1824797 1825043 1825048) (-1092 "RSTRCAST.spad" 1824505 1824514 1824778 1824783) (-1091 "RSETGCD.spad" 1820883 1820903 1824495 1824500) (-1090 "RSETCAT.spad" 1810819 1810836 1820851 1820878) (-1089 "RSETCAT.spad" 1800775 1800794 1810809 1810814) (-1088 "RSDCMPK.spad" 1799227 1799247 1800765 1800770) (-1087 "RRCC.spad" 1797611 1797641 1799217 1799222) (-1086 "RRCC.spad" 1795993 1796025 1797601 1797606) (-1085 "RPTAST.spad" 1795695 1795704 1795983 1795988) (-1084 "RPOLCAT.spad" 1775055 1775070 1795563 1795690) (-1083 "RPOLCAT.spad" 1754128 1754145 1774638 1774643) (-1082 "ROUTINE.spad" 1750011 1750020 1752775 1752802) (-1081 "ROMAN.spad" 1749339 1749348 1749877 1750006) (-1080 "ROIRC.spad" 1748419 1748451 1749329 1749334) (-1079 "RNS.spad" 1747322 1747331 1748321 1748414) (-1078 "RNS.spad" 1746311 1746322 1747312 1747317) (-1077 "RNG.spad" 1746046 1746055 1746301 1746306) (-1076 "RNGBIND.spad" 1745206 1745220 1746001 1746006) (-1075 "RMODULE.spad" 1744971 1744982 1745196 1745201) (-1074 "RMCAT2.spad" 1744391 1744448 1744961 1744966) (-1073 "RMATRIX.spad" 1743215 1743234 1743558 1743597) (-1072 "RMATCAT.spad" 1738794 1738825 1743171 1743210) (-1071 "RMATCAT.spad" 1734263 1734296 1738642 1738647) (-1070 "RLINSET.spad" 1733967 1733978 1734253 1734258) (-1069 "RINTERP.spad" 1733855 1733875 1733957 1733962) (-1068 "RING.spad" 1733325 1733334 1733835 1733850) (-1067 "RING.spad" 1732803 1732814 1733315 1733320) (-1066 "RIDIST.spad" 1732195 1732204 1732793 1732798) (-1065 "RGCHAIN.spad" 1730778 1730794 1731680 1731707) (-1064 "RGBCSPC.spad" 1730559 1730571 1730768 1730773) (-1063 "RGBCMDL.spad" 1730089 1730101 1730549 1730554) (-1062 "RF.spad" 1727731 1727742 1730079 1730084) (-1061 "RFFACTOR.spad" 1727193 1727204 1727721 1727726) (-1060 "RFFACT.spad" 1726928 1726940 1727183 1727188) (-1059 "RFDIST.spad" 1725924 1725933 1726918 1726923) (-1058 "RETSOL.spad" 1725343 1725356 1725914 1725919) (-1057 "RETRACT.spad" 1724771 1724782 1725333 1725338) (-1056 "RETRACT.spad" 1724197 1724210 1724761 1724766) (-1055 "RETAST.spad" 1724009 1724018 1724187 1724192) (-1054 "RESULT.spad" 1722069 1722078 1722656 1722683) (-1053 "RESRING.spad" 1721416 1721463 1722007 1722064) (-1052 "RESLATC.spad" 1720740 1720751 1721406 1721411) (-1051 "REPSQ.spad" 1720471 1720482 1720730 1720735) (-1050 "REP.spad" 1718025 1718034 1720461 1720466) (-1049 "REPDB.spad" 1717732 1717743 1718015 1718020) (-1048 "REP2.spad" 1707390 1707401 1717574 1717579) (-1047 "REP1.spad" 1701586 1701597 1707340 1707345) (-1046 "REGSET.spad" 1699383 1699400 1701232 1701259) (-1045 "REF.spad" 1698718 1698729 1699338 1699343) (-1044 "REDORDER.spad" 1697924 1697941 1698708 1698713) (-1043 "RECLOS.spad" 1696707 1696727 1697411 1697504) (-1042 "REALSOLV.spad" 1695847 1695856 1696697 1696702) (-1041 "REAL.spad" 1695719 1695728 1695837 1695842) (-1040 "REAL0Q.spad" 1693017 1693032 1695709 1695714) (-1039 "REAL0.spad" 1689861 1689876 1693007 1693012) (-1038 "RDUCEAST.spad" 1689582 1689591 1689851 1689856) (-1037 "RDIV.spad" 1689237 1689262 1689572 1689577) (-1036 "RDIST.spad" 1688804 1688815 1689227 1689232) (-1035 "RDETRS.spad" 1687668 1687686 1688794 1688799) (-1034 "RDETR.spad" 1685807 1685825 1687658 1687663) (-1033 "RDEEFS.spad" 1684906 1684923 1685797 1685802) (-1032 "RDEEF.spad" 1683916 1683933 1684896 1684901) (-1031 "RCFIELD.spad" 1681102 1681111 1683818 1683911) (-1030 "RCFIELD.spad" 1678374 1678385 1681092 1681097) (-1029 "RCAGG.spad" 1676302 1676313 1678364 1678369) (-1028 "RCAGG.spad" 1674157 1674170 1676221 1676226) (-1027 "RATRET.spad" 1673517 1673528 1674147 1674152) (-1026 "RATFACT.spad" 1673209 1673221 1673507 1673512) (-1025 "RANDSRC.spad" 1672528 1672537 1673199 1673204) (-1024 "RADUTIL.spad" 1672284 1672293 1672518 1672523) (-1023 "RADIX.spad" 1669108 1669122 1670654 1670747) (-1022 "RADFF.spad" 1666847 1666884 1666966 1667122) (-1021 "RADCAT.spad" 1666442 1666451 1666837 1666842) (-1020 "RADCAT.spad" 1666035 1666046 1666432 1666437) (-1019 "QUEUE.spad" 1665383 1665394 1665642 1665669) (-1018 "QUAT.spad" 1663871 1663882 1664214 1664279) (-1017 "QUATCT2.spad" 1663491 1663510 1663861 1663866) (-1016 "QUATCAT.spad" 1661661 1661672 1663421 1663486) (-1015 "QUATCAT.spad" 1659582 1659595 1661344 1661349) (-1014 "QUAGG.spad" 1658409 1658420 1659550 1659577) (-1013 "QQUTAST.spad" 1658177 1658186 1658399 1658404) (-1012 "QFORM.spad" 1657795 1657810 1658167 1658172) (-1011 "QFCAT.spad" 1656497 1656508 1657697 1657790) (-1010 "QFCAT.spad" 1654790 1654803 1655992 1655997) (-1009 "QFCAT2.spad" 1654482 1654499 1654780 1654785) (-1008 "QEQUAT.spad" 1654040 1654049 1654472 1654477) (-1007 "QCMPACK.spad" 1648786 1648806 1654030 1654035) (-1006 "QALGSET.spad" 1644864 1644897 1648700 1648705) (-1005 "QALGSET2.spad" 1642859 1642878 1644854 1644859) (-1004 "PWFFINTB.spad" 1640274 1640296 1642849 1642854) (-1003 "PUSHVAR.spad" 1639612 1639632 1640264 1640269) (-1002 "PTRANFN.spad" 1635739 1635750 1639602 1639607) (-1001 "PTPACK.spad" 1632826 1632837 1635729 1635734) (-1000 "PTFUNC2.spad" 1632648 1632663 1632816 1632821) (-999 "PTCAT.spad" 1631903 1631913 1632616 1632643) (-998 "PSQFR.spad" 1631210 1631234 1631893 1631898) (-997 "PSEUDLIN.spad" 1630096 1630106 1631200 1631205) (-996 "PSETPK.spad" 1615529 1615545 1629974 1629979) (-995 "PSETCAT.spad" 1609449 1609472 1615509 1615524) (-994 "PSETCAT.spad" 1603343 1603368 1609405 1609410) (-993 "PSCURVE.spad" 1602326 1602334 1603333 1603338) (-992 "PSCAT.spad" 1601109 1601138 1602224 1602321) (-991 "PSCAT.spad" 1599982 1600013 1601099 1601104) (-990 "PRTITION.spad" 1598680 1598688 1599972 1599977) (-989 "PRTDAST.spad" 1598399 1598407 1598670 1598675) (-988 "PRS.spad" 1587961 1587978 1598355 1598360) (-987 "PRQAGG.spad" 1587396 1587406 1587929 1587956) (-986 "PROPLOG.spad" 1586968 1586976 1587386 1587391) (-985 "PROPFUN2.spad" 1586591 1586604 1586958 1586963) (-984 "PROPFUN1.spad" 1585989 1586000 1586581 1586586) (-983 "PROPFRML.spad" 1584557 1584568 1585979 1585984) (-982 "PROPERTY.spad" 1584045 1584053 1584547 1584552) (-981 "PRODUCT.spad" 1581727 1581739 1582011 1582066) (-980 "PR.spad" 1580119 1580131 1580818 1580945) (-979 "PRINT.spad" 1579871 1579879 1580109 1580114) (-978 "PRIMES.spad" 1578124 1578134 1579861 1579866) (-977 "PRIMELT.spad" 1576205 1576219 1578114 1578119) (-976 "PRIMCAT.spad" 1575832 1575840 1576195 1576200) (-975 "PRIMARR.spad" 1574837 1574847 1575015 1575042) (-974 "PRIMARR2.spad" 1573604 1573616 1574827 1574832) (-973 "PREASSOC.spad" 1572986 1572998 1573594 1573599) (-972 "PPCURVE.spad" 1572123 1572131 1572976 1572981) (-971 "PORTNUM.spad" 1571898 1571906 1572113 1572118) (-970 "POLYROOT.spad" 1570747 