aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase1284
1 files changed, 642 insertions, 642 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 69102a81..4f0796f1 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2300614 . 3499555790)
+(2300680 . 3499558253)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4504 . T) (-4502 . T) (-4501 . T) ((-4509 "*") . T) (-4500 . T) (-4505 . T) (-4499 . T))
+((-4505 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4501 . T) (-4506 . T) (-4500 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -2173)
+(-32 R -2174)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)))
+((|HasAttribute| |#1| (QUOTE -4508)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4507 . T) (-4508 . T))
+((-4508 . T) (-4509 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,17 +82,17 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -2173 UP UPUP -2217)
+(-40 -2174 UP UPUP -1476)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4500 |has| (-421 |#2|) (-376)) (-4505 |has| (-421 |#2|) (-376)) (-4499 |has| (-421 |#2|) (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-362))) (-2225 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2225 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2225 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2225 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-362))))) (-2225 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-578)))) (-2225 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))))
-(-41 R -2173)
+((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-362))) (-2226 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2226 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2226 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2226 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-362))))) (-2226 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-578)))) (-2226 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))))
+(-41 R -2174)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -444) (|devaluate| |#1|)))))
@@ -106,23 +106,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-319))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4504 |has| |#1| (-570)) (-4502 . T) (-4501 . T))
+((-4505 |has| |#1| (-570)) (-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4507 . T) (-4508 . T))
-((-2225 (-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|))))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-871))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|)))))))
+((-4508 . T) (-4509 . T))
+((-2226 (-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|))))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-871))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
@@ -130,7 +130,7 @@ NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -2173)
+(-54 |Base| R -2174)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4507 . T) (-4508 . T))
+((-4508 . T) (-4509 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-61 -2179)
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-61 -2180)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -2179)
+(-62 -2180)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -2179)
+(-63 -2180)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -2179)
+(-64 -2180)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -2179)
+(-65 -2180)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -2179)
+(-66 -2180)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -2179)
+(-67 -2180)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -2179)
+(-68 -2180)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -2179)
+(-69 -2180)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -2179)
+(-70 -2180)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -2179)
+(-71 -2180)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -2179)
+(-72 -2180)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -2179)
+(-73 -2180)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -2179)
+(-74 -2180)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -2179)
+(-77 -2180)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -2179)
+(-78 -2180)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -2179)
+(-79 -2180)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -2179)
+(-80 -2180)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -2179)
+(-81 -2180)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -2179)
+(-82 -2180)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -2179)
+(-83 -2180)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -2179)
+(-84 -2180)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -2179)
+(-85 -2180)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -2179)
+(-86 -2180)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -2179)
+(-87 -2180)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -2179)
+(-88 -2180)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -2179)
+(-89 -2180)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-376))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4507 . T))
+((-4508 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4507 . T) ((-4509 "*") . T) (-4508 . T) (-4504 . T) (-4502 . T) (-4501 . T) (-4500 . T) (-4505 . T) (-4499 . T) (-4498 . T) (-4497 . T) (-4496 . T) (-4495 . T) (-4503 . T) (-4506 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4494 . T))
+((-4508 . T) ((-4510 "*") . T) (-4509 . T) (-4505 . T) (-4503 . T) (-4502 . T) (-4501 . T) (-4506 . T) (-4500 . T) (-4499 . T) (-4498 . T) (-4497 . T) (-4496 . T) (-4504 . T) (-4507 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4495 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4509 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4510 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4507 . T))
+((-4508 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4508 . T))
+((-4509 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2225 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147)))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2226 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1131))) (|HasCategory| (-112) (LIST (QUOTE -321) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-112) (QUOTE (-871))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-112) (QUOTE (-1131))) (|HasCategory| (-112) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-112) (QUOTE (-102))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -396,22 +396,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-117 -2173 UP)
+(-117 -2174 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-118 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-119 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-118 |#1|) (QUOTE (-938))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-118 |#1|) (QUOTE (-1053))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2225 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (QUOTE (-1183))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -118) (|devaluate| |#1|)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (|HasCategory| (-118 |#1|) (QUOTE (-147)))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-118 |#1|) (QUOTE (-938))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-118 |#1|) (QUOTE (-1053))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2226 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (QUOTE (-1183))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -118) (|devaluate| |#1|)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (|HasCategory| (-118 |#1|) (QUOTE (-147)))))
(-120 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4508)))
+((|HasAttribute| |#1| (QUOTE -4509)))
(-121 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -422,15 +422,15 @@ NIL
NIL
(-123 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-124 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-125)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-126 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -438,20 +438,20 @@ NIL
NIL
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4507 . T) (-4508 . T))
+((-4508 . T) (-4509 . T))
NIL
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-129 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-130)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131)))))) (-2225 (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131))))) (|HasCategory| (-131) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-131) (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131)))) (|HasCategory| (-131) (QUOTE (-871))) (-2225 (|HasCategory| (-131) (QUOTE (-102))) (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-131) (QUOTE (-102))) (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131))))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131)))))) (-2226 (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131))))) (|HasCategory| (-131) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-131) (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131)))) (|HasCategory| (-131) (QUOTE (-871))) (-2226 (|HasCategory| (-131) (QUOTE (-102))) (|HasCategory| (-131) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-131) (QUOTE (-102))) (-12 (|HasCategory| (-131) (QUOTE (-1131))) (|HasCategory| (-131) (LIST (QUOTE -321) (QUOTE (-131))))))
(-131)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -474,13 +474,13 @@ NIL
NIL
(-136)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4509 "*") . T))
+(((-4510 "*") . T))
NIL
-(-137 |minix| -2590 S T$)
+(-137 |minix| -2592 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-138 |minix| -2590 R)
+(-138 |minix| -2592 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -502,8 +502,8 @@ NIL
NIL
(-143)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4507 . T) (-4497 . T) (-4508 . T))
-((-2225 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
+((-4508 . T) (-4498 . T) (-4509 . T))
+((-2226 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
(-144 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -513,12 +513,12 @@ NIL
NIL
NIL
(-146)
-((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|verticalTab| (($) "\\spad{verticalTab} designates vertical tab.")) (|horizontalTab| (($) "\\spad{horizontalTab} designates horizontal tab.")) (|backspace| (($) "\\spad{backspace} designates the backspace character.")) (|formfeed| (($) "\\spad{formfeed} designates the form feed character.")) (|linefeed| (($) "\\spad{linefeed} designates the line feed character.")) (|carriageReturn| (($) "\\spad{carriageReturn} designates carriage return.")) (|newline| (($) "\\spad{newline} designates the new line character.")) (|underscore| (($) "\\spad{underscore} designates the underbar character.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}.")))
+((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape} designate the escape character.")) (|verticalTab| (($) "\\spad{verticalTab} designates vertical tab.")) (|horizontalTab| (($) "\\spad{horizontalTab} designates horizontal tab.")) (|backspace| (($) "\\spad{backspace} designates the backspace character.")) (|formfeed| (($) "\\spad{formfeed} designates the form feed character.")) (|linefeed| (($) "\\spad{linefeed} designates the line feed character.")) (|carriageReturn| (($) "\\spad{carriageReturn} designates carriage return.")) (|newline| (($) "\\spad{newline} designates the new line character.")) (|underscore| (($) "\\spad{underscore} designates the underbar character.")) (|quote| (($) "\\spad{quote} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}.")))
NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-148 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -526,9 +526,9 @@ NIL
NIL
(-149)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4504 . T))
+((-4505 . T))
NIL
-(-150 -2173 UP UPUP)
+(-150 -2174 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -539,14 +539,14 @@ NIL
(-152 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasAttribute| |#1| (QUOTE -4507)))
+((|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasAttribute| |#1| (QUOTE -4508)))
(-153 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-154 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4502 . T) (-4501 . T) (-4504 . T))
+((-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-155)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -568,7 +568,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-160 R -2173)
+(-160 R -2174)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -599,10 +599,10 @@ NIL
(-167 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4503)) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-570))))
+((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-570))))
(-168 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4500 -2225 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4503 |has| |#1| (-6 -4503)) (-4506 |has| |#1| (-6 -4506)) (-1924 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 -2226 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-1924 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-169 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -618,8 +618,8 @@ NIL
NIL
(-172 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4500 -2225 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4503 |has| |#1| (-6 -4503)) (-4506 |has| |#1| (-6 -4506)) (-1924 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-362))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2225 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-362)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-938))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-938))))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasAttribute| |#1| (QUOTE -4506)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-362)))))
+((-4501 -2226 (|has| |#1| (-570)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-1924 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-362))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2226 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-362)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-938))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-938))))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4507)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-362)))))
(-173 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -630,7 +630,7 @@ NIL
NIL
(-175)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-176)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -638,7 +638,7 @@ NIL
NIL
(-177 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4509 "*") . T) (-4500 . T) (-4505 . T) (-4499 . T) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") . T) (-4501 . T) (-4506 . T) (-4500 . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-178)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -692,7 +692,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-191 R -2173)
+(-191 R -2174)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -804,23 +804,23 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis.")))
NIL
NIL
-(-219 -2173 UP UPUP R)
+(-219 -2174 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-220 -2173 FP)
+(-220 -2174 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-221)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2225 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147)))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2226 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147)))))
(-222)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-223 R -2173)
+(-223 R -2174)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -834,19 +834,19 @@ NIL
NIL
(-226 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-227 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4504 . T))
+((-4505 . T))
NIL
-(-228 R -2173)
+(-228 R -2174)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-229)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-1915 . T) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-1915 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-230)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -854,19 +854,19 @@ NIL
NIL
(-231 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4509 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-232 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-233 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4508 . T))
+((-4509 . T))
NIL
(-234 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-235 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -878,7 +878,7 @@ NIL
NIL
(-237 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-238 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -890,36 +890,36 @@ NIL
NIL
(-240)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-4504 . T))
+((-4505 . T))
NIL
(-241 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)))
+((|HasAttribute| |#1| (QUOTE -4508)))
(-242 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4508 . T))
+((-4509 . T))
NIL
(-243)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-244 S -2590 R)
+(-244 S -2592 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasAttribute| |#3| (QUOTE -4504)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131))))
-(-245 -2590 R)
+((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasAttribute| |#3| (QUOTE -4505)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131))))
+(-245 -2592 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4501 |has| |#2| (-1080)) (-4502 |has| |#2| (-1080)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T))
+((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T))
NIL
-(-246 -2590 A B)
+(-246 -2592 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-247 -2590 R)
+(-247 -2592 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4501 |has| |#2| (-1080)) (-4502 |has| |#2| (-1080)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2225 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2225 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2225 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
+((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2226 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2226 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2226 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
(-248)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -930,7 +930,7 @@ NIL
NIL
(-250)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4500 . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-251 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -938,20 +938,20 @@ NIL
NIL
(-252 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-253 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-254 R)
((|constructor| (NIL "Category of modules that extend differential rings. \\blankline")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-255 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-570)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-570)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#2| (QUOTE (-938))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-256)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -966,23 +966,23 @@ NIL
NIL
(-259 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4504 -2225 (-3533 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4504)) (-3533 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4501 |has| |#4| (-1080)) (-4502 |has| |#4| (-1080)) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2225 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2225 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2225 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2225 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2225 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2225 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1131)))) (-2225 (|HasAttribute| |#4| (QUOTE -4504)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))))
+((-4505 -2226 (-3535 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4505)) (-3535 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4502 |has| |#4| (-1080)) (-4503 |has| |#4| (-1080)) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2226 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2226 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2226 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2226 (-12 (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2226 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2226 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1131))) (-2226 (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1131))))) (-2226 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-578))))) (-2226 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2226 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (QUOTE (-1131)))) (-2226 (|HasAttribute| |#4| (QUOTE -4505)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))))
(-260 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4504 -2225 (-3533 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4504)) (-3533 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4501 |has| |#3| (-1080)) (-4502 |has| |#3| (-1080)) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2225 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2225 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2225 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2225 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2225 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2225 (|HasAttribute| |#3| (QUOTE -4504)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))))
+((-4505 -2226 (-3535 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4505)) (-3535 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2226 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2226 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2226 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2226 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-2226 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2226 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2226 (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))))
(-261 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-240))))
(-262 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-263 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4507 . T) (-4508 . T))
+((-4508 . T) (-4509 . T))
NIL
(-264)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -1030,8 +1030,8 @@ NIL
NIL
(-275 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-276 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1076,11 +1076,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-287 R -2173)
+(-287 R -2174)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-288 R -2173)
+(-288 R -2174)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1106,7 +1106,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))))
(-294 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4508 . T))
+((-4509 . T))
NIL
(-295 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1127,18 +1127,18 @@ NIL
(-299 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4508)))
+((|HasAttribute| |#1| (QUOTE -4509)))
(-300 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-301 S R |Mod| -3749 -4168 |exactQuo|)
+(-301 S R |Mod| -3305 -2157 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-302)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4500 . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-303)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1154,21 +1154,21 @@ NIL
NIL
(-306 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4504 -2225 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4501 |has| |#1| (-1080)) (-4502 |has| |#1| (-1080)))
-((|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2225 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-314))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2225 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2225 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748))))
+((-4505 -2226 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-1080)) (-4503 |has| |#1| (-1080)))
+((|HasCategory| |#1| (QUOTE (-376))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2226 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-314))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2226 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2226 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748))))
(-307 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|)))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|)))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))))
(-308)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-309 -2173 S)
+(-309 -2174 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-310 E -2173)
+(-310 E -2174)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -1206,7 +1206,7 @@ NIL
NIL
(-319)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-320 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1216,7 +1216,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-322 -2173)
+(-322 -2174)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1230,8 +1230,8 @@ NIL
NIL
(-325 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1053))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2225 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1183))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -321) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -298) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-2225 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147))))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1053))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2226 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1183))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -321) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -298) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-2226 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147))))))
(-326 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1242,9 +1242,9 @@ NIL
NIL
(-328 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4504 -2225 (-12 (|has| |#1| (-570)) (-2225 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) ((-4509 "*") |has| |#1| (-570)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-570)) (-4499 |has| |#1| (-570)))
-((-2225 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2225 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2225 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2225 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2225 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-2225 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2225 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2225 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2225 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578)))))
-(-329 R -2173)
+((-4505 -2226 (-12 (|has| |#1| (-570)) (-2226 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-570)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-570)) (-4500 |has| |#1| (-570)))
+((-2226 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (-2226 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2226 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (-2226 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2226 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2226 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (-2226 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2226 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2226 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))))) (-2226 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578)))))
+(-329 R -2174)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1254,8 +1254,8 @@ NIL
NIL
(-331 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-332 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1266,7 +1266,7 @@ NIL
NIL
(-334 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| (-578) (QUOTE (-814))))
(-335 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1282,19 +1282,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))))
(-338 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-339 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
-(-340 S -2173)
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+(-340 S -2174)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))))
-(-341 -2173)
+(-341 -2174)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-342)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1316,15 +1316,15 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-347 S -2173 UP UPUP R)
+(-347 S -2174 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-348 -2173 UP UPUP R)
+(-348 -2174 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-349 -2173 UP UPUP R)
+(-349 -2174 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1338,32 +1338,32 @@ NIL
NIL
(-352 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-392)))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578)))))
(-353 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-354 S -2173 UP UPUP)
+(-354 S -2174 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-376))))
-(-355 -2173 UP UPUP)
+(-355 -2174 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4500 |has| (-421 |#2|) (-376)) (-4505 |has| (-421 |#2|) (-376)) (-4499 |has| (-421 |#2|) (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-356 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147))))
(-357 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-358 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-359 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1378,33 +1378,33 @@ NIL
NIL
(-362)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-363 R UP -2173)
+(-363 R UP -2174)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-364 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147))))
(-365 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-366 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-367 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| (-939 |#1|) (QUOTE (-147))) (|HasCategory| (-939 |#1|) (QUOTE (-381)))) (|HasCategory| (-939 |#1|) (QUOTE (-149))) (|HasCategory| (-939 |#1|) (QUOTE (-381))) (|HasCategory| (-939 |#1|) (QUOTE (-147))))
(-368 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
-(-369 -2173 GF)
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+(-369 -2174 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1412,21 +1412,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-371 -2173 FP FPP)
+(-371 -2174 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-372 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-373 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-374 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-375 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1434,7 +1434,7 @@ NIL
NIL
(-376)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-377 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1450,7 +1450,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-570))))