1570769 1571854 1571859) (-969 "POLY.spad" 1568082 1568092 1568597 1568724) (-968 "POLYLIFT.spad" 1567347 1567370 1568072 1568077) (-967 "POLYCATQ.spad" 1565465 1565487 1567337 1567342) (-966 "POLYCAT.spad" 1558935 1558956 1565333 1565460) (-965 "POLYCAT.spad" 1551743 1551766 1558143 1558148) (-964 "POLY2UP.spad" 1551195 1551209 1551733 1551738) (-963 "POLY2.spad" 1550792 1550804 1551185 1551190) (-962 "POLUTIL.spad" 1549733 1549762 1550748 1550753) (-961 "POLTOPOL.spad" 1548481 1548496 1549723 1549728) (-960 "POINT.spad" 1547319 1547329 1547406 1547433) (-959 "PNTHEORY.spad" 1544021 1544029 1547309 1547314) (-958 "PMTOOLS.spad" 1542796 1542810 1544011 1544016) (-957 "PMSYM.spad" 1542345 1542355 1542786 1542791) (-956 "PMQFCAT.spad" 1541936 1541950 1542335 1542340) (-955 "PMPRED.spad" 1541415 1541429 1541926 1541931) (-954 "PMPREDFS.spad" 1540869 1540891 1541405 1541410) (-953 "PMPLCAT.spad" 1539949 1539967 1540801 1540806) (-952 "PMLSAGG.spad" 1539534 1539548 1539939 1539944) (-951 "PMKERNEL.spad" 1539113 1539125 1539524 1539529) (-950 "PMINS.spad" 1538693 1538703 1539103 1539108) (-949 "PMFS.spad" 1538270 1538288 1538683 1538688) (-948 "PMDOWN.spad" 1537560 1537574 1538260 1538265) (-947 "PMASS.spad" 1536570 1536578 1537550 1537555) (-946 "PMASSFS.spad" 1535537 1535553 1536560 1536565) (-945 "PLOTTOOL.spad" 1535317 1535325 1535527 1535532) (-944 "PLOT.spad" 1530240 1530248 1535307 1535312) (-943 "PLOT3D.spad" 1526704 1526712 1530230 1530235) (-942 "PLOT1.spad" 1525861 1525871 1526694 1526699) (-941 "PLEQN.spad" 1513151 1513178 1525851 1525856) (-940 "PINTERP.spad" 1512773 1512792 1513141 1513146) (-939 "PINTERPA.spad" 1512557 1512573 1512763 1512768) (-938 "PI.spad" 1512166 1512174 1512531 1512552) (-937 "PID.spad" 1511136 1511144 1512092 1512161) (-936 "PICOERCE.spad" 1510793 1510803 1511126 1511131) (-935 "PGROEB.spad" 1509394 1509408 1510783 1510788) (-934 "PGE.spad" 1501011 1501019 1509384 1509389) (-933 "PGCD.spad" 1499901 1499918 1501001 1501006) (-932 "PFRPAC.spad" 1499050 1499060 1499891 1499896) (-931 "PFR.spad" 1495713 1495723 1498952 1499045) (-930 "PFOTOOLS.spad" 1494971 1494987 1495703 1495708) (-929 "PFOQ.spad" 1494341 1494359 1494961 1494966) (-928 "PFO.spad" 1493760 1493787 1494331 1494336) (-927 "PF.spad" 1493334 1493346 1493565 1493658) (-926 "PFECAT.spad" 1491016 1491024 1493260 1493329) (-925 "PFECAT.spad" 1488726 1488736 1490972 1490977) (-924 "PFBRU.spad" 1486614 1486626 1488716 1488721) (-923 "PFBR.spad" 1484174 1484197 1486604 1486609) (-922 "PERM.spad" 1479981 1479991 1484004 1484019) (-921 "PERMGRP.spad" 1474751 1474761 1479971 1479976) (-920 "PERMCAT.spad" 1473412 1473422 1474731 1474746) (-919 "PERMAN.spad" 1471944 1471958 1473402 1473407) (-918 "PENDTREE.spad" 1471285 1471295 1471573 1471578) (-917 "PDSPC.spad" 1470098 1470108 1471275 1471280) (-916 "PDSPC.spad" 1468909 1468921 1470088 1470093) (-915 "PDRING.spad" 1468751 1468761 1468889 1468904) (-914 "PDMOD.spad" 1468567 1468579 1468719 1468746) (-913 "PDEPROB.spad" 1467582 1467590 1468557 1468562) (-912 "PDEPACK.spad" 1461622 1461630 1467572 1467577) (-911 "PDECOMP.spad" 1461092 1461109 1461612 1461617) (-910 "PDECAT.spad" 1459448 1459456 1461082 1461087) (-909 "PDDOM.spad" 1458886 1458899 1459438 1459443) (-908 "PDDOM.spad" 1458322 1458337 1458876 1458881) (-907 "PCOMP.spad" 1458175 1458188 1458312 1458317) (-906 "PBWLB.spad" 1456763 1456780 1458165 1458170) (-905 "PATTERN.spad" 1451302 1451312 1456753 1456758) (-904 "PATTERN2.spad" 1451040 1451052 1451292 1451297) (-903 "PATTERN1.spad" 1449376 1449392 1451030 1451035) (-902 "PATRES.spad" 1446951 1446963 1449366 1449371) (-901 "PATRES2.spad" 1446623 1446637 1446941 1446946) (-900 "PATMATCH.spad" 1444820 1444851 1446331 1446336) (-899 "PATMAB.spad" 1444249 1444259 1444810 1444815) (-898 "PATLRES.spad" 1443335 1443349 1444239 1444244) (-897 "PATAB.spad" 1443099 1443109 1443325 1443330) (-896 "PARTPERM.spad" 1441107 1441115 1443089 1443094) (-895 "PARSURF.spad" 1440541 1440569 1441097 1441102) (-894 "PARSU2.spad" 1440338 1440354 1440531 1440536) (-893 "script-parser.spad" 1439858 1439866 1440328 1440333) (-892 "PARSCURV.spad" 1439292 1439320 1439848 1439853) (-891 "PARSC2.spad" 1439083 1439099 1439282 1439287) (-890 "PARPCURV.spad" 1438545 1438573 1439073 1439078) (-889 "PARPC2.spad" 1438336 1438352 1438535 1438540) (-888 "PARAMAST.spad" 1437464 1437472 1438326 1438331) (-887 "PAN2EXPR.spad" 1436876 1436884 1437454 1437459) (-886 "PALETTE.spad" 1435846 1435854 1436866 1436871) (-885 "PAIR.spad" 1434833 1434846 1435434 1435439) (-884 "PADICRC.spad" 1432074 1432092 1433245 1433338) (-883 "PADICRAT.spad" 1429982 1429994 1430203 1430296) (-882 "PADIC.spad" 1429677 1429689 1429908 1429977) (-881 "PADICCT.spad" 1428226 1428238 1429603 1429672) (-880 "PADEPAC.spad" 1426915 1426934 1428216 1428221) (-879 "PADE.spad" 1425667 1425683 1426905 1426910) (-878 "OWP.spad" 1424907 1424937 1425525 1425592) (-877 "OVERSET.spad" 1424480 1424488 1424897 1424902) (-876 "OVAR.spad" 1424261 1424284 1424470 1424475) (-875 "OUT.spad" 1423347 1423355 1424251 1424256) (-874 "OUTFORM.spad" 1412739 1412747 1423337 1423342) (-873 "OUTBFILE.spad" 1412157 1412165 1412729 1412734) (-872 "OUTBCON.spad" 1411163 1411171 1412147 1412152) (-871 "OUTBCON.spad" 1410167 1410177 1411153 1411158) (-870 "OSI.spad" 1409642 1409650 1410157 1410162) (-869 "OSGROUP.spad" 1409560 1409568 1409632 1409637) (-868 "ORTHPOL.spad" 1408045 1408055 1409477 1409482) (-867 "OREUP.spad" 1407498 1407526 1407725 1407764) (-866 "ORESUP.spad" 1406799 1406823 1407178 1407217) (-865 "OREPCTO.spad" 1404656 1404668 1406719 1406724) (-864 "OREPCAT.spad" 1398803 1398813 1404612 1404651) (-863 "OREPCAT.spad" 1392840 1392852 1398651 1398656) (-862 "ORDSET.spad" 1392012 1392020 1392830 1392835) (-861 "ORDSET.spad" 1391182 1391192 1392002 1392007) (-860 "ORDRING.spad" 1390572 1390580 1391162 1391177) (-859 "ORDRING.spad" 1389970 1389980 1390562 1390567) (-858 "ORDMON.spad" 1389825 1389833 1389960 1389965) (-857 "ORDFUNS.spad" 1388957 1388973 1389815 1389820) (-856 "ORDFIN.spad" 1388777 1388785 1388947 1388952) (-855 "ORDCOMP.spad" 1387242 1387252 1388324 1388353) (-854 "ORDCOMP2.spad" 1386535 1386547 1387232 1387237) (-853 "OPTPROB.spad" 1385173 1385181 1386525 1386530) (-852 "OPTPACK.spad" 1377582 1377590 1385163 1385168) (-851 "OPTCAT.spad" 1375261 1375269 1377572 1377577) (-850 "OPSIG.spad" 1374915 1374923 1375251 1375256) (-849 "OPQUERY.spad" 1374464 1374472 1374905 1374910) (-848 "OP.spad" 1374206 1374216 1374286 1374353) (-847 "OPERCAT.spad" 1373672 1373682 1374196 1374201) (-846 "OPERCAT.spad" 1373136 1373148 1373662 1373667) (-845 "ONECOMP.spad" 1371881 1371891 1372683 1372712) (-844 "ONECOMP2.spad" 1371305 1371317 1371871 1371876) (-843 "OMSERVER.spad" 1370311 1370319 1371295 1371300) (-842 "OMSAGG.spad" 1370099 1370109 1370267 1370306) (-841 "OMPKG.spad" 1368715 1368723 1370089 1370094) (-840 "OM.spad" 1367688 1367696 1368705 1368710) (-839 "OMLO.spad" 1367113 1367125 1367574 1367613) (-838 "OMEXPR.spad" 1366947 1366957 1367103 1367108) (-837 "OMERR.spad" 1366492 1366500 1366937 1366942) (-836 "OMERRK.spad" 1365526 1365534 1366482 1366487) (-835 "OMENC.spad" 1364870 1364878 1365516 1365521) (-834 "OMDEV.spad" 1359179 1359187 1364860 1364865) (-833 "OMCONN.spad" 1358588 1358596 1359169 1359174) (-832 "OINTDOM.spad" 1358351 1358359 1358514 1358583) (-831 "OFMONOID.spad" 1356474 1356484 1358307 1358312) (-830 "ODVAR.spad" 1355735 1355745 1356464 1356469) (-829 "ODR.spad" 1355379 1355405 1355547 1355696) (-828 "ODPOL.spad" 1352668 1352678 1353008 1353135) (-827 "ODP.spad" 1341086 1341106 1341459 1341558) (-826 "ODETOOLS.spad" 1339735 1339754 1341076 1341081) (-825 "ODESYS.spad" 1337429 1337446 1339725 1339730) (-824 "ODERTRIC.spad" 1333438 1333455 1337386 1337391) (-823 "ODERED.spad" 1332837 1332861 1333428 1333433) (-822 "ODERAT.spad" 1330452 1330469 1332827 1332832) (-821 "ODEPRRIC.spad" 1327489 1327511 1330442 1330447) (-820 "ODEPROB.spad" 1326746 1326754 1327479 1327484) (-819 "ODEPRIM.spad" 1324080 1324102 1326736 1326741) (-818 "ODEPAL.spad" 1323466 1323490 1324070 1324075) (-817 "ODEPACK.spad" 1310132 1310140 1323456 1323461) (-816 "ODEINT.spad" 1309567 1309583 1310122 1310127) (-815 "ODEIFTBL.spad" 1306962 1306970 1309557 1309562) (-814 "ODEEF.spad" 1302453 1302469 1306952 1306957) (-813 "ODECONST.spad" 1301990 1302008 1302443 1302448) (-812 "ODECAT.spad" 1300588 1300596 1301980 1301985) (-811 "OCT.spad" 1298724 1298734 1299438 1299477) (-810 "OCTCT2.spad" 1298370 1298391 1298714 1298719) (-809 "OC.spad" 1296166 1296176 1298326 1298365) (-808 "OC.spad" 1293687 1293699 1295849 1295854) (-807 "OCAMON.spad" 1293535 1293543 1293677 1293682) (-806 "OASGP.spad" 1293350 1293358 1293525 1293530) (-805 "OAMONS.spad" 1292872 1292880 1293340 1293345) (-804 "OAMON.spad" 1292733 1292741 1292862 1292867) (-803 "OAGROUP.spad" 1292595 1292603 1292723 1292728) (-802 "NUMTUBE.spad" 1292186 1292202 1292585 1292590) (-801 "NUMQUAD.spad" 1280162 1280170 1292176 1292181) (-800 "NUMODE.spad" 1271516 1271524 1280152 1280157) (-799 "NUMINT.spad" 1269082 1269090 1271506 1271511) (-798 "NUMFMT.spad" 1267922 1267930 1269072 1269077) (-797 "NUMERIC.spad" 1260036 1260046 1267727 1267732) (-796 "NTSCAT.spad" 1258544 1258560 1260004 1260031) (-795 "NTPOLFN.spad" 1258095 1258105 1258461 1258466) (-794 "NSUP.spad" 1251048 1251058 1255588 1255741) (-793 "NSUP2.spad" 1250440 1250452 1251038 1251043) (-792 "NSMP.spad" 1246670 1246689 1246978 1247105) (-791 "NREP.spad" 1245048 1245062 1246660 1246665) (-790 "NPCOEF.spad" 1244294 1244314 1245038 1245043) (-789 "NORMRETR.spad" 1243892 1243931 1244284 1244289) (-788 "NORMPK.spad" 1241794 1241813 1243882 1243887) (-787 "NORMMA.spad" 1241482 1241508 1241784 1241789) (-786 "NONE.spad" 1241223 1241231 1241472 1241477) (-785 "NONE1.spad" 1240899 1240909 1241213 1241218) (-784 "NODE1.spad" 1240386 1240402 1240889 1240894) (-783 "NNI.spad" 1239281 1239289 1240360 1240381) (-782 "NLINSOL.spad" 1237907 1237917 1239271 1239276) (-781 "NIPROB.spad" 1236448 1236456 1237897 1237902) (-780 "NFINTBAS.spad" 1234008 1234025 1236438 1236443) (-779 "NETCLT.spad" 1233982 1233993 1233998 1234003) (-778 "NCODIV.spad" 1232198 1232214 1233972 1233977) (-777 "NCNTFRAC.spad" 1231840 1231854 1232188 1232193) (-776 "NCEP.spad" 1230006 1230020 1231830 1231835) (-775 "NASRING.spad" 1229602 1229610 1229996 1230001) (-774 "NASRING.spad" 1229196 1229206 1229592 1229597) (-773 "NARNG.spad" 1228548 1228556 1229186 1229191) (-772 "NARNG.spad" 1227898 1227908 1228538 1228543) (-771 "NAGSP.spad" 1226975 1226983 1227888 1227893) (-770 "NAGS.spad" 1216636 1216644 1226965 1226970) (-769 "NAGF07.spad" 1215067 1215075 1216626 1216631) (-768 "NAGF04.spad" 1209469 1209477 1215057 1215062) (-767 "NAGF02.spad" 1203538 1203546 1209459 1209464) (-766 "NAGF01.spad" 1199299 1199307 1203528 1203533) (-765 "NAGE04.spad" 1192999 1193007 1199289 1199294) (-764 "NAGE02.spad" 1183659 1183667 1192989 1192994) (-763 "NAGE01.spad" 1179661 1179669 1183649 1183654) (-762 "NAGD03.spad" 1177665 1177673 1179651 1179656) (-761 "NAGD02.spad" 1170412 1170420 1177655 1177660) (-760 "NAGD01.spad" 1164705 1164713 1170402 1170407) (-759 "NAGC06.spad" 1160580 1160588 1164695 1164700) (-758 "NAGC05.spad" 1159081 1159089 1160570 1160575) (-757 "NAGC02.spad" 1158348 1158356 1159071 1159076) (-756 "NAALG.spad" 1157889 1157899 1158316 1158343) (-755 "NAALG.spad" 1157450 1157462 1157879 1157884) (-754 "MULTSQFR.spad" 1154408 1154425 1157440 1157445) (-753 "MULTFACT.spad" 1153791 1153808 1154398 1154403) (-752 "MTSCAT.spad" 1151885 1151906 1153689 1153786) (-751 "MTHING.spad" 1151544 1151554 1151875 1151880) (-750 "MSYSCMD.spad" 1150978 1150986 1151534 1151539) (-749 "MSET.spad" 1148936 1148946 1150684 1150723) (-748 "MSETAGG.spad" 1148781 1148791 1148904 1148931) (-747 "MRING.spad" 1145758 1145770 1148489 1148556) (-746 "MRF2.spad" 1145328 1145342 1145748 1145753) (-745 "MRATFAC.spad" 1144874 1144891 1145318 1145323) (-744 "MPRFF.spad" 1142914 1142933 1144864 1144869) (-743 "MPOLY.spad" 1140385 1140400 1140744 1140871) (-742 "MPCPF.spad" 1139649 1139668 1140375 1140380) (-741 "MPC3.spad" 1139466 1139506 1139639 1139644) (-740 "MPC2.spad" 1139112 1139145 1139456 1139461) (-739 "MONOTOOL.spad" 1137463 1137480 1139102 1139107) (-738 "MONOID.spad" 1136782 1136790 1137453 1137458) (-737 "MONOID.spad" 1136099 1136109 1136772 1136777) (-736 "MONOGEN.spad" 1134847 1134860 1135959 1136094) (-735 "MONOGEN.spad" 1133617 1133632 1134731 1134736) (-734 "MONADWU.spad" 1131647 1131655 1133607 1133612) (-733 "MONADWU.spad" 1129675 1129685 1131637 1131642) (-732 "MONAD.spad" 1128835 1128843 1129665 1129670) (-731 "MONAD.spad" 1127993 1128003 1128825 1128830) (-730 "MOEBIUS.spad" 1126729 1126743 1127973 1127988) (-729 "MODULE.spad" 1126599 1126609 1126697 1126724) (-728 "MODULE.spad" 1126489 1126501 1126589 1126594) (-727 "MODRING.spad" 1125824 1125863 1126469 1126484) (-726 "MODOP.spad" 1124489 1124501 1125646 1125713) (-725 "MODMONOM.spad" 1124220 1124238 1124479 1124484) (-724 "MODMON.spad" 1120922 1120938 1121641 1121794) (-723 "MODFIELD.spad" 1120284 1120323 1120824 1120917) (-722 "MMLFORM.spad" 1119144 1119152 1120274 1120279) (-721 "MMAP.spad" 1118886 1118920 1119134 1119139) (-720 "MLO.spad" 