(-380 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4504 |has| |#1| (-570)) (-4502 . T) (-4501 . T))
+((-4505 |has| |#1| (-570)) (-4503 . T) (-4502 . T))
NIL
(-381)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1462,7 +1462,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-376))))
(-383 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-384 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1471,14 +1471,14 @@ NIL
(-385 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))))
+((|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))))
(-386 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4507 . T))
+((-4508 . T))
NIL
(-387 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4502 . T) (-4501 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4503 . T) (-4502 . T))
NIL
(-388 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1498,7 +1498,7 @@ NIL
NIL
(-392)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4490 . T) (-4498 . T) (-1915 . T) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4491 . T) (-4499 . T) (-1915 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-393 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1506,11 +1506,11 @@ NIL
NIL
(-394 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-175))))
(-395 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-396)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1522,7 +1522,7 @@ NIL
NIL
(-398 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))))
(-399 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1534,7 +1534,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-871))))
(-401)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-402)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1546,13 +1546,13 @@ NIL
NIL
(-404 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-405)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-406 -2173 UP UPUP R)
+(-406 -2174 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1576,11 +1576,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-412 -2179 |returnType| -3588 |symbols|)
+(-412 -2180 |returnType| -3589 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-413 -2173 UP)
+(-413 -2174 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1594,15 +1594,15 @@ NIL
NIL
(-416)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-417 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4490)) (|HasAttribute| |#1| (QUOTE -4498)))
+((|HasAttribute| |#1| (QUOTE -4491)) (|HasAttribute| |#1| (QUOTE -4499)))
(-418)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-1915 . T) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-1915 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-419 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1614,15 +1614,15 @@ NIL
NIL
(-421 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4494 -12 (|has| |#1| (-6 -4505)) (|has| |#1| (-466)) (|has| |#1| (-6 -4494))) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850))))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4505)) (|HasAttribute| |#1| (QUOTE -4494)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((-4495 -12 (|has| |#1| (-6 -4506)) (|has| |#1| (-466)) (|has| |#1| (-6 -4495))) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850))))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4495)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-422 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-423 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-424 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1636,11 +1636,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-427 R -2173 UP A)
+(-427 R -2174 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4504 . T))
+((-4505 . T))
NIL
-(-428 R -2173 UP A |ibasis|)
+(-428 R -2174 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1069) (|devaluate| |#2|))))
@@ -1654,12 +1654,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-431 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4504 |has| |#1| (-570)) (-4502 . T) (-4501 . T))
+((-4505 |has| |#1| (-570)) (-4503 . T) (-4502 . T))
NIL
(-432 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466))))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1053))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466))))
(-433 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
@@ -1686,17 +1686,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))))
(-439 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4507 . T) (-4497 . T) (-4508 . T))
+((-4508 . T) (-4498 . T) (-4509 . T))
NIL
-(-440 R -2173)
+(-440 R -2174)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-441 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4494 -12 (|has| |#1| (-6 -4494)) (|has| |#2| (-6 -4494))) (-4501 . T) (-4502 . T) (-4504 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4494)) (|HasAttribute| |#2| (QUOTE -4494))))
-(-442 R -2173)
+((-4495 -12 (|has| |#1| (-6 -4495)) (|has| |#2| (-6 -4495))) (-4502 . T) (-4503 . T) (-4505 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4495)) (|HasAttribute| |#2| (QUOTE -4495))))
+(-442 R -2174)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1706,17 +1706,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))))
(-444 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4504 -2225 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) ((-4509 "*") |has| |#1| (-570)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-570)) (-4499 |has| |#1| (-570)))
+((-4505 -2226 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-570)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-570)) (-4500 |has| |#1| (-570)))
NIL
-(-445 R -2173)
+(-445 R -2174)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-446 R -2173)
+(-446 R -2174)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-447 R -2173)
+(-447 R -2174)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1724,7 +1724,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-449 R -2173 UP)
+(-449 R -2174 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-48)))))
@@ -1756,7 +1756,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-457 R UP -2173)
+(-457 R UP -2174)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1794,16 +1794,16 @@ NIL
NIL
(-466)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-467 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4504 |has| (-421 (-981 |#1|)) (-570)) (-4502 . T) (-4501 . T))
+((-4505 |has| (-421 (-981 |#1|)) (-570)) (-4503 . T) (-4502 . T))
((|HasCategory| (-421 (-981 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| (-421 (-981 |#1|)) (QUOTE (-570))))
(-468 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-570)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-570)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#2| (QUOTE (-938))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-469 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1830,7 +1830,7 @@ NIL
NIL
(-475 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-476 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1838,7 +1838,7 @@ NIL
NIL
(-477 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
(-478 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1868,7 +1868,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-485 |lv| -2173 R)
+(-485 |lv| -2174 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1878,23 +1878,23 @@ NIL
NIL
(-487)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-488 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-489 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|)))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))))
+((-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|)))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))))
(-490 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
(-491)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-492)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1902,29 +1902,29 @@ NIL
NIL
(-493 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|)))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|)))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))))
(-494)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-495 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-570)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
-(-496 -2590 S)
+(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-570)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#2| (QUOTE (-938))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(-496 -2592 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4501 |has| |#2| (-1080)) (-4502 |has| |#2| (-1080)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2225 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2225 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2225 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
+((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2226 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2226 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2226 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
(-497)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-498 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-499 -2173 UP UPUP R)
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-499 -2174 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1934,12 +1934,12 @@ NIL
NIL
(-501)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2225 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147)))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2226 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147)))))
(-502 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)) (|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))))
+((|HasAttribute| |#1| (QUOTE -4508)) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))))
(-503 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1960,33 +1960,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-508 -2173 UP |AlExt| |AlPol|)
+(-508 -2174 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-509)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-578)))))
(-510 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-511 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-512 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-513 R UP -2173)
+(-513 R UP -2174)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-514 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1131))) (|HasCategory| (-112) (LIST (QUOTE -321) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-112) (QUOTE (-871))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-112) (QUOTE (-1131))) (|HasCategory| (-112) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-112) (QUOTE (-102))))
(-515 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -2000,7 +2000,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-518 -2173 |Expon| |VarSet| |DPoly|)
+(-518 -2174 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-1207)))))
@@ -2050,36 +2050,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-814))))
(-530 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-531)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-532 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147))))
(-533 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-534 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-535 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4508)))
+((|HasAttribute| |#3| (QUOTE -4509)))
(-536 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4508)))
+((|HasAttribute| |#7| (QUOTE -4509)))
(-537 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4509 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-538)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2112,7 +2112,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
((-12 (|HasCategory| (-793) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131)))))
-(-546 K -2173 |Par|)
+(-546 K -2174 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2136,7 +2136,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-552 K -2173 |Par|)
+(-552 K -2174 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2166,7 +2166,7 @@ NIL
NIL
(-559)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4505 . T) (-4506 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4506 . T) (-4507 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-560)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2186,13 +2186,13 @@ NIL
NIL
(-564 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|)))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))))
-(-565 R -2173)
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|)))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))))
+(-565 R -2174)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-566 R0 -2173 UP UPUP R)
+(-566 R0 -2174 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2202,7 +2202,7 @@ NIL
NIL
(-568 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-1915 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-1915 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-569 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2210,9 +2210,9 @@ NIL
NIL
(-570)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-571 R -2173)
+(-571 R -2174)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2224,7 +2224,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-574 R -2173 L)
+(-574 R -2174 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -678) (|devaluate| |#2|))))
@@ -2232,31 +2232,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-576 -2173 UP UPUP R)
+(-576 -2174 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-577 -2173 UP)
+(-577 -2174 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-578)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4489 . T) (-4495 . T) (-4499 . T) (-4494 . T) (-4505 . T) (-4506 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4490 . T) (-4496 . T) (-4500 . T) (-4495 . T) (-4506 . T) (-4507 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-579)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-580 R -2173 L)
+(-580 R -2174 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -678) (|devaluate| |#2|))))
-(-581 R -2173)
+(-581 R -2174)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-648)))))
-(-582 -2173 UP)
+(-582 -2174 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2264,27 +2264,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-584 -2173)
+(-584 -2174)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-585 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-1915 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-1915 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-586)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-587 R -2173)
+(-587 R -2174)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-648))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-570))))
-(-588 -2173 UP)
+(-588 -2174 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-589 R -2173)
+(-589 R -2174)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2306,21 +2306,21 @@ NIL
NIL
(-594 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-595 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381))))
(-596)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-597 R -2173)
+(-597 R -2174)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-598 E -2173)
+(-598 E -2174)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
@@ -2328,9 +2328,9 @@ NIL
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-600 -2173)
+(-600 -2174)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-1207)))))
(-601 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
@@ -2358,19 +2358,19 @@ NIL
NIL
(-607 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2225 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-871))) (-2225 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2226 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-871))) (-2226 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
(-608 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-609 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))) (|HasCategory| (-578) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))) (|HasCategory| (-578) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))))
(-610 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4509 "*") |has| |#1| (-570)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-570)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-570))))
(-611)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
@@ -2384,7 +2384,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-614 R -2173 FG)
+(-614 R -2174 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2394,12 +2394,12 @@ NIL
NIL
(-616 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-617 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#2| (QUOTE (-871))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#3| (QUOTE (-1131))))
+((|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-871))) (|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#3| (QUOTE (-1131))))
(-618 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2410,8 +2410,8 @@ NIL
NIL
(-620 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4504 -2225 (-3533 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4502 . T) (-4501 . T))
-((-2225 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))))
+((-4505 -2226 (-3535 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4503 . T) (-4502 . T))
+((-2226 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))))
(-621)
((|constructor| (NIL "This is the datatype for the \\spad{JVM} bytecodes.")))
NIL
@@ -2438,15 +2438,15 @@ NIL
NIL
(-627 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-102))))
(-628 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-629 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4508 . T))
+((-4509 . T))
NIL
(-630 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2464,7 +2464,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-634 -2173 UP)
+(-634 -2174 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2486,19 +2486,19 @@ NIL
NIL
(-639 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-640 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-870))))
-(-641 R -2173)
+(-641 R -2174)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
(-642 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4502 . T) (-4501 . T) ((-4509 "*") . T) (-4500 . T) (-4504 . T))
+((-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4501 . T) (-4505 . T))
((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))
(-643 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
@@ -2514,7 +2514,7 @@ NIL
NIL
(-646 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-647 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2524,30 +2524,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-649 R -2173)
+(-649 R -2174)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-650 |lv| -2173)
+(-650 |lv| -2174)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-651)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2079) (QUOTE (-52))))))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 (-52))) (QUOTE (-1131))))
+((-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2076) (QUOTE (-52))))))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 (-52))) (QUOTE (-1131))))
(-652 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-653 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4502 . T) (-4501 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4503 . T) (-4502 . T))
NIL
(-654 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4504 -2225 (-3533 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4502 . T) (-4501 . T))
-((-2225 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))))
+((-4505 -2226 (-3535 (|has| |#2| (-380 |#1|)) (|has| |#1| (-570))) (-12 (|has| |#2| (-431 |#1|)) (|has| |#1| (-570)))) (-4503 . T) (-4502 . T))
+((-2226 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -431) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))))
(-655 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
@@ -2563,10 +2563,10 @@ NIL
(-658 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3523 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376))))
+((-3524 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376))))
(-659 K B)
((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
((-12 (|HasCategory| (-657 |#2|) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131)))))
(-660 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
@@ -2574,7 +2574,7 @@ NIL
NIL
(-661 K B)
((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-662 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
@@ -2594,8 +2594,8 @@ NIL
NIL
(-666 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-667 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
@@ -2606,8 +2606,8 @@ NIL
NIL
(-669 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-670 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
@@ -2619,22 +2619,22 @@ NIL
(-672 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4508)))
+((|HasAttribute| |#1| (QUOTE -4509)))
(-673 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-674 R -2173 L)
+(-674 R -2174 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-675 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376))))
(-676 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376))))
(-677 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2642,15 +2642,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-678 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-679 -2173 UP)
+(-679 -2174 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-680 A -2262)
+(-680 A -3774)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376))))
(-681 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
@@ -2666,7 +2666,7 @@ NIL
NIL
(-684 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-813))))
(-685 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2674,7 +2674,7 @@ NIL
NIL
(-686 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4502 . T) (-4501 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4503 . T) (-4502 . T))
((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-175))))
(-687 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2682,13 +2682,13 @@ NIL
NIL
(-688 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
-(-689 -2173)
+(-689 -2174)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-690 -2173 |Row| |Col| M)
+(-690 -2174 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2698,8 +2698,8 @@ NIL
NIL
(-692 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4504 . T) (-4507 . T) (-4501 . T) (-4502 . T))
-((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4509 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-570))) (-2225 (|HasAttribute| |#2| (QUOTE (-4509 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
+((-4505 . T) (-4508 . T) (-4502 . T) (-4503 . T))
+((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-570))) (-2226 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
(-693)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2719,7 +2719,7 @@ NIL
(-697 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-698)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2763,10 +2763,10 @@ NIL
(-708 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4509 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-570))))
+((|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-570))))
(-709 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4507 . T) (-4508 . T))
+((-4508 . T) (-4509 . T))
NIL
(-710 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2774,8 +2774,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))))
(-711 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4507 . T) (-4508 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4509 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4508 . T) (-4509 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-570))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-712 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2784,7 +2784,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-714 S -2173 FLAF FLAS)
+(-714 S -2174 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2794,11 +2794,11 @@ NIL
NIL
(-716)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4500 . T) (-4505 |has| (-721) (-376)) (-4499 |has| (-721) (-376)) (-1924 . T) (-4506 |has| (-721) (-6 -4506)) (-4503 |has| (-721) (-6 -4503)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-721) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2225 (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2225 (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207))))) (-2225 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-362)))) (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (LIST (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (-2225 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-362)))) (|HasCategory| (-721) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-721) (QUOTE (-1053))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2225 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (QUOTE (-938))))) (-2225 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-938)))) (-12 (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (QUOTE (-938))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938))) (-2225 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2225 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2225 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-570)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-721) (QUOTE (-570))) (|HasAttribute| (-721) (QUOTE -4506)) (|HasAttribute| (-721) (QUOTE -4503)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-362)))))
+((-4501 . T) (-4506 |has| (-721) (-376)) (-4500 |has| (-721) (-376)) (-1924 . T) (-4507 |has| (-721) (-6 -4507)) (-4504 |has| (-721) (-6 -4504)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-721) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2226 (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2226 (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207))))) (-2226 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-362)))) (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (LIST (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (-2226 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-362)))) (|HasCategory| (-721) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-721) (QUOTE (-1053))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2226 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (QUOTE (-938))))) (-2226 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-938)))) (-12 (|HasCategory| (-721) (QUOTE (-362))) (|HasCategory| (-721) (QUOTE (-938))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938))) (-2226 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2226 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2226 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-570)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-721) (QUOTE (-570))) (|HasAttribute| (-721) (QUOTE -4507)) (|HasAttribute| (-721) (QUOTE -4504)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-938)))) (|HasCategory| (-721) (QUOTE (-362)))))
(-717 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4508 . T))
+((-4509 . T))
NIL
(-718 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2808,13 +2808,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-720 OV E -2173 PG)
+(-720 OV E -2174 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-721)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-1915 . T) (-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-1915 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-722 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2822,7 +2822,7 @@ NIL
NIL
(-723)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4506 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4507 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-724 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2840,7 +2840,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-728 S -4246 I)
+(-728 S -4248 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2850,7 +2850,7 @@ NIL
NIL
(-730 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-731 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2860,25 +2860,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-733 R |Mod| -3749 -4168 |exactQuo|)
+(-733 R |Mod| -3305 -2157 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-734 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4503 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-735 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-736 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T))
+((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))))
-(-737 R |Mod| -3749 -4168 |exactQuo|)
+(-737 R |Mod| -3305 -2157 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4504 . T))
+((-4505 . T))
NIL
(-738 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2886,11 +2886,11 @@ NIL
NIL
(-739 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-740 -2173)
+(-740 -2174)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-741 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2914,7 +2914,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))))
(-746 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4500 |has| |#1| (-376)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 |has| |#1| (-376)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-747 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2924,7 +2924,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-749 -2173 UP)
+(-749 -2174 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2942,8 +2942,8 @@ NIL
NIL
(-753 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-570)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-570)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#2| (QUOTE (-938))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-754 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2958,15 +2958,15 @@ NIL
NIL
(-757 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T))
+((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T))
((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-871))))
(-758 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4497 . T) (-4508 . T))
+((-4498 . T) (-4509 . T))
NIL
(-759 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4507 . T) (-4497 . T) (-4508 . T))
+((-4508 . T) (-4498 . T) (-4509 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-760)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2978,7 +2978,7 @@ NIL
NIL
(-762 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4502 . T) (-4501 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-763 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2994,7 +2994,7 @@ NIL
NIL
(-766 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-767)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -3076,11 +3076,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-787 -2173)
+(-787 -2174)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-788 P -2173)
+(-788 P -2174)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -3088,7 +3088,7 @@ NIL
NIL
NIL
NIL
-(-790 UP -2173)
+(-790 UP -2174)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3102,9 +3102,9 @@ NIL
NIL
(-793)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4509 "*") . T))
+(((-4510 "*") . T))
NIL
-(-794 R -2173)
+(-794 R -2174)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3124,7 +3124,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-799 -2173 |ExtF| |SUEx| |ExtP| |n|)
+(-799 -2174 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3138,23 +3138,23 @@ NIL
NIL