1117345 1117355 1118842 1118881) (-719 "MLIFT.spad" 1115957 1115974 1117335 1117340) (-718 "MKUCFUNC.spad" 1115492 1115510 1115947 1115952) (-717 "MKRECORD.spad" 1115096 1115109 1115482 1115487) (-716 "MKFUNC.spad" 1114503 1114513 1115086 1115091) (-715 "MKFLCFN.spad" 1113471 1113481 1114493 1114498) (-714 "MKBCFUNC.spad" 1112966 1112984 1113461 1113466) (-713 "MINT.spad" 1112405 1112413 1112868 1112961) (-712 "MHROWRED.spad" 1110916 1110926 1112395 1112400) (-711 "MFLOAT.spad" 1109436 1109444 1110806 1110911) (-710 "MFINFACT.spad" 1108836 1108858 1109426 1109431) (-709 "MESH.spad" 1106618 1106626 1108826 1108831) (-708 "MDDFACT.spad" 1104829 1104839 1106608 1106613) (-707 "MDAGG.spad" 1104120 1104130 1104809 1104824) (-706 "MCMPLX.spad" 1099551 1099559 1100165 1100366) (-705 "MCDEN.spad" 1098761 1098773 1099541 1099546) (-704 "MCALCFN.spad" 1095883 1095909 1098751 1098756) (-703 "MAYBE.spad" 1095167 1095178 1095873 1095878) (-702 "MATSTOR.spad" 1092475 1092485 1095157 1095162) (-701 "MATRIX.spad" 1091179 1091189 1091663 1091690) (-700 "MATLIN.spad" 1088523 1088547 1091063 1091068) (-699 "MATCAT.spad" 1080252 1080274 1088491 1088518) (-698 "MATCAT.spad" 1071853 1071877 1080094 1080099) (-697 "MATCAT2.spad" 1071135 1071183 1071843 1071848) (-696 "MAPPKG3.spad" 1070050 1070064 1071125 1071130) (-695 "MAPPKG2.spad" 1069388 1069400 1070040 1070045) (-694 "MAPPKG1.spad" 1068216 1068226 1069378 1069383) (-693 "MAPPAST.spad" 1067531 1067539 1068206 1068211) (-692 "MAPHACK3.spad" 1067343 1067357 1067521 1067526) (-691 "MAPHACK2.spad" 1067112 1067124 1067333 1067338) (-690 "MAPHACK1.spad" 1066756 1066766 1067102 1067107) (-689 "MAGMA.spad" 1064546 1064563 1066746 1066751) (-688 "MACROAST.spad" 1064125 1064133 1064536 1064541) (-687 "M3D.spad" 1061845 1061855 1063503 1063508) (-686 "LZSTAGG.spad" 1059083 1059093 1061835 1061840) (-685 "LZSTAGG.spad" 1056319 1056331 1059073 1059078) (-684 "LWORD.spad" 1053024 1053041 1056309 1056314) (-683 "LSTAST.spad" 1052808 1052816 1053014 1053019) (-682 "LSQM.spad" 1051001 1051015 1051395 1051446) (-681 "LSPP.spad" 1050536 1050553 1050991 1050996) (-680 "LSMP.spad" 1049386 1049414 1050526 1050531) (-679 "LSMP1.spad" 1047204 1047218 1049376 1049381) (-678 "LSAGG.spad" 1046873 1046883 1047172 1047199) (-677 "LSAGG.spad" 1046562 1046574 1046863 1046868) (-676 "LPOLY.spad" 1045516 1045535 1046418 1046487) (-675 "LPEFRAC.spad" 1044787 1044797 1045506 1045511) (-674 "LO.spad" 1044188 1044202 1044721 1044748) (-673 "LOGIC.spad" 1043790 1043798 1044178 1044183) (-672 "LOGIC.spad" 1043390 1043400 1043780 1043785) (-671 "LODOOPS.spad" 1042320 1042332 1043380 1043385) (-670 "LODO.spad" 1041704 1041720 1042000 1042039) (-669 "LODOF.spad" 1040750 1040767 1041661 1041666) (-668 "LODOCAT.spad" 1039416 1039426 1040706 1040745) (-667 "LODOCAT.spad" 1038080 1038092 1039372 1039377) (-666 "LODO2.spad" 1037353 1037365 1037760 1037799) (-665 "LODO1.spad" 1036753 1036763 1037033 1037072) (-664 "LODEEF.spad" 1035555 1035573 1036743 1036748) (-663 "LNAGG.spad" 1031702 1031712 1035545 1035550) (-662 "LNAGG.spad" 1027813 1027825 1031658 1031663) (-661 "LMOPS.spad" 1024581 1024598 1027803 1027808) (-660 "LMODULE.spad" 1024349 1024359 1024571 1024576) (-659 "LMDICT.spad" 1023636 1023646 1023900 1023927) (-658 "LLINSET.spad" 1023343 1023353 1023626 1023631) (-657 "LITERAL.spad" 1023249 1023260 1023333 1023338) (-656 "LIST.spad" 1020984 1020994 1022396 1022423) (-655 "LIST3.spad" 1020295 1020309 1020974 1020979) (-654 "LIST2.spad" 1018997 1019009 1020285 1020290) (-653 "LIST2MAP.spad" 1015900 1015912 1018987 1018992) (-652 "LINSET.spad" 1015679 1015689 1015890 1015895) (-651 "LINEXP.spad" 1014448 1014458 1015669 1015674) (-650 "LINDEP.spad" 1013257 1013269 1014360 1014365) (-649 "LIMITRF.spad" 1011185 1011195 1013247 1013252) (-648 "LIMITPS.spad" 1010088 1010101 1011175 1011180) (-647 "LIE.spad" 1008104 1008116 1009378 1009523) (-646 "LIECAT.spad" 1007580 1007590 1008030 1008099) (-645 "LIECAT.spad" 1007084 1007096 1007536 1007541) (-644 "LIB.spad" 1005297 1005305 1005743 1005758) (-643 "LGROBP.spad" 1002650 1002669 1005287 1005292) (-642 "LF.spad" 1001605 1001621 1002640 1002645) (-641 "LFCAT.spad" 1000664 1000672 1001595 1001600) (-640 "LEXTRIPK.spad" 996167 996182 1000654 1000659) (-639 "LEXP.spad" 994170 994197 996147 996162) (-638 "LETAST.spad" 993869 993877 994160 994165) (-637 "LEADCDET.spad" 992267 992284 993859 993864) (-636 "LAZM3PK.spad" 990971 990993 992257 992262) (-635 "LAUPOL.spad" 989571 989584 990471 990540) (-634 "LAPLACE.spad" 989154 989170 989561 989566) (-633 "LA.spad" 988594 988608 989076 989115) (-632 "LALG.spad" 988370 988380 988574 988589) (-631 "LALG.spad" 988154 988166 988360 988365) (-630 "KVTFROM.spad" 987889 987899 988144 988149) (-629 "KTVLOGIC.spad" 987401 987409 987879 987884) (-628 "KRCFROM.spad" 987139 987149 987391 987396) (-627 "KOVACIC.spad" 985862 985879 987129 987134) (-626 "KONVERT.spad" 985584 985594 985852 985857) (-625 "KOERCE.spad" 985321 985331 985574 985579) (-624 "KERNEL.spad" 983976 983986 985105 985110) (-623 "KERNEL2.spad" 983679 983691 983966 983971) (-622 "KDAGG.spad" 982788 982810 983659 983674) (-621 "KDAGG.spad" 981905 981929 982778 982783) (-620 "KAFILE.spad" 980868 980884 981103 981130) (-619 "JORDAN.spad" 978697 978709 980158 980303) (-618 "JOINAST.spad" 978391 978399 978687 978692) (-617 "JAVACODE.spad" 978257 978265 978381 978386) (-616 "IXAGG.spad" 976390 976414 978247 978252) (-615 "IXAGG.spad" 974378 974404 976237 976242) (-614 "IVECTOR.spad" 973148 973163 973303 973330) (-613 "ITUPLE.spad" 972309 972319 973138 973143) (-612 "ITRIGMNP.spad" 971148 971167 972299 972304) (-611 "ITFUN3.spad" 970654 970668 971138 971143) (-610 "ITFUN2.spad" 970398 970410 970644 970649) (-609 "ITFORM.spad" 969753 969761 970388 970393) (-608 "ITAYLOR.spad" 967747 967762 969617 969714) (-607 "ISUPS.spad" 960184 960199 966721 966818) (-606 "ISUMP.spad" 959685 959701 960174 960179) (-605 "ISTRING.spad" 958773 958786 958854 958881) (-604 "ISAST.spad" 958492 958500 958763 958768) (-603 "IRURPK.spad" 957209 957228 958482 958487) (-602 "IRSN.spad" 955181 955189 957199 957204) (-601 "IRRF2F.spad" 953666 953676 955137 955142) (-600 "IRREDFFX.spad" 953267 953278 953656 953661) (-599 "IROOT.spad" 951606 951616 953257 953262) (-598 "IR.spad" 949407 949421 951461 951488) (-597 "IRFORM.spad" 948731 948739 949397 949402) (-596 "IR2.spad" 947759 947775 948721 948726) (-595 "IR2F.spad" 946965 946981 947749 947754) (-594 "IPRNTPK.spad" 946725 946733 946955 946960) (-593 "IPF.spad" 946290 946302 946530 946623) (-592 "IPADIC.spad" 946051 946077 946216 946285) (-591 "IP4ADDR.spad" 