(-802 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-3523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-3523 (|HasCategory| |#1| (QUOTE (-559)))) (-3523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-3523 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578))))) (-3523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-3523 (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-578))))))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-3524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-3524 (|HasCategory| |#1| (QUOTE (-559)))) (-3524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-3524 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-578))))) (-3524 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-3524 (|HasCategory| |#1| (LIST (QUOTE -1023) (QUOTE (-578))))))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-803 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-804 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4503 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-805 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))
(-806 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-807 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -3206,25 +3206,25 @@ NIL
((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))))
(-819 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-820 -2225 R OS S)
+(-820 -2226 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-821 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2225 (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))
+((-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2226 (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2226 (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1030 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))))
(-822)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-823 R -2173 L)
+(-823 R -2174 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-824 R -2173)
+(-824 R -2174)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3232,7 +3232,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-826 R -2173)
+(-826 R -2174)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3240,11 +3240,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-828 -2173 UP UPUP R)
+(-828 -2174 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-829 -2173 UP L LQ)
+(-829 -2174 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3252,41 +3252,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-831 -2173 UP L LQ)
+(-831 -2174 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-832 -2173 UP)
+(-832 -2174 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-833 -2173 L UP A LO)
+(-833 -2174 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-834 -2173 UP)
+(-834 -2174 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-835 -2173 LO)
+(-835 -2174 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-836 -2173 LODO)
+(-836 -2174 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-837 -2590 S |f|)
+(-837 -2592 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4501 |has| |#2| (-1080)) (-4502 |has| |#2| (-1080)) (-4504 |has| |#2| (-6 -4504)) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2225 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2225 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2225 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4504)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
+((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2226 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2226 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2226 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
(-838 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-839 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4509 "*") |has| |#2| (-376)) (-4500 |has| |#2| (-376)) (-4505 |has| |#2| (-376)) (-4499 |has| |#2| (-376)) (-4504 . T) (-4502 . T) (-4501 . T))
+(((-4510 "*") |has| |#2| (-376)) (-4501 |has| |#2| (-376)) (-4506 |has| |#2| (-376)) (-4500 |has| |#2| (-376)) (-4505 . T) (-4503 . T) (-4502 . T))
((|HasCategory| |#2| (QUOTE (-376))))
(-840 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3298,7 +3298,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-871))))
(-842)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-843)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3326,7 +3326,7 @@ NIL
NIL
(-849 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-240))))
(-850)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3338,7 +3338,7 @@ NIL
NIL
(-852 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4507 . T) (-4497 . T) (-4508 . T))
+((-4508 . T) (-4498 . T) (-4509 . T))
NIL
(-853)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3350,8 +3350,8 @@ NIL
NIL
(-855 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4504 |has| |#1| (-870)))
-((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2225 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2225 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-559))))
+((-4505 |has| |#1| (-870)))
+((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2226 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2226 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-559))))
(-856 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
@@ -3362,7 +3362,7 @@ NIL
NIL
(-858 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T))
+((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))))
(-859)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3390,13 +3390,13 @@ NIL
NIL
(-865 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4504 |has| |#1| (-870)))
-((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2225 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2225 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-559))))
+((-4505 |has| |#1| (-870)))
+((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2226 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2226 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-559))))
(-866)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-867 -2590 S)
+(-867 -2592 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3410,7 +3410,7 @@ NIL
NIL
(-870)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-871)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")))
@@ -3434,19 +3434,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))))
(-876 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-877 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570))))
-(-878 R |sigma| -4147)
+(-878 R |sigma| -4148)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376))))
-(-879 |x| R |sigma| -4147)
+(-879 |x| R |sigma| -4148)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376))))
(-880 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
@@ -3490,7 +3490,7 @@ NIL
NIL
(-890 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T))
+((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))))
(-891 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3502,24 +3502,24 @@ NIL
NIL
(-893 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-894 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-895 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-894 |#1|) (QUOTE (-938))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-149))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-894 |#1|) (QUOTE (-1053))) (|HasCategory| (-894 |#1|) (QUOTE (-842))) (|HasCategory| (-894 |#1|) (QUOTE (-871))) (-2225 (|HasCategory| (-894 |#1|) (QUOTE (-842))) (|HasCategory| (-894 |#1|) (QUOTE (-871)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (QUOTE (-1183))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (QUOTE (-239))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (QUOTE (-240))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -894) (|devaluate| |#1|)) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (QUOTE (-319))) (|HasCategory| (-894 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-938)))) (|HasCategory| (-894 |#1|) (QUOTE (-147)))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-894 |#1|) (QUOTE (-938))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-149))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-894 |#1|) (QUOTE (-1053))) (|HasCategory| (-894 |#1|) (QUOTE (-842))) (|HasCategory| (-894 |#1|) (QUOTE (-871))) (-2226 (|HasCategory| (-894 |#1|) (QUOTE (-842))) (|HasCategory| (-894 |#1|) (QUOTE (-871)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (QUOTE (-1183))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| (-894 |#1|) (QUOTE (-239))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (QUOTE (-240))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -894) (|devaluate| |#1|)) (LIST (QUOTE -894) (|devaluate| |#1|)))) (|HasCategory| (-894 |#1|) (QUOTE (-319))) (|HasCategory| (-894 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-894 |#1|) (QUOTE (-938)))) (|HasCategory| (-894 |#1|) (QUOTE (-147)))))
(-896 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2225 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-1183))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2226 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-1183))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-897 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))))
(-898)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3579,7 +3579,7 @@ NIL
(-912 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3523 (|HasCategory| |#2| (QUOTE (-1080)))) (-3523 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-3523 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))
+((-12 (-3524 (|HasCategory| |#2| (QUOTE (-1080)))) (-3524 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-3524 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))
(-913 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3588,7 +3588,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-915 R -4246)
+(-915 R -4248)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3620,7 +3620,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-923 UP -2173)
+(-923 UP -2174)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3634,11 +3634,11 @@ NIL
NIL
(-926 R S)
((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-927 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-4504 . T))
+((-4505 . T))
NIL
(-928 A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
@@ -3651,14 +3651,14 @@ NIL
(-930 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-931 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-932 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4504 . T))
+((-4505 . T))
NIL
(-933 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3666,8 +3666,8 @@ NIL
NIL
(-934 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4504 . T))
-((-2225 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871))))
+((-4505 . T))
+((-2226 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871))))
(-935 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3682,13 +3682,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-147))))
(-938)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-939 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381))))
-(-940 R0 -2173 UP UPUP R)
+(-940 R0 -2174 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3702,7 +3702,7 @@ NIL
NIL
(-943 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-944 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3716,7 +3716,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-947 -2173)
+(-947 -2174)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3726,17 +3726,17 @@ NIL
NIL
(-949)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-950)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4509 "*") . T))
+(((-4510 "*") . T))
NIL
-(-951 -2173 P)
+(-951 -2174 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-952 |xx| -2173)
+(-952 |xx| -2174)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
@@ -3760,7 +3760,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-958 R -2173)
+(-958 R -2174)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3772,7 +3772,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-961 S R -2173)
+(-961 S R -2174)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3792,11 +3792,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -911) (|devaluate| |#1|))))
-(-966 R -2173 -4246)
+(-966 R -2174 -4248)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-967 -4246)
+(-967 -4248)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3818,8 +3818,8 @@ NIL
NIL
(-972 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-973 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3839,12 +3839,12 @@ NIL
(-977 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-938))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#4| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#4| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))))
+((|HasCategory| |#2| (QUOTE (-938))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#4| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#4| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))))
(-978 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
-(-979 E V R P -2173)
+(-979 E V R P -2174)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3854,9 +3854,9 @@ NIL
NIL
(-981 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-982 E V R P -2173)
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-982 E V R P -2174)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-466))))
@@ -3878,13 +3878,13 @@ NIL
NIL
(-987 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-988)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-989 -2173)
+(-989 -2174)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3898,12 +3898,12 @@ NIL
NIL
(-992 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4505)))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4506)))
(-993 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4504 -12 (|has| |#2| (-487)) (|has| |#1| (-487))))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871)))))
+((-4505 -12 (|has| |#2| (-487)) (|has| |#1| (-487))))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871)))))
(-994)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3926,7 +3926,7 @@ NIL
NIL
(-999 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4507 . T) (-4508 . T))
+((-4508 . T) (-4509 . T))
NIL
(-1000 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3946,7 +3946,7 @@ NIL
NIL
(-1004 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1005)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3958,7 +3958,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-570))))
(-1007 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4507 . T))
+((-4508 . T))
NIL
(-1008 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3974,7 +3974,7 @@ NIL
NIL
(-1011 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-1012 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
@@ -3992,7 +3992,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-1016 K R UP -2173)
+(-1016 K R UP -2174)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -4022,7 +4022,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-1053))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-1183))))
(-1023 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1024 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -4034,7 +4034,7 @@ NIL
NIL
(-1026 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4507 . T) (-4508 . T))
+((-4508 . T) (-4509 . T))
NIL
(-1027 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
@@ -4042,7 +4042,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-302))))
(-1028 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4500 |has| |#1| (-302)) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 |has| |#1| (-302)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1029 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -4050,12 +4050,12 @@ NIL
NIL
(-1030 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4500 |has| |#1| (-302)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))))
+((-4501 |has| |#1| (-302)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376))) (-2226 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))))
(-1031 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-1032 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -4064,14 +4064,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1034 -2173 UP UPUP |radicnd| |n|)
+(-1034 -2174 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4500 |has| (-421 |#2|) (-376)) (-4505 |has| (-421 |#2|) (-376)) (-4499 |has| (-421 |#2|) (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-362))) (-2225 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2225 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2225 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2225 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-362))))) (-2225 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-578)))) (-2225 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))))
+((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-362))) (-2226 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2226 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2226 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-362)))) (-2226 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-362))))) (-2226 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-578)))) (-2226 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))))
(-1035 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2225 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147)))))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-578) (QUOTE (-938))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-149))) (|HasCategory| (-578) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-1053))) (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871))) (-2226 (|HasCategory| (-578) (QUOTE (-842))) (|HasCategory| (-578) (QUOTE (-871)))) (|HasCategory| (-578) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-1183))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| (-578) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| (-578) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| (-578) (QUOTE (-239))) (|HasCategory| (-578) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-578) (QUOTE (-240))) (|HasCategory| (-578) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-578) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -321) (QUOTE (-578)))) (|HasCategory| (-578) (LIST (QUOTE -298) (QUOTE (-578)) (QUOTE (-578)))) (|HasCategory| (-578) (QUOTE (-319))) (|HasCategory| (-578) (QUOTE (-559))) (|HasCategory| (-578) (LIST (QUOTE -660) (QUOTE (-578)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-578) (QUOTE (-938)))) (|HasCategory| (-578) (QUOTE (-147)))))
(-1036)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -4091,7 +4091,7 @@ NIL
(-1040 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4508)) (|HasCategory| |#2| (QUOTE (-1131))))
+((|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-1131))))
(-1041 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -4102,21 +4102,21 @@ NIL
NIL
(-1043)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4500 . T) (-4505 . T) (-4499 . T) (-4502 . T) (-4501 . T) ((-4509 "*") . T) (-4504 . T))
+((-4501 . T) (-4506 . T) (-4500 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4505 . T))
NIL
-(-1044 R -2173)
+(-1044 R -2174)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1045 R -2173)
+(-1045 R -2174)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1046 -2173 UP)
+(-1046 -2174 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1047 -2173 UP)
+(-1047 -2174 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4150,9 +4150,9 @@ NIL
NIL
(-1055 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4500 . T) (-4505 . T) (-4499 . T) (-4502 . T) (-4501 . T) ((-4509 "*") . T) (-4504 . T))
-((-2225 (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (QUOTE (-578)))))
-(-1056 -2173 L)
+((-4501 . T) (-4506 . T) (-4500 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4505 . T))
+((-2226 (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-421 (-578)) (LIST (QUOTE -1069) (QUOTE (-578)))))
+(-1056 -2174 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -4162,12 +4162,12 @@ NIL
((|HasCategory| |#1| (QUOTE (-1131))))
(-1058 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
(-1059 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4509 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4510 "*"))))
(-1060 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -4188,14 +4188,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1065 -2173 |Expon| |VarSet| |FPol| |LFPol|)
+(-1065 -2174 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1066)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -2079) (QUOTE (-52))))))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-52) (QUOTE (-1131))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -2076) (QUOTE (-52))))))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-52) (QUOTE (-1131))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-102))))
(-1067)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4238,7 +4238,7 @@ NIL
NIL
(-1077 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
((-12 (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1131))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -802) (|devaluate| |#1|) (LIST (QUOTE -888) (|devaluate| |#2|)))))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| (-888 |#2|) (QUOTE (-381))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-102))))
(-1078)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -4250,9 +4250,9 @@ NIL
NIL
(-1080)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4504 . T))
+((-4505 . T))
NIL
-(-1081 |xx| -2173)
+(-1081 |xx| -2174)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4266,12 +4266,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-570))) (|HasCategory| |#4| (QUOTE (-175))))
(-1084 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4507 . T) (-4502 . T) (-4501 . T))
+((-4508 . T) (-4503 . T) (-4502 . T))
NIL
(-1085 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4507 . T) (-4502 . T) (-4501 . T))
-((|HasCategory| |#3| (QUOTE (-175))) (-2225 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-570))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))))
+((-4508 . T) (-4503 . T) (-4502 . T))
+((|HasCategory| |#3| (QUOTE (-175))) (-2226 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-570))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))))
(-1086 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4294,7 +4294,7 @@ NIL
NIL
(-1091)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1092 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -4302,19 +4302,19 @@ NIL
NIL
(-1093)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4495 . T) (-4499 . T) (-4494 . T) (-4505 . T) (-4506 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4496 . T) (-4500 . T) (-4495 . T) (-4506 . T) (-4507 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1094)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -2079) (QUOTE (-52))))))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-52) (QUOTE (-1131))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1207)) (|:| -2079 (-52))) (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -2076) (QUOTE (-52))))))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| (-52) (QUOTE (-1131))) (|HasCategory| (-52) (LIST (QUOTE -321) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-52) (QUOTE (-1131))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1207)) (|:| -2076 (-52))) (QUOTE (-102))))
(-1095 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -1023) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-1207)))))
(-1096 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-1097)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4338,7 +4338,7 @@ NIL
NIL
(-1102 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-1103 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4356,11 +4356,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1107 |Base| R -2173)
+(-1107 |Base| R -2174)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1108 |Base| R -2173)
+(-1108 |Base| R -2174)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
@@ -4374,8 +4374,8 @@ NIL
NIL
(-1111 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4500 |has| |#1| (-376)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-362))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))))
+((-4501 |has| |#1| (-376)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-362))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))))
(-1112 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4402,8 +4402,8 @@ NIL
NIL
(-1118 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-1119 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4446,7 +4446,7 @@ NIL
NIL
(-1129 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4497 . T))
+((-4498 . T))
NIL
(-1130 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4462,8 +4462,8 @@ NIL
NIL
(-1133 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4507 . T) (-4497 . T) (-4508 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4508 . T) (-4498 . T) (-4509 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-1134 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers.")))
NIL
@@ -4490,7 +4490,7 @@ NIL
NIL
(-1140 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-1141)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4506,8 +4506,8 @@ NIL
NIL
(-1144 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4501 |has| |#3| (-1080)) (-4502 |has| |#3| (-1080)) (-4504 |has| |#3| (-6 -4504)) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#3| (QUOTE (-376))) (-2225 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2225 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2225 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2225 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2225 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2225 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (|HasAttribute| |#3| (QUOTE -4504)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))))
+((-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4505 |has| |#3| (-6 -4505)) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#3| (QUOTE (-376))) (-2226 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2226 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2226 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1131)))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2226 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2226 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (|HasCategory| (-578) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2226 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578)))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#3| (QUOTE (-1131)))) (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))))
(-1145 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4516,7 +4516,7 @@ NIL
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1147 R -2173)
+(-1147 R -2174)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4534,19 +4534,19 @@ NIL
NIL
(-1151)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4495 . T) (-4499 . T) (-4494 . T) (-4505 . T) (-4506 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4496 . T) (-4500 . T) (-4495 . T) (-4506 . T) (-4507 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1152 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4507 . T) (-4508 . T))
+((-4508 . T) (-4509 . T))
NIL
(-1153 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4509 "*"))) (|HasCategory| |#3| (QUOTE (-175))))
+((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4510 "*"))) (|HasCategory| |#3| (QUOTE (-175))))
(-1154 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4507 . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4508 . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1155 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4554,17 +4554,17 @@ NIL
NIL
(-1156 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-1157 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376))))
(-1158 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
-(-1159 UP -2173)
+(-1159 UP -2174)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4618,19 +4618,19 @@ NIL
NIL
(-1172 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131))) (-2225 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131)))) (-2225 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131))))) (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131))) (-2226 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131)))) (-2226 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1131))))) (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))))
(-1173 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4504 . T) (-4496 |has| |#2| (-6 (-4509 "*"))) (-4507 . T) (-4501 . T) (-4502 . T))
-((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4509 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (-2225 (|HasAttribute| |#2| (QUOTE (-4509 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
+((-4505 . T) (-4497 |has| |#2| (-6 (-4510 "*"))) (-4508 . T) (-4502 . T) (-4503 . T))
+((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (-2226 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
(-1174 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1175)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-1176 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4638,12 +4638,12 @@ NIL
NIL
(-1177 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
(-1178 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-1179 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4654,8 +4654,8 @@ NIL
NIL
(-1181 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|)))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))))
+((-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|)))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))))
(-1182)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
@@ -4682,16 +4682,16 @@ NIL
NIL
(-1188 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4509 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-1189)
((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2225 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-871))) (-2225 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2226 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-871))) (-2226 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
(-1190 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#1|)))))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 (-1189)) (|:| -2079 |#1|)) (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#1|)))))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 (-1189)) (|:| -2076 |#1|)) (QUOTE (-102))))
(-1191 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
@@ -4722,9 +4722,9 @@ NIL
NIL
(-1198 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4509 "*") -2225 (-3533 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3533 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4500 -2225 (-3533 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-3533 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-1199 R -2173)
+(((-4510 "*") -2226 (-3535 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3535 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4501 -2226 (-3535 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-3535 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-1199 R -2174)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4742,16 +4742,16 @@ NIL
NIL
(-1203 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4503 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-1204 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-1205 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-1206)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4766,8 +4766,8 @@ NIL
NIL
(-1209 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-6 -4505)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| (-1002) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasAttribute| |#1| (QUOTE -4505)))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-6 -4506)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| (-1002) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasAttribute| |#1| (QUOTE -4506)))