945608 945616 946041 946046) (-590 "IOMODE.spad" 945130 945138 945598 945603) (-589 "IOBFILE.spad" 944491 944499 945120 945125) (-588 "IOBCON.spad" 944356 944364 944481 944486) (-587 "INVLAPLA.spad" 944005 944021 944346 944351) (-586 "INTTR.spad" 937387 937404 943995 944000) (-585 "INTTOOLS.spad" 935142 935158 936961 936966) (-584 "INTSLPE.spad" 934462 934470 935132 935137) (-583 "INTRVL.spad" 934028 934038 934376 934457) (-582 "INTRF.spad" 932452 932466 934018 934023) (-581 "INTRET.spad" 931884 931894 932442 932447) (-580 "INTRAT.spad" 930611 930628 931874 931879) (-579 "INTPM.spad" 928996 929012 930254 930259) (-578 "INTPAF.spad" 926860 926878 928928 928933) (-577 "INTPACK.spad" 917234 917242 926850 926855) (-576 "INT.spad" 916682 916690 917088 917229) (-575 "INTHERTR.spad" 915956 915973 916672 916677) (-574 "INTHERAL.spad" 915626 915650 915946 915951) (-573 "INTHEORY.spad" 912065 912073 915616 915621) (-572 "INTG0.spad" 905798 905816 911997 912002) (-571 "INTFTBL.spad" 899827 899835 905788 905793) (-570 "INTFACT.spad" 898886 898896 899817 899822) (-569 "INTEF.spad" 897271 897287 898876 898881) (-568 "INTDOM.spad" 895894 895902 897197 897266) (-567 "INTDOM.spad" 894579 894589 895884 895889) (-566 "INTCAT.spad" 892838 892848 894493 894574) (-565 "INTBIT.spad" 892345 892353 892828 892833) (-564 "INTALG.spad" 891533 891560 892335 892340) (-563 "INTAF.spad" 891033 891049 891523 891528) (-562 "INTABL.spad" 889551 889582 889714 889741) (-561 "INT8.spad" 889431 889439 889541 889546) (-560 "INT64.spad" 889310 889318 889421 889426) (-559 "INT32.spad" 889189 889197 889300 889305) (-558 "INT16.spad" 889068 889076 889179 889184) (-557 "INS.spad" 886571 886579 888970 889063) (-556 "INS.spad" 884160 884170 886561 886566) (-555 "INPSIGN.spad" 883608 883621 884150 884155) (-554 "INPRODPF.spad" 882704 882723 883598 883603) (-553 "INPRODFF.spad" 881792 881816 882694 882699) (-552 "INNMFACT.spad" 880767 880784 881782 881787) (-551 "INMODGCD.spad" 880255 880285 880757 880762) (-550 "INFSP.spad" 878552 878574 880245 880250) (-549 "INFPROD0.spad" 877632 877651 878542 878547) (-548 "INFORM.spad" 874831 874839 877622 877627) (-547 "INFORM1.spad" 874456 874466 874821 874826) (-546 "INFINITY.spad" 874008 874016 874446 874451) (-545 "INETCLTS.spad" 873985 873993 873998 874003) (-544 "INEP.spad" 872523 872545 873975 873980) (-543 "INDE.spad" 872252 872269 872513 872518) (-542 "INCRMAPS.spad" 871673 871683 872242 872247) (-541 "INBFILE.spad" 870745 870753 871663 871668) (-540 "INBFF.spad" 866539 866550 870735 870740) (-539 "INBCON.spad" 864829 864837 866529 866534) (-538 "INBCON.spad" 863117 863127 864819 864824) (-537 "INAST.spad" 862778 862786 863107 863112) (-536 "IMPTAST.spad" 862486 862494 862768 862773) (-535 "IMATRIX.spad" 861431 861457 861943 861970) (-534 "IMATQF.spad" 860525 860569 861387 861392) (-533 "IMATLIN.spad" 859130 859154 860481 860486) (-532 "ILIST.spad" 857788 857803 858313 858340) (-531 "IIARRAY2.spad" 857176 857214 857395 857422) (-530 "IFF.spad" 856586 856602 856857 856950) (-529 "IFAST.spad" 856200 856208 856576 856581) (-528 "IFARRAY.spad" 853693 853708 855383 855410) (-527 "IFAMON.spad" 853555 853572 853649 853654) (-526 "IEVALAB.spad" 852960 852972 853545 853550) (-525 "IEVALAB.spad" 852363 852377 852950 852955) (-524 "IDPO.spad" 852161 852173 852353 852358) (-523 "IDPOAMS.spad" 851917 851929 852151 852156) (-522 "IDPOAM.spad" 851637 851649 851907 851912) (-521 "IDPC.spad" 850575 850587 851627 851632) (-520 "IDPAM.spad" 850320 850332 850565 850570) (-519 "IDPAG.spad" 850067 850079 850310 850315) (-518 "IDENT.spad" 849717 849725 850057 850062) (-517 "IDECOMP.spad" 846956 846974 849707 849712) (-516 "IDEAL.spad" 841905 841944 846891 846896) (-515 "ICDEN.spad" 841094 841110 841895 841900) (-514 "ICARD.spad" 840285 840293 841084 841089) (-513 "IBPTOOLS.spad" 838892 838909 840275 840280) (-512 "IBITS.spad" 838095 838108 838528 838555) (-511 "IBATOOL.spad" 835072 835091 838085 838090) (-510 "IBACHIN.spad" 833579 833594 835062 835067) (-509 "IARRAY2.spad" 832567 832593 833186 833213) (-508 "IARRAY1.spad" 831612 831627 831750 831777) (-507 "IAN.spad" 829835 829843 831428 831521) (-506 "IALGFACT.spad" 829438 829471 829825 829830) (-505 "HYPCAT.spad" 828862 828870 829428 829433) (-504 "HYPCAT.spad" 828284 828294 828852 828857) (-503 "HOSTNAME.spad" 828092 828100 828274 828279) (-502 "HOMOTOP.spad" 827835 827845 828082 828087) (-501 "HOAGG.spad" 825117 825127 827825 827830) (-500 "HOAGG.spad" 822174 822186 824884 824889) (-499 "HEXADEC.spad" 820179 820187 820544 820637) (-498 "HEUGCD.spad" 819214 819225 820169 820174) (-497 "HELLFDIV.spad" 818804 818828 819204 819209) (-496 "HEAP.spad" 818196 818206 818411 818438) (-495 "HEADAST.spad" 817729 817737 818186 818191) (-494 "HDP.spad" 806143 806159 806520 806619) (-493 "HDMP.spad" 803357 803372 803973 804100) (-492 "HB.spad" 801608 801616 803347 803352) (-491 "HASHTBL.spad" 800078 800109 800289 800316) (-490 "HASAST.spad" 799794 799802 800068 800073) (-489 "HACKPI.spad" 799285 799293 799696 799789) (-488 "GTSET.spad" 798224 798240 798931 798958) (-487 "GSTBL.spad" 796743 796778 796917 796932) (-486 "GSERIES.spad" 794056 794083 794875 795024) (-485 "GROUP.spad" 793329 793337 794036 794051) (-484 "GROUP.spad" 792610 792620 793319 793324) (-483 "GROEBSOL.spad" 791104 791125 792600 792605) (-482 "GRMOD.spad" 789675 789687 791094 791099) (-481 "GRMOD.spad" 788244 788258 789665 789670) (-480 "GRIMAGE.spad" 781133 781141 788234 788239) (-479 "GRDEF.spad" 779512 779520 781123 781128) (-478 "GRAY.spad" 777975 777983 779502 779507) (-477 "GRALG.spad" 777052 777064 777965 777970) (-476 "GRALG.spad" 776127 776141 777042 777047) (-475 "GPOLSET.spad" 775581 775604 775809 775836) (-474 "GOSPER.spad" 774850 774868 775571 775576) (-473 "GMODPOL.spad" 773998 774025 774818 774845) (-472 "GHENSEL.spad" 773081 773095 773988 773993) (-471 "GENUPS.spad" 769374 769387 773071 773076) (-470 "GENUFACT.spad" 768951 768961 769364 769369) (-469 "GENPGCD.spad" 768537 768554 768941 768946) (-468 "GENMFACT.spad" 767989 768008 768527 768532) (-467 "GENEEZ.spad" 765940 765953 767979 767984) (-466 "GDMP.spad" 762996 763013 763770 763897) (-465 "GCNAALG.spad" 756919 756946 762790 762857) (-464 "GCDDOM.spad" 756095 756103 756845 756914) (-463 "GCDDOM.spad" 755333 755343 756085 756090) (-462 "GB.spad" 752859 752897 755289 755294) (-461 "GBINTERN.spad" 748879 748917 752849 752854) (-460 "GBF.spad" 744646 744684 748869 748874) (-459 "GBEUCLID.spad" 742528 742566 744636 744641) (-458 "GAUSSFAC.spad" 741841 741849 742518 742523) (-457 "GALUTIL.spad" 740167 740177 741797 741802) (-456 "GALPOLYU.spad" 738621 