(-1210)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4810,8 +4810,8 @@ NIL
NIL
(-1220 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4507 . T) (-4508 . T))
-((-12 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2338) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2079) (|devaluate| |#2|)))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2225 (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2338 |#1|) (|:| -2079 |#2|)) (QUOTE (-102))))
+((-4508 . T) (-4509 . T))
+((-12 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2339) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2076) (|devaluate| |#2|)))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -633) (QUOTE (-550)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1131))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886))))) (-2226 (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -2339 |#1|) (|:| -2076 |#2|)) (QUOTE (-102))))
(-1221 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
@@ -4826,7 +4826,7 @@ NIL
NIL
(-1224 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4508 . T))
+((-4509 . T))
NIL
(-1225 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4866,8 +4866,8 @@ NIL
NIL
(-1234 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4508 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4509 . T) (-4508 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
(-1235 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4876,7 +4876,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1237 R -2173)
+(-1237 R -2174)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4884,7 +4884,7 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1239 R -2173)
+(-1239 R -2174)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -917) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -911) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -911) (|devaluate| |#1|)))))
@@ -4894,12 +4894,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-381))))
(-1241 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-1242 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-376))))
(-1243 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4912,7 +4912,7 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))))
-(-1246 -2173)
+(-1246 -2174)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
@@ -4938,7 +4938,7 @@ NIL
NIL
(-1252)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1253)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
@@ -4962,7 +4962,7 @@ NIL
NIL
(-1258 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1259 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
@@ -4970,16 +4970,16 @@ NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-1260 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1261 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2225 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2225 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-938))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2226 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2226 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-938))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))))
(-1262 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4509 "*") -2225 (-3533 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3533 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4500 -2225 (-3533 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-3533 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
-((-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") -2226 (-3535 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3535 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4501 -2226 (-3535 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-842))) (|has| |#1| (-570)) (-3535 (|has| |#1| (-376)) (|has| (-1290 |#1| |#2| |#3|) (-938)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|)))))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-578)) (|devaluate| |#1|))))) (|HasCategory| (-578) (QUOTE (-1143))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1053))) (|HasCategory| |#1| (QUOTE (-376)))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1290) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-578))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1290 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-1263 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -5014,8 +5014,8 @@ NIL
NIL
(-1271 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4509 "*") |has| |#2| (-175)) (-4500 |has| |#2| (-570)) (-4503 |has| |#2| (-376)) (-4505 |has| |#2| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2225 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2225 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2225 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-570)) (-4504 |has| |#2| (-376)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-570)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-392)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-392))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-578)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-578))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-392)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -917) (QUOTE (-578)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-550))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-578)))) (-2226 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (-2226 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1183))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-2226 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-1272 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
@@ -5026,15 +5026,15 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1183))))
(-1274 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4503 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4502 . T) (-4501 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-1275 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2863) (LIST (|devaluate| |#2|) (QUOTE (-1207))))))
+((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2864) (LIST (|devaluate| |#2|) (QUOTE (-1207))))))
(-1276 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1277 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
@@ -5046,7 +5046,7 @@ NIL
NIL
(-1279 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1280 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
@@ -5054,24 +5054,24 @@ NIL
NIL
(-1281 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1282 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))))
(-1283 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4505 |has| |#1| (-376)) (-4499 |has| |#1| (-376)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2225 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#1| (QUOTE (-175))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-578)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-2226 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-570)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-578)))))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-1284 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4509 "*") |has| (-1283 |#2| |#3| |#4|) (-175)) (-4500 |has| (-1283 |#2| |#3| |#4|) (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-175))) (-2225 (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-570))))
+(((-4510 "*") |has| (-1283 |#2| |#3| |#4|) (-175)) (-4501 |has| (-1283 |#2| |#3| |#4|) (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-175))) (-2226 (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578)))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| (-1283 |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-578)))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1283 |#2| |#3| |#4|) (QUOTE (-570))))
(-1285 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4508)))
+((|HasAttribute| |#1| (QUOTE -4509)))
(-1286 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
@@ -5083,20 +5083,20 @@ NIL
(-1288 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-988))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1583) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#2| (QUOTE (-988))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1574) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#2| (QUOTE (-376))))
(-1289 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1290 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4509 "*") |has| |#1| (-175)) (-4500 |has| |#1| (-570)) (-4501 . T) (-4502 . T) (-4504 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2225 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2863) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2225 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1583) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1880) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-570)) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasCategory| |#1| (QUOTE (-570))) (-2226 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-570)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -2864) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2226 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-578)))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasSignature| |#1| (LIST (QUOTE -1574) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (LIST (QUOTE -666) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-1291 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1292 -2173 UP L UTS)
+(-1292 -2174 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-570))))
@@ -5114,7 +5114,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1296 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
NIL
(-1297 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
@@ -5122,8 +5122,8 @@ NIL
NIL
(-1298 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4508 . T) (-4507 . T))
-((-2225 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2225 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2225 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2225 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-4509 . T) (-4508 . T))
+((-2226 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2226 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-550)))) (-2226 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-871))) (-2226 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-578) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-1299)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
@@ -5150,13 +5150,13 @@ NIL
NIL
(-1305 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4502 . T) (-4501 . T))
+((-4503 . T) (-4502 . T))
NIL
(-1306 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1307 K R UP -2173)
+(-1307 K R UP -2174)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -5170,56 +5170,56 @@ NIL
NIL
(-1310 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4502 |has| |#1| (-175)) (-4501 |has| |#1| (-175)) (-4504 . T))
+((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))))
(-1311 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4508 . T) (-4507 . T))
+((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-550)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-570))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
(-1312 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4501 . T) (-4502 . T) (-4504 . T))
+((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1313 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4504 . T) (-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T))
-((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4500)))
+((-4505 . T) (-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T))
+((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4501)))
(-1314 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
(-1315 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T))
+((-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
-(-1316 S -2173)
+(-1316 S -2174)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))))
-(-1317 -2173)
+(-1317 -2174)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4499 . T) (-4505 . T) (-4500 . T) ((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1318 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -739) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasAttribute| |#2| (QUOTE -4500)))
+((-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -739) (LIST (QUOTE -421) (QUOTE (-578))))) (|HasAttribute| |#2| (QUOTE -4501)))
(-1319 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T))
+((-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-1320 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4500 |has| |#1| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4500)))
+((-4501 |has| |#1| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4501)))
(-1321 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4504 . T) (-4505 |has| |#1| (-6 -4505)) (-4500 |has| |#1| (-6 -4500)) (-4502 . T) (-4501 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4505)) (|HasAttribute| |#1| (QUOTE -4500)))
+((-4505 . T) (-4506 |has| |#1| (-6 -4506)) (-4501 |has| |#1| (-6 -4501)) (-4503 . T) (-4502 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4501)))
(-1322 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4500 |has| |#2| (-6 -4500)) (-4502 . T) (-4501 . T) (-4504 . T))
-((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4500)))
+((-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T))
+((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4501)))
(-1323)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
@@ -5238,7 +5238,7 @@ NIL
NIL
(-1327 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4509 "*") . T) (-4501 . T) (-4502 . T) (-4504 . T))
+(((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
NIL
NIL