738634 740157 740162) (-455 "GALFACTU.spad" 736794 736813 738611 738616) (-454 "GALFACT.spad" 726983 726994 736784 736789) (-453 "FVFUN.spad" 724006 724014 726973 726978) (-452 "FVC.spad" 723058 723066 723996 724001) (-451 "FUNDESC.spad" 722736 722744 723048 723053) (-450 "FUNCTION.spad" 722585 722597 722726 722731) (-449 "FT.spad" 720882 720890 722575 722580) (-448 "FTEM.spad" 720047 720055 720872 720877) (-447 "FSUPFACT.spad" 718947 718966 719983 719988) (-446 "FST.spad" 717033 717041 718937 718942) (-445 "FSRED.spad" 716513 716529 717023 717028) (-444 "FSPRMELT.spad" 715395 715411 716470 716475) (-443 "FSPECF.spad" 713486 713502 715385 715390) (-442 "FS.spad" 707754 707764 713261 713481) (-441 "FS.spad" 701800 701812 707309 707314) (-440 "FSINT.spad" 701460 701476 701790 701795) (-439 "FSERIES.spad" 700651 700663 701280 701379) (-438 "FSCINT.spad" 699968 699984 700641 700646) (-437 "FSAGG.spad" 699085 699095 699924 699963) (-436 "FSAGG.spad" 698164 698176 699005 699010) (-435 "FSAGG2.spad" 696907 696923 698154 698159) (-434 "FS2UPS.spad" 691398 691432 696897 696902) (-433 "FS2.spad" 691045 691061 691388 691393) (-432 "FS2EXPXP.spad" 690170 690193 691035 691040) (-431 "FRUTIL.spad" 689124 689134 690160 690165) (-430 "FR.spad" 682747 682757 688055 688124) (-429 "FRNAALG.spad" 678016 678026 682689 682742) (-428 "FRNAALG.spad" 673297 673309 677972 677977) (-427 "FRNAAF2.spad" 672753 672771 673287 673292) (-426 "FRMOD.spad" 672163 672193 672684 672689) (-425 "FRIDEAL.spad" 671388 671409 672143 672158) (-424 "FRIDEAL2.spad" 670992 671024 671378 671383) (-423 "FRETRCT.spad" 670503 670513 670982 670987) (-422 "FRETRCT.spad" 669880 669892 670361 670366) (-421 "FRAMALG.spad" 668228 668241 669836 669875) (-420 "FRAMALG.spad" 666608 666623 668218 668223) (-419 "FRAC.spad" 663614 663624 664017 664190) (-418 "FRAC2.spad" 663219 663231 663604 663609) (-417 "FR2.spad" 662555 662567 663209 663214) (-416 "FPS.spad" 659370 659378 662445 662550) (-415 "FPS.spad" 656213 656223 659290 659295) (-414 "FPC.spad" 655259 655267 656115 656208) (-413 "FPC.spad" 654391 654401 655249 655254) (-412 "FPATMAB.spad" 654153 654163 654381 654386) (-411 "FPARFRAC.spad" 653003 653020 654143 654148) (-410 "FORTRAN.spad" 651509 651552 652993 652998) (-409 "FORT.spad" 650458 650466 651499 651504) (-408 "FORTFN.spad" 647628 647636 650448 650453) (-407 "FORTCAT.spad" 647312 647320 647618 647623) (-406 "FORMULA.spad" 644786 644794 647302 647307) (-405 "FORMULA1.spad" 644265 644275 644776 644781) (-404 "FORDER.spad" 643956 643980 644255 644260) (-403 "FOP.spad" 643157 643165 643946 643951) (-402 "FNLA.spad" 642581 642603 643125 643152) (-401 "FNCAT.spad" 641176 641184 642571 642576) (-400 "FNAME.spad" 641068 641076 641166 641171) (-399 "FMTC.spad" 640866 640874 640994 641063) (-398 "FMONOID.spad" 640531 640541 640822 640827) (-397 "FMONCAT.spad" 637684 637694 640521 640526) (-396 "FM.spad" 637379 637391 637618 637645) (-395 "FMFUN.spad" 634409 634417 637369 637374) (-394 "FMC.spad" 633461 633469 634399 634404) (-393 "FMCAT.spad" 631129 631147 633429 633456) (-392 "FM1.spad" 630486 630498 631063 631090) (-391 "FLOATRP.spad" 628221 628235 630476 630481) (-390 "FLOAT.spad" 621535 621543 628087 628216) (-389 "FLOATCP.spad" 618966 618980 621525 621530) (-388 "FLINEXP.spad" 618688 618698 618956 618961) (-387 "FLINEXP.spad" 618354 618366 618624 618629) (-386 "FLASORT.spad" 617680 617692 618344 618349) (-385 "FLALG.spad" 615326 615345 617606 617675) (-384 "FLAGG.spad" 612368 612378 615306 615321) (-383 "FLAGG.spad" 609311 609323 612251 612256) (-382 "FLAGG2.spad" 608036 608052 609301 609306) (-381 "FINRALG.spad" 606097 606110 607992 608031) (-380 "FINRALG.spad" 604084 604099 605981 605986) (-379 "FINITE.spad" 603236 603244 604074 604079) (-378 "FINAALG.spad" 592357 592367 603178 603231) (-377 "FINAALG.spad" 581490 581502 592313 592318) (-376 "FILE.spad" 581073 581083 581480 581485) (-375 "FILECAT.spad" 579599 579616 581063 581068) (-374 "FIELD.spad" 579005 579013 579501 579594) (-373 "FIELD.spad" 578497 578507 578995 579000) (-372 "FGROUP.spad" 577144 577154 578477 578492) (-371 "FGLMICPK.spad" 575931 575946 577134 577139) (-370 "FFX.spad" 575306 575321 575647 575740) (-369 "FFSLPE.spad" 574809 574830 575296 575301) (-368 "FFPOLY.spad" 566071 566082 574799 574804) (-367 "FFPOLY2.spad" 565131 565148 566061 566066) (-366 "FFP.spad" 564528 564548 564847 564940) (-365 "FF.spad" 563976 563992 564209 564302) (-364 "FFNBX.spad" 562488 562508 563692 563785) (-363 "FFNBP.spad" 561001 561018 562204 562297) (-362 "FFNB.spad" 559466 559487 560682 560775) (-361 "FFINTBAS.spad" 556980 556999 559456 559461) (-360 "FFIELDC.spad" 554557 554565 556882 556975) (-359 "FFIELDC.spad" 552220 552230 554547 554552) (-358 "FFHOM.spad" 550968 550985 552210 552215) (-357 "FFF.spad" 548403 548414 550958 550963) (-356 "FFCGX.spad" 547250 547270 548119 548212) (-355 "FFCGP.spad" 546139 546159 546966 547059) (-354 "FFCG.spad" 544931 544952 545820 545913) (-353 "FFCAT.spad" 538104 538126 544770 544926) (-352 "FFCAT.spad" 531356 531380 538024 538029) (-351 "FFCAT2.spad" 531103 531143 531346 531351) (-350 "FEXPR.spad" 522820 522866 530859 530898) (-349 "FEVALAB.spad" 522528 522538 522810 522815) (-348 "FEVALAB.spad" 522021 522033 522305 522310) (-347 "FDIV.spad" 521463 521487 522011 522016) (-346 "FDIVCAT.spad" 519527 519551 521453 521458) (-345 "FDIVCAT.spad" 517589 517615 519517 519522) (-344 "FDIV2.spad" 517245 517285 517579 517584) (-343 "FCTRDATA.spad" 516253 516261 517235 517240) (-342 "FCPAK1.spad" 514820 514828 516243 516248) (-341 "FCOMP.spad" 514199 514209 514810 514815) (-340 "FC.spad" 504206 504214 514189 514194) (-339 "FAXF.spad" 497177 497191 504108 504201) (-338 "FAXF.spad" 490200 490216 497133 497138) (-337 "FARRAY.spad" 488350 488360 489383 489410) (-336 "FAMR.spad" 486486 486498 488248 488345) (-335 "FAMR.spad" 484606 484620 486370 486375) (-334 "FAMONOID.spad" 484274 484284 484560 484565) (-333 "FAMONC.spad" 482570 482582 484264 484269) (-332 "FAGROUP.spad" 482194 482204 482466 482493) (-331 "FACUTIL.spad" 480398 480415 482184 482189) (-330 "FACTFUNC.spad" 479592 479602 480388 480393) (-329 "EXPUPXS.spad" 476425 476448 477724 477873) (-328 "EXPRTUBE.spad" 473713 473721 476415 476420) (-327 "EXPRODE.spad" 470873 470889 473703 473708) (-326 "EXPR.spad" 466048 466058 466762 467057) (-325 "EXPR2UPS.spad" 462170 462183 466038 466043) (-324 "EXPR2.spad" 461875 461887 462160 462165) (-323 "EXPEXPAN.spad" 458676 458701 459308 459401) (-322 "EXIT.spad" 458347 458355 458666 458671) (-321 "EXITAST.spad" 458083 458091 458337 458342) (-320 "EVALCYC.spad" 457543 457557 458073 458078) (-319 "EVALAB.spad" 457115 457125 457533 457538) (-318 "EVALAB.spad" 456685 456697 457105 457110) (-317 "EUCDOM.spad" 454259 454267 456611 456680) (-316 "EUCDOM.spad" 451895 451905 454249 454254) (-315 "ESTOOLS.spad" 443741 443749 451885 451890) (-314 "ESTOOLS2.spad" 443344 443358 443731 443736) (-313 "ESTOOLS1.spad" 443029 443040 443334 443339) (-312 "ES.spad" 435844 435852 443019 443024) (-311 "ES.spad" 428565 428575 435742 435747) (-310 "ESCONT.spad" 425358 425366 428555 428560) (-309 "ESCONT1.spad" 425107 425119 425348 425353) (-308 "ES2.spad" 424612 424628 425097 425102) (-307 "ES1.spad" 424182 424198 424602 424607) (-306 "ERROR.spad" 421509 421517 424172 424177) (-305 "EQTBL.spad" 419981 420003 420190 420217) (-304 "EQ.spad" 414786 414796 417573 417685) (-303 "EQ2.spad" 414504 414516 414776 414781) (-302 "EP.spad" 410830 410840 414494 414499) (-301 "ENV.spad" 409508 409516 410820 410825) (-300 "ENTIRER.spad" 409176 409184 409452 409503) (-299 "EMR.spad" 408464 408505 409102 409171) (-298 "ELTAGG.spad" 406718 406737 408454 408459) (-297 "ELTAGG.spad" 404936 404957 406674 406679) (-296 "ELTAB.spad" 404411 404424 404926 404931) (-295 "ELFUTS.spad" 403798 403817 404401 404406) (-294 "ELEMFUN.spad" 403487 403495 403788 403793) (-293 "ELEMFUN.spad" 403174 403184 403477 403482) (-292 "ELAGG.spad" 401145 401155 403154 403169) (-291 "ELAGG.spad" 399053 399065 401064 401069) (-290 "ELABOR.spad" 398399 398407 399043 399048) (-289 "ELABEXPR.spad" 397331 397339 398389 398394) (-288 "EFUPXS.spad" 394107 394137 397287 397292) (-287 "EFULS.spad" 390943 390966 394063 394068) (-286 "EFSTRUC.spad" 388958 388974 390933 390938) (-285 "EF.spad" 383734 383750 388948 388953) (-284 "EAB.spad" 382010 382018 383724 383729) (-283 "E04UCFA.spad" 381546 381554 382000 382005) (-282 "E04NAFA.spad" 381123 381131 381536 381541) (-281 "E04MBFA.spad" 380703 380711 381113 381118) (-280 "E04JAFA.spad" 380239 380247 380693 380698) (-279 "E04GCFA.spad" 379775 379783 380229 380234) (-278 "E04FDFA.spad" 379311 379319 379765 379770) (-277 "E04DGFA.spad" 378847 378855 379301 379306) (-276 "E04AGNT.spad" 374697 374705 378837 378842) (-275 "DVARCAT.spad" 371587 371597 374687 374692) (-274 "DVARCAT.spad" 368475 368487 371577 371582) (-273 "DSMP.spad" 365849 365863 366154 366281) (-272 "DSEXT.spad" 365151 365161 365839 365844) (-271 "DSEXT.spad" 364360 364372 365050 365055) (-270 "DROPT.spad" 358319 358327 364350 364355) (-269 "DROPT1.spad" 357984 357994 358309 358314) (-268 "DROPT0.spad" 352841 352849 357974 357979) (-267 "DRAWPT.spad" 351014 351022 352831 352836) (-266 "DRAW.spad" 343890 343903 351004 351009) (-265 "DRAWHACK.spad" 343198 343208 343880 343885) (-264 "DRAWCX.spad" 340668 340676 343188 343193) (-263 "DRAWCURV.spad" 340215 340230 340658 340663) (-262 "DRAWCFUN.spad" 329747 329755 340205 340210) (-261 "DQAGG.spad" 327925 327935 329715 329742) (-260 "DPOLCAT.spad" 323274 323290 327793 327920) (-259 "DPOLCAT.spad" 318709 318727 323230 323235) (-258 "DPMO.spad" 310505 310521 310643 310856) (-257 "DPMM.spad" 302314 302332 302439 302652) (-256 "DOMTMPLT.spad" 302085 302093 302304 302309) (-255 "DOMCTOR.spad" 301840 301848 302075 302080) (-254 "DOMAIN.spad" 300927 300935 301830 301835) (-253 "DMP.spad" 298187 298202 298757 298884) (-252 "DMEXT.spad" 298054 298064 298155 298182) (-251 "DLP.spad" 297406 297416 298044 298049) (-250 "DLIST.spad" 295985 295995 296589 296616) (-249 "DLAGG.spad" 294402 294412 295975 295980) (-248 "DIVRING.spad" 293944 293952 294346 294397) (-247 "DIVRING.spad" 293530 293540 293934 293939) (-246 "DISPLAY.spad" 291720 291728 293520 293525) (-245 "DIRPROD.spad" 279871 279887 280511 280610) (-244 "DIRPROD2.spad" 278689 278707 279861 279866) (-243 "DIRPCAT.spad" 277882 277898 278585 278684) (-242 "DIRPCAT.spad" 276702 276720 277407 277412) (-241 "DIOSP.spad" 275527 275535 276692 276697) (-240 "DIOPS.spad" 274523 274533 275507 275522) (-239 "DIOPS.spad" 273493 273505 274479 274484) (-238 "DIFRING.spad" 273331 273339 273473 273488) (-237 "DIFFSPC.spad" 272910 272918 273321 273326) (-236 "DIFFSPC.spad" 272487 272497 272900 272905) (-235 "DIFFMOD.spad" 271976 271986 272455 272482) (-234 "DIFFDOM.spad" 271141 271152 271966 271971) (-233 "DIFFDOM.spad" 270304 270317 271131 271136) (-232 "DIFEXT.spad" 270123 270133 270284 270299) (-231 "DIAGG.spad" 269753 269763 270103 270118) (-230 "DIAGG.spad" 269391 269403 269743 269748) (-229 "DHMATRIX.spad" 267703 267713 268848 268875) (-228 "DFSFUN.spad" 261343 261351 267693 267698) (-227 "DFLOAT.spad" 258074 258082 261233 261338) (-226 "DFINTTLS.spad" 256305 256321 258064 258069) (-225 "DERHAM.spad" 254219 254251 256285 256300) (-224 "DEQUEUE.spad" 253543 253553 253826 253853) (-223 "DEGRED.spad" 253160 253174 253533 253538) (-222 "DEFINTRF.spad" 250697 250707 253150 253155) (-221 "DEFINTEF.spad" 249207 249223 250687 250692) (-220 "DEFAST.spad" 248575 248583 249197 249202) (-219 "DECIMAL.spad" 246584 246592 246945 247038) (-218 "DDFACT.spad" 244397 244414 246574 246579) (-217 "DBLRESP.spad" 243997 244021 244387 244392) (-216 "DBASE.spad" 242661 242671 243987 243992) (-215 "DATAARY.spad" 242123 242136 242651 242656) (-214 "D03FAFA.spad" 241951 241959 242113 242118) (-213 "D03EEFA.spad" 241771 241779 241941 241946) (-212 "D03AGNT.spad" 240857 240865 241761 241766) (-211 "D02EJFA.spad" 240319 240327 240847 240852) (-210 "D02CJFA.spad" 239797 239805 240309 240314) (-209 "D02BHFA.spad" 239287 239295 239787 239792) (-208 "D02BBFA.spad" 238777 238785 239277 239282) (-207 "D02AGNT.spad" 233591 233599 238767 238772) (-206 "D01WGTS.spad" 231910 231918 233581 233586) (-205 "D01TRNS.spad" 231887 231895 231900 231905) (-204 "D01GBFA.spad" 231409 231417 231877 231882) (-203 "D01FCFA.spad" 230931 230939 231399 231404) (-202 "D01ASFA.spad" 230399 230407 230921 230926) (-201 "D01AQFA.spad" 229845 229853 230389 230394) (-200 "D01APFA.spad" 229269 229277 229835 229840) (-199 "D01ANFA.spad" 228763 228771 229259 229264) (-198 "D01AMFA.spad" 228273 228281 228753 228758) (-197 "D01ALFA.spad" 227813 227821 228263 228268) (-196 "D01AKFA.spad" 227339 227347 227803 227808) (-195 "D01AJFA.spad" 226862 226870 227329 227334) (-194 "D01AGNT.spad" 222929 222937 226852 226857) (-193 "CYCLOTOM.spad" 222435 222443 222919 222924) (-192 "CYCLES.spad" 219227 219235 222425 222430) (-191 "CVMP.spad" 218644 218654 219217 219222) (-190 "CTRIGMNP.spad" 217144 217160 218634 218639) (-189 "CTOR.spad" 216835 216843 217134 217139) (-188 "CTORKIND.spad" 216438 216446 216825 216830) (-187 "CTORCAT.spad" 215687 215695 216428 216433) (-186 "CTORCAT.spad" 214934 214944 215677 215682) (-185 "CTORCALL.spad" 214523 214533 214924 214929) (-184 "CSTTOOLS.spad" 213768 213781 214513 214518) (-183 "CRFP.spad" 207492 207505 213758 213763) (-182 "CRCEAST.spad" 207212 207220 207482 207487) (-181 "CRAPACK.spad" 206263 206273 207202 207207) (-180 "CPMATCH.spad" 205767 205782 206188 206193) (-179 "CPIMA.spad" 205472 205491 205757 205762) (-178 "COORDSYS.spad" 200481 200491 205462 205467) (-177 "CONTOUR.spad" 199892 199900 200471 200476) (-176 "CONTFRAC.spad" 195642 195652 199794 199887) (-175 "CONDUIT.spad" 195400 195408 195632 195637) (-174 "COMRING.spad" 195074 195082 195338 195395) (-173 "COMPPROP.spad" 194592 194600 195064 195069) (-172 "COMPLPAT.spad" 194359 194374 194582 194587) (-171 "COMPLEX.spad" 189736 189746 189980 190241) (-170 "COMPLEX2.spad" 189451 189463 189726 189731) (-169 "COMPILER.spad" 189000 189008 189441 189446) (-168 "COMPFACT.spad" 188602 188616 188990 188995) (-167 "COMPCAT.spad" 186674 186684 188336 188597) (-166 "COMPCAT.spad" 184474 184486 186138 186143) (-165 "COMMUPC.spad" 184222 184240 184464 184469) (-164 "COMMONOP.spad" 183755 183763 184212 184217) (-163 "COMM.spad" 183566 183574 183745 183750) (-162 "COMMAAST.spad" 183329 183337 183556 183561) (-161 "COMBOPC.spad" 182244 182252 183319 183324) (-160 "COMBINAT.spad" 181011 181021 182234 182239) (-159 "COMBF.spad" 178393 178409 181001 181006) (-158 "COLOR.spad" 177230 177238 178383 178388) (-157 "COLONAST.spad" 176896 176904 177220 177225) (-156 "CMPLXRT.spad" 176607 176624 176886 176891) (-155 "CLLCTAST.spad" 176269 176277 176597 176602) (-154 "CLIP.spad" 172377 172385 176259 176264) (-153 "CLIF.spad" 171032 171048 172333 172372) (-152 "CLAGG.spad" 167537 167547 171022 171027) (-151 "CLAGG.spad" 163913 163925 167400 167405) (-150 "CINTSLPE.spad" 163244 163257 163903 163908) (-149 "CHVAR.spad" 161382 161404 163234 163239) (-148 "CHARZ.spad" 161297 161305 161362 161377) (-147 "CHARPOL.spad" 160807 160817 161287 161292) (-146 "CHARNZ.spad" 160560 160568 160787 160802) (-145 "CHAR.spad" 158434 158442 160550 160555) (-144 "CFCAT.spad" 157762 157770 158424 158429) (-143 "CDEN.spad" 156958 156972 157752 157757) (-142 "CCLASS.spad" 155107 155115 156369 156408) (-141 "CATEGORY.spad" 154149 154157 155097 155102) (-140 "CATCTOR.spad" 154040 154048 154139 154144) (-139 "CATAST.spad" 153658 153666 154030 154035) (-138 "CASEAST.spad" 153372 153380 153648 153653) (-137 "CARTEN.spad" 148739 148763 153362 153367) (-136 "CARTEN2.spad" 148129 148156 148729 148734) (-135 "CARD.spad" 145424 145432 148103 148124) (-134 "CAPSLAST.spad" 145198 145206 145414 145419) (-133 "CACHSET.spad" 144822 144830 145188 145193) (-132 "CABMON.spad" 144377 144385 144812 144817) (-131 "BYTEORD.spad" 144052 144060 144367 144372) (-130 "BYTE.spad" 143479 143487 144042 144047) (-129 "BYTEBUF.spad" 141338 141346 142648 142675) (-128 "BTREE.spad" 140411 140421 140945 140972) (-127 "BTOURN.spad" 139416 139426 140018 140045) (-126 "BTCAT.spad" 138808 138818 139384 139411) (-125 "BTCAT.spad" 138220 138232 138798 138803) (-124 "BTAGG.spad" 137686 137694 138188 138215) (-123 "BTAGG.spad" 137172 137182 137676 137681) (-122 "BSTREE.spad" 135913 135923 136779 136806) (-121 "BRILL.spad" 134110 134121 135903 135908) (-120 "BRAGG.spad" 133050 133060 134100 134105) (-119 "BRAGG.spad" 131954 131966 133006 133011) (-118 "BPADICRT.spad" 129828 129840 130083 130176) (-117 "BPADIC.spad" 129492 129504 129754 129823) (-116 "BOUNDZRO.spad" 129148 129165 129482 129487) (-115 "BOP.spad" 124330 124338 129138 129143) (-114 "BOP1.spad" 121796 121806 124320 124325) (-113 "BOOLE.spad" 121446 121454 121786 121791) (-112 "BOOLEAN.spad" 120884 120892 121436 121441) (-111 "BMODULE.spad" 120596 120608 120852 120879) (-110 "BITS.spad" 120017 120025 120232 120259) (-109 "BINDING.spad" 119430 119438 120007 120012) (-108 "BINARY.spad" 117444 117452 117800 117893) (-107 "BGAGG.spad" 116649 116659 117424 117439) (-106 "BGAGG.spad" 115862 115874 116639 116644) (-105 "BFUNCT.spad" 115426 115434 115842 115857) (-104 "BEZOUT.spad" 114566 114593 115376 115381) (-103 "BBTREE.spad" 111411 111421 114173 114200) (-102 "BASTYPE.spad" 111083 111091 111401 111406) (-101 "BASTYPE.spad" 110753 110763 111073 111078) (-100 "BALFACT.spad" 110212 110225 110743 110748) (-99 "AUTOMOR.spad" 109663 109672 110192 110207) (-98 "ATTREG.spad" 106386 106393 109415 109658) (-97 "ATTRBUT.spad" 102409 102416 106366 106381) (-96 "ATTRAST.spad" 102126 102133 102399 102404) (-95 "ATRIG.spad" 101596 101603 102116 102121) (-94 "ATRIG.spad" 101064 101073 101586 101591) (-93 "ASTCAT.spad" 100968 100975 101054 101059) (-92 "ASTCAT.spad" 100870 100879 100958 100963) (-91 "ASTACK.spad" 100209 100218 100477 100504) (-90 "ASSOCEQ.spad" 99035 99046 100165 100170) (-89 "ASP9.spad" 98116 98129 99025 99030) (-88 "ASP8.spad" 97159 97172 98106 98111) (-87 "ASP80.spad" 96481 96494 97149 97154) (-86 "ASP7.spad" 95641 95654 96471 96476) (-85 "ASP78.spad" 95092 95105 95631 95636) (-84 "ASP77.spad" 94461 94474 95082 95087) (-83 "ASP74.spad" 93553 93566 94451 94456) (-82 "ASP73.spad" 92824 92837 93543 93548) (-81 "ASP6.spad" 91691 91704 92814 92819) (-80 "ASP55.spad" 90200 90213 91681 91686) (-79 "ASP50.spad" 88017 88030 90190 90195) (-78 "ASP4.spad" 87312 87325 88007 88012) (-77 "ASP49.spad" 86311 86324 87302 87307) (-76 "ASP42.spad" 84718 84757 86301 86306) (-75 "ASP41.spad" 83297 83336 84708 84713) (-74 "ASP35.spad" 82285 82298 83287 83292) (-73 "ASP34.spad" 81586 81599 82275 82280) (-72 "ASP33.spad" 81146 81159 81576 81581) (-71 "ASP31.spad" 80286 80299 81136 81141) (-70 "ASP30.spad" 79178 79191 80276 80281) (-69 "ASP29.spad" 78644 78657 79168 79173) (-68 "ASP28.spad" 69917 69930 78634 78639) (-67 "ASP27.spad" 68814 68827 69907 69912) (-66 "ASP24.spad" 67901 67914 68804 68809) (-65 "ASP20.spad" 67365 67378 67891 67896) (-64 "ASP1.spad" 66746 66759 67355 67360) (-63 "ASP19.spad" 61432 61445 66736 66741) (-62 "ASP12.spad" 60846 60859 61422 61427) (-61 "ASP10.spad" 60117 60130 60836 60841) (-60 "ARRAY2.spad" 59477 59486 59724 59751) (-59 "ARRAY1.spad" 58314 58323 58660 58687) (-58 "ARRAY12.spad" 57027 57038 58304 58309) (-57 "ARR2CAT.spad" 52801 52822 56995 57022) (-56 "ARR2CAT.spad" 48595 48618 52791 52796) (-55 "ARITY.spad" 47967 47974 48585 48590) (-54 "APPRULE.spad" 47227 47249 47957 47962) (-53 "APPLYORE.spad" 46846 46859 47217 47222) (-52 "ANY.spad" 45705 45712 46836 46841) (-51 "ANY1.spad" 44776 44785 45695 45700) (-50 "ANTISYM.spad" 43221 43237 44756 44771) (-49 "ANON.spad" 42914 42921 43211 43216) (-48 "AN.spad" 41223 41230 42730 42823) (-47 "AMR.spad" 39408 39419 41121 41218) (-46 "AMR.spad" 37430 37443 39145 39150) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file