@@ -5256,4 +5256,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2300594 2300599 2300604 2300609) (-2 NIL 2300574 2300579 2300584 2300589) (-1 NIL 2300554 2300559 2300564 2300569) (0 NIL 2300534 2300539 2300544 2300549) (-1327 "ZMOD.spad" 2300343 2300356 2300472 2300529) (-1326 "ZLINDEP.spad" 2299409 2299420 2300333 2300338) (-1325 "ZDSOLVE.spad" 2289353 2289375 2299399 2299404) (-1324 "YSTREAM.spad" 2288848 2288859 2289343 2289348) (-1323 "YDIAGRAM.spad" 2288482 2288491 2288838 2288843) (-1322 "XRPOLY.spad" 2287702 2287722 2288338 2288407) (-1321 "XPR.spad" 2285497 2285510 2287420 2287519) (-1320 "XPOLY.spad" 2285052 2285063 2285353 2285422) (-1319 "XPOLYC.spad" 2284371 2284387 2284978 2285047) (-1318 "XPBWPOLY.spad" 2282808 2282828 2284151 2284220) (-1317 "XF.spad" 2281271 2281286 2282710 2282803) (-1316 "XF.spad" 2279714 2279731 2281155 2281160) (-1315 "XFALG.spad" 2276762 2276778 2279640 2279709) (-1314 "XEXPPKG.spad" 2276013 2276039 2276752 2276757) (-1313 "XDPOLY.spad" 2275627 2275643 2275869 2275938) (-1312 "XALG.spad" 2275287 2275298 2275583 2275622) (-1311 "WUTSET.spad" 2271090 2271107 2274897 2274924) (-1310 "WP.spad" 2270289 2270333 2270948 2271015) (-1309 "WHILEAST.spad" 2270087 2270096 2270279 2270284) (-1308 "WHEREAST.spad" 2269758 2269767 2270077 2270082) (-1307 "WFFINTBS.spad" 2267421 2267443 2269748 2269753) (-1306 "WEIER.spad" 2265643 2265654 2267411 2267416) (-1305 "VSPACE.spad" 2265316 2265327 2265611 2265638) (-1304 "VSPACE.spad" 2265009 2265022 2265306 2265311) (-1303 "VOID.spad" 2264686 2264695 2264999 2265004) (-1302 "VIEW.spad" 2262366 2262375 2264676 2264681) (-1301 "VIEWDEF.spad" 2257567 2257576 2262356 2262361) (-1300 "VIEW3D.spad" 2241528 2241537 2257557 2257562) (-1299 "VIEW2D.spad" 2229419 2229428 2241518 2241523) (-1298 "VECTOR.spad" 2227940 2227951 2228191 2228218) (-1297 "VECTOR2.spad" 2226579 2226592 2227930 2227935) (-1296 "VECTCAT.spad" 2224483 2224494 2226547 2226574) (-1295 "VECTCAT.spad" 2222194 2222207 2224260 2224265) (-1294 "VARIABLE.spad" 2221974 2221989 2222184 2222189) (-1293 "UTYPE.spad" 2221618 2221627 2221964 2221969) (-1292 "UTSODETL.spad" 2220913 2220937 2221574 2221579) (-1291 "UTSODE.spad" 2219129 2219149 2220903 2220908) (-1290 "UTS.spad" 2214076 2214104 2217596 2217693) (-1289 "UTSCAT.spad" 2211555 2211571 2213974 2214071) (-1288 "UTSCAT.spad" 2208678 2208696 2211099 2211104) (-1287 "UTS2.spad" 2208273 2208308 2208668 2208673) (-1286 "URAGG.spad" 2202946 2202957 2208263 2208268) (-1285 "URAGG.spad" 2197583 2197596 2202902 2202907) (-1284 "UPXSSING.spad" 2195228 2195254 2196664 2196797) (-1283 "UPXS.spad" 2192524 2192552 2193360 2193509) (-1282 "UPXSCONS.spad" 2190283 2190303 2190656 2190805) (-1281 "UPXSCCA.spad" 2188854 2188874 2190129 2190278) (-1280 "UPXSCCA.spad" 2187567 2187589 2188844 2188849) (-1279 "UPXSCAT.spad" 2186156 2186172 2187413 2187562) (-1278 "UPXS2.spad" 2185699 2185752 2186146 2186151) (-1277 "UPSQFREE.spad" 2184113 2184127 2185689 2185694) (-1276 "UPSCAT.spad" 2181900 2181924 2184011 2184108) (-1275 "UPSCAT.spad" 2179393 2179419 2181506 2181511) (-1274 "UPOLYC.spad" 2174433 2174444 2179235 2179388) (-1273 "UPOLYC.spad" 2169365 2169378 2174169 2174174) (-1272 "UPOLYC2.spad" 2168836 2168855 2169355 2169360) (-1271 "UP.spad" 2165942 2165957 2166329 2166482) (-1270 "UPMP.spad" 2164842 2164855 2165932 2165937) (-1269 "UPDIVP.spad" 2164407 2164421 2164832 2164837) (-1268 "UPDECOMP.spad" 2162652 2162666 2164397 2164402) (-1267 "UPCDEN.spad" 2161861 2161877 2162642 2162647) (-1266 "UP2.spad" 2161225 2161246 2161851 2161856) (-1265 "UNISEG.spad" 2160578 2160589 2161144 2161149) (-1264 "UNISEG2.spad" 2160075 2160088 2160534 2160539) (-1263 "UNIFACT.spad" 2159178 2159190 2160065 2160070) (-1262 "ULS.spad" 2148962 2148990 2149907 2150336) (-1261 "ULSCONS.spad" 2140096 2140116 2140466 2140615) (-1260 "ULSCCAT.spad" 2137833 2137853 2139942 2140091) (-1259 "ULSCCAT.spad" 2135678 2135700 2137789 2137794) (-1258 "ULSCAT.spad" 2133910 2133926 2135524 2135673) (-1257 "ULS2.spad" 2133424 2133477 2133900 2133905) (-1256 "UINT8.spad" 2133301 2133310 2133414 2133419) (-1255 "UINT64.spad" 2133177 2133186 2133291 2133296) (-1254 "UINT32.spad" 2133053 2133062 2133167 2133172) (-1253 "UINT16.spad" 2132929 2132938 2133043 2133048) (-1252 "UFD.spad" 2131994 2132003 2132855 2132924) (-1251 "UFD.spad" 2131121 2131132 2131984 2131989) (-1250 "UDVO.spad" 2130002 2130011 2131111 2131116) (-1249 "UDPO.spad" 2127495 2127506 2129958 2129963) (-1248 "TYPE.spad" 2127427 2127436 2127485 2127490) (-1247 "TYPEAST.spad" 2127346 2127355 2127417 2127422) (-1246 "TWOFACT.spad" 2125998 2126013 2127336 2127341) (-1245 "TUPLE.spad" 2125484 2125495 2125897 2125902) (-1244 "TUBETOOL.spad" 2122351 2122360 2125474 2125479) (-1243 "TUBE.spad" 2120998 2121015 2122341 2122346) (-1242 "TS.spad" 2119597 2119613 2120563 2120660) (-1241 "TSETCAT.spad" 2106724 2106741 2119565 2119592) (-1240 "TSETCAT.spad" 2093837 2093856 2106680 2106685) (-1239 "TRMANIP.spad" 2088203 2088220 2093543 2093548) (-1238 "TRIMAT.spad" 2087166 2087191 2088193 2088198) (-1237 "TRIGMNIP.spad" 2085693 2085710 2087156 2087161) (-1236 "TRIGCAT.spad" 2085205 2085214 2085683 2085688) (-1235 "TRIGCAT.spad" 2084715 2084726 2085195 2085200) (-1234 "TREE.spad" 2083173 2083184 2084205 2084232) (-1233 "TRANFUN.spad" 2083012 2083021 2083163 2083168) (-1232 "TRANFUN.spad" 2082849 2082860 2083002 2083007) (-1231 "TOPSP.spad" 2082523 2082532 2082839 2082844) (-1230 "TOOLSIGN.spad" 2082186 2082197 2082513 2082518) (-1229 "TEXTFILE.spad" 2080747 2080756 2082176 2082181) (-1228 "TEX.spad" 2077893 2077902 2080737 2080742) (-1227 "TEX1.spad" 2077449 2077460 2077883 2077888) (-1226 "TEMUTL.spad" 2077004 2077013 2077439 2077444) (-1225 "TBCMPPK.spad" 2075097 2075120 2076994 2076999) (-1224 "TBAGG.spad" 2074147 2074170 2075077 2075092) (-1223 "TBAGG.spad" 2073205 2073230 2074137 2074142) (-1222 "TANEXP.spad" 2072613 2072624 2073195 2073200) (-1221 "TALGOP.spad" 2072337 2072348 2072603 2072608) (-1220 "TABLE.spad" 2070306 2070329 2070576 2070603) (-1219 "TABLEAU.spad" 2069787 2069798 2070296 2070301) (-1218 "TABLBUMP.spad" 2066590 2066601 2069777 2069782) (-1217 "SYSTEM.spad" 2065818 2065827 2066580 2066585) (-1216 "SYSSOLP.spad" 2063301 2063312 2065808 2065813) (-1215 "SYSPTR.spad" 2063200 2063209 2063291 2063296) (-1214 "SYSNNI.spad" 2062391 2062402 2063190 2063195) (-1213 "SYSINT.spad" 2061795 2061806 2062381 2062386) (-1212 "SYNTAX.spad" 2058001 2058010 2061785 2061790) (-1211 "SYMTAB.spad" 2056069 2056078 2057991 2057996) (-1210 "SYMS.spad" 2052092 2052101 2056059 2056064) (-1209 "SYMPOLY.spad" 2051098 2051109 2051180 2051307) (-1208 "SYMFUNC.spad" 2050599 2050610 2051088 2051093) (-1207 "SYMBOL.spad" 2048102 2048111 2050589 2050594) (-1206 "SWITCH.spad" 2044873 2044882 2048092 2048097) (-1205 "SUTS.spad" 2041921 2041949 2043340 2043437) (-1204 "SUPXS.spad" 2039204 2039232 2040053 2040202) (-1203 "SUP.spad" 2035924 2035935 2036697 2036850) (-1202 "SUPFRACF.spad" 2035029 2035047 2035914 2035919) (-1201 "SUP2.spad" 2034421 2034434 2035019 2035024) (-1200 "SUMRF.spad" 2033395 2033406 2034411 2034416) (-1199 "SUMFS.spad" 2033032 2033049 2033385 2033390) (-1198 "SULS.spad" 2022803 2022831 2023761 2024190) (-1197 "SUCHTAST.spad" 2022572 2022581 2022793 2022798) (-1196 "SUCH.spad" 2022254 2022269 2022562 2022567) (-1195 "SUBSPACE.spad" 2014369 2014384 2022244 2022249) (-1194 "SUBRESP.spad" 2013539 2013553 2014325 2014330) (-1193 "STTF.spad" 2009638 2009654 2013529 2013534) (-1192 "STTFNC.spad" 2006106 2006122 2009628 2009633) (-1191 "STTAYLOR.spad" 1998741 1998752 2005987 2005992) (-1190 "STRTBL.spad" 1996792 1996809 1996941 1996968) (-1189 "STRING.spad" 1995579 1995588 1995800 1995827) (-1188 "STREAM.spad" 1992380 1992391 1994987 1995002) (-1187 "STREAM3.spad" 1991953 1991968 1992370 1992375) (-1186 "STREAM2.spad" 1991081 1991094 1991943 1991948) (-1185 "STREAM1.spad" 1990787 1990798 1991071 1991076) (-1184 "STINPROD.spad" 1989723 1989739 1990777 1990782) (-1183 "STEP.spad" 1988924 1988933 1989713 1989718) (-1182 "STEPAST.spad" 1988158 1988167 1988914 1988919) (-1181 "STBL.spad" 1986242 1986270 1986409 1986424) (-1180 "STAGG.spad" 1985317 1985328 1986232 1986237) (-1179 "STAGG.spad" 1984390 1984403 1985307 1985312) (-1178 "STACK.spad" 1983630 1983641 1983880 1983907) (-1177 "SREGSET.spad" 1981298 1981315 1983240 1983267) (-1176 "SRDCMPK.spad" 1979859 1979879 1981288 1981293) (-1175 "SRAGG.spad" 1975002 1975011 1979827 1979854) (-1174 "SRAGG.spad" 1970165 1970176 1974992 1974997) (-1173 "SQMATRIX.spad" 1967708 1967726 1968624 1968711) (-1172 "SPLTREE.spad" 1962104 1962117 1966988 1967015) (-1171 "SPLNODE.spad" 1958692 1958705 1962094 1962099) (-1170 "SPFCAT.spad" 1957501 1957510 1958682 1958687) (-1169 "SPECOUT.spad" 1956053 1956062 1957491 1957496) (-1168 "SPADXPT.spad" 1947648 1947657 1956043 1956048) (-1167 "spad-parser.spad" 1947113 1947122 1947638 1947643) (-1166 "SPADAST.spad" 1946814 1946823 1947103 1947108) (-1165 "SPACEC.spad" 1931013 1931024 1946804 1946809) (-1164 "SPACE3.spad" 1930789 1930800 1931003 1931008) (-1163 "SORTPAK.spad" 1930338 1930351 1930745 1930750) (-1162 "SOLVETRA.spad" 1928101 1928112 1930328 1930333) (-1161 "SOLVESER.spad" 1926629 1926640 1928091 1928096) (-1160 "SOLVERAD.spad" 1922655 1922666 1926619 1926624) (-1159 "SOLVEFOR.spad" 1921117 1921135 1922645 1922650) (-1158 "SNTSCAT.spad" 1920717 1920734 1921085 1921112) (-1157 "SMTS.spad" 1918989 1919015 1920282 1920379) (-1156 "SMP.spad" 1916464 1916484 1916854 1916981) (-1155 "SMITH.spad" 1915309 1915334 1916454 1916459) (-1154 "SMATCAT.spad" 1913419 1913449 1915253 1915304) (-1153 "SMATCAT.spad" 1911461 1911493 1913297 1913302) (-1152 "SKAGG.spad" 1910424 1910435 1911429 1911456) (-1151 "SINT.spad" 1909364 1909373 1910290 1910419) (-1150 "SIMPAN.spad" 1909092 1909101 1909354 1909359) (-1149 "SIG.spad" 1908422 1908431 1909082 1909087) (-1148 "SIGNRF.spad" 1907540 1907551 1908412 1908417) (-1147 "SIGNEF.spad" 1906819 1906836 1907530 1907535) (-1146 "SIGAST.spad" 1906204 1906213 1906809 1906814) (-1145 "SHP.spad" 1904132 1904147 1906160 1906165) (-1144 "SHDP.spad" 1891810 1891837 1892319 1892418) (-1143 "SGROUP.spad" 1891418 1891427 1891800 1891805) (-1142 "SGROUP.spad" 1891024 1891035 1891408 1891413) (-1141 "SGCF.spad" 1884163 1884172 1891014 1891019) (-1140 "SFRTCAT.spad" 1883093 1883110 1884131 1884158) (-1139 "SFRGCD.spad" 1882156 1882176 1883083 1883088) (-1138 "SFQCMPK.spad" 1876793 1876813 1882146 1882151) (-1137 "SFORT.spad" 1876232 1876246 1876783 1876788) (-1136 "SEXOF.spad" 1876075 1876115 1876222 1876227) (-1135 "SEX.spad" 1875967 1875976 1876065 1876070) (-1134 "SEXCAT.spad" 1873739 1873779 1875957 1875962) (-1133 "SET.spad" 1872027 1872038 1873124 1873163) (-1132 "SETMN.spad" 1870477 1870494 1872017 1872022) (-1131 "SETCAT.spad" 1869962 1869971 1870467 1870472) (-1130 "SETCAT.spad" 1869445 1869456 1869952 1869957) (-1129 "SETAGG.spad" 1865994 1866005 1869425 1869440) (-1128 "SETAGG.spad" 1862551 1862564 1865984 1865989) (-1127 "SEQAST.spad" 1862254 1862263 1862541 1862546) (-1126 "SEGXCAT.spad" 1861410 1861423 1862244 1862249) (-1125 "SEG.spad" 1861223 1861234 1861329 1861334) (-1124 "SEGCAT.spad" 1860148 1860159 1861213 1861218) (-1123 "SEGBIND.spad" 1859906 1859917 1860095 1860100) (-1122 "SEGBIND2.spad" 1859604 1859617 1859896 1859901) (-1121 "SEGAST.spad" 1859318 1859327 1859594 1859599) (-1120 "SEG2.spad" 1858753 1858766 1859274 1859279) (-1119 "SDVAR.spad" 1858029 1858040 1858743 1858748) (-1118 "SDPOL.spad" 1855362 1855373 1855653 1855780) (-1117 "SCPKG.spad" 1853451 1853462 1855352 1855357) (-1116 "SCOPE.spad" 1852604 1852613 1853441 1853446) (-1115 "SCACHE.spad" 1851300 1851311 1852594 1852599) (-1114 "SASTCAT.spad" 1851209 1851218 1851290 1851295) (-1113 "SAOS.spad" 1851081 1851090 1851199 1851204) (-1112 "SAERFFC.spad" 1850794 1850814 1851071 1851076) (-1111 "SAE.spad" 1848264 1848280 1848875 1849010) (-1110 "SAEFACT.spad" 1847965 1847985 1848254 1848259) (-1109 "RURPK.spad" 1845624 1845640 1847955 1847960) (-1108 "RULESET.spad" 1845077 1845101 1845614 1845619) (-1107 "RULE.spad" 1843317 1843341 1845067 1845072) (-1106 "RULECOLD.spad" 1843169 1843182 1843307 1843312) (-1105 "RTVALUE.spad" 1842904 1842913 1843159 1843164) (-1104 "RSTRCAST.spad" 1842621 1842630 1842894 1842899) (-1103 "RSETGCD.spad" 1838999 1839019 1842611 1842616) (-1102 "RSETCAT.spad" 1828935 1828952 1838967 1838994) (-1101 "RSETCAT.spad" 1818891 1818910 1828925 1828930) (-1100 "RSDCMPK.spad" 1817343 1817363 1818881 1818886) (-1099 "RRCC.spad" 1815727 1815757 1817333 1817338) (-1098 "RRCC.spad" 1814109 1814141 1815717 1815722) (-1097 "RPTAST.spad" 1813811 1813820 1814099 1814104) (-1096 "RPOLCAT.spad" 1793171 1793186 1813679 1813806) (-1095 "RPOLCAT.spad" 1772244 1772261 1792754 1792759) (-1094 "ROUTINE.spad" 1767665 1767674 1770429 1770456) (-1093 "ROMAN.spad" 1766993 1767002 1767531 1767660) (-1092 "ROIRC.spad" 1766073 1766105 1766983 1766988) (-1091 "RNS.spad" 1764976 1764985 1765975 1766068) (-1090 "RNS.spad" 1763965 1763976 1764966 1764971) (-1089 "RNG.spad" 1763700 1763709 1763955 1763960) (-1088 "RNGBIND.spad" 1762860 1762874 1763655 1763660) (-1087 "RMODULE.spad" 1762625 1762636 1762850 1762855) (-1086 "RMCAT2.spad" 1762045 1762102 1762615 1762620) (-1085 "RMATRIX.spad" 1760833 1760852 1761176 1761215) (-1084 "RMATCAT.spad" 1756412 1756443 1760789 1760828) (-1083 "RMATCAT.spad" 1751881 1751914 1756260 1756265) (-1082 "RLINSET.spad" 1751585 1751596 1751871 1751876) (-1081 "RINTERP.spad" 1751473 1751493 1751575 1751580) (-1080 "RING.spad" 1750943 1750952 1751453 1751468) (-1079 "RING.spad" 1750421 1750432 1750933 1750938) (-1078 "RIDIST.spad" 1749813 1749822 1750411 1750416) (-1077 "RGCHAIN.spad" 1748341 1748357 1749243 1749270) (-1076 "RGBCSPC.spad" 1748122 1748134 1748331 1748336) (-1075 "RGBCMDL.spad" 1747652 1747664 1748112 1748117) (-1074 "RF.spad" 1745294 1745305 1747642 1747647) (-1073 "RFFACTOR.spad" 1744756 1744767 1745284 1745289) (-1072 "RFFACT.spad" 1744491 1744503 1744746 1744751) (-1071 "RFDIST.spad" 1743487 1743496 1744481 1744486) (-1070 "RETSOL.spad" 1742906 1742919 1743477 1743482) (-1069 "RETRACT.spad" 1742334 1742345 1742896 1742901) (-1068 "RETRACT.spad" 1741760 1741773 1742324 1742329) (-1067 "RETAST.spad" 1741572 1741581 1741750 1741755) (-1066 "RESULT.spad" 1739170 1739179 1739757 1739784) (-1065 "RESRING.spad" 1738517 1738564 1739108 1739165) (-1064 "RESLATC.spad" 1737841 1737852 1738507 1738512) (-1063 "REPSQ.spad" 1737572 1737583 1737831 1737836) (-1062 "REP.spad" 1735126 1735135 1737562 1737567) (-1061 "REPDB.spad" 1734833 1734844 1735116 1735121) (-1060 "REP2.spad" 1724491 1724502 1734675 1734680) (-1059 "REP1.spad" 1718687 1718698 1724441 1724446) (-1058 "REGSET.spad" 1716448 1716465 1718297 1718324) (-1057 "REF.spad" 1715783 1715794 1716403 1716408) (-1056 "REDORDER.spad" 1714989 1715006 1715773 1715778) (-1055 "RECLOS.spad" 1713772 1713792 1714476 1714569) (-1054 "REALSOLV.spad" 1712912 1712921 1713762 1713767) (-1053 "REAL.spad" 1712784 1712793 1712902 1712907) (-1052 "REAL0Q.spad" 1710082 1710097 1712774 1712779) (-1051 "REAL0.spad" 1706926 1706941 1710072 1710077) (-1050 "RDUCEAST.spad" 1706647 1706656 1706916 1706921) (-1049 "RDIV.spad" 1706302 1706327 1706637 1706642) (-1048 "RDIST.spad" 1705869 1705880 1706292 1706297) (-1047 "RDETRS.spad" 1704733 1704751 1705859 1705864) (-1046 "RDETR.spad" 1702872 1702890 1704723 1704728) (-1045 "RDEEFS.spad" 1701971 1701988 1702862 1702867) (-1044 "RDEEF.spad" 1700981 1700998 1701961 1701966) (-1043 "RCFIELD.spad" 1698167 1698176 1700883 1700976) (-1042 "RCFIELD.spad" 1695439 1695450 1698157 1698162) (-1041 "RCAGG.spad" 1693367 1693378 1695429 1695434) (-1040 "RCAGG.spad" 1691222 1691235 1693286 1693291) (-1039 "RATRET.spad" 1690582 1690593 1691212 1691217) (-1038 "RATFACT.spad" 1690274 1690286 1690572 1690577) (-1037 "RANDSRC.spad" 1689593 1689602 1690264 1690269) (-1036 "RADUTIL.spad" 1689349 1689358 1689583 1689588) (-1035 "RADIX.spad" 1686173 1686187 1687719 1687812) (-1034 "RADFF.spad" 1683912 1683949 1684031 1684187) (-1033 "RADCAT.spad" 1683507 1683516 1683902 1683907) (-1032 "RADCAT.spad" 1683100 1683111 1683497 1683502) (-1031 "QUEUE.spad" 1682331 1682342 1682590 1682617) (-1030 "QUAT.spad" 1680819 1680830 1681162 1681227) (-1029 "QUATCT2.spad" 1680439 1680458 1680809 1680814) (-1028 "QUATCAT.spad" 1678609 1678620 1680369 1680434) (-1027 "QUATCAT.spad" 1676530 1676543 1678292 1678297) (-1026 "QUAGG.spad" 1675357 1675368 1676498 1676525) (-1025 "QQUTAST.spad" 1675125 1675134 1675347 1675352) (-1024 "QFORM.spad" 1674743 1674758 1675115 1675120) (-1023 "QFCAT.spad" 1673445 1673456 1674645 1674738) (-1022 "QFCAT.spad" 1671738 1671751 1672940 1672945) (-1021 "QFCAT2.spad" 1671430 1671447 1671728 1671733) (-1020 "QEQUAT.spad" 1670988 1670997 1671420 1671425) (-1019 "QCMPACK.spad" 1665734 1665754 1670978 1670983) (-1018 "QALGSET.spad" 1661812 1661845 1665648 1665653) (-1017 "QALGSET2.spad" 1659807 1659826 1661802 1661807) (-1016 "PWFFINTB.spad" 1657222 1657244 1659797 1659802) (-1015 "PUSHVAR.spad" 1656560 1656580 1657212 1657217) (-1014 "PTRANFN.spad" 1652687 1652698 1656550 1656555) (-1013 "PTPACK.spad" 1649774 1649785 1652677 1652682) (-1012 "PTFUNC2.spad" 1649596 1649611 1649764 1649769) (-1011 "PTCAT.spad" 1648850 1648861 1649564 1649591) (-1010 "PSQFR.spad" 1648156 1648181 1648840 1648845) (-1009 "PSEUDLIN.spad" 1647041 1647052 1648146 1648151) (-1008 "PSETPK.spad" 1632473 1632490 1646919 1646924) (-1007 "PSETCAT.spad" 1626392 1626416 1632453 1632468) (-1006 "PSETCAT.spad" 1620285 1620311 1626348 1626353) (-1005 "PSCURVE.spad" 1619267 1619276 1620275 1620280) (-1004 "PSCAT.spad" 1618049 1618079 1619165 1619262) (-1003 "PSCAT.spad" 1616921 1616953 1618039 1618044) (-1002 "PRTITION.spad" 1615618 1615627 1616911 1616916) (-1001 "PRTDAST.spad" 1615336 1615345 1615608 1615613) (-1000 "PRS.spad" 1604897 1604915 1615292 1615297) (-999 "PRQAGG.spad" 1604332 1604342 1604865 1604892) (-998 "PROPLOG.spad" 1603904 1603912 1604322 1604327) (-997 "PROPFUN2.spad" 1603527 1603540 1603894 1603899) (-996 "PROPFUN1.spad" 1602925 1602936 1603517 1603522) (-995 "PROPFRML.spad" 1601493 1601504 1602915 1602920) (-994 "PROPERTY.spad" 1600981 1600989 1601483 1601488) (-993 "PRODUCT.spad" 1598663 1598675 1598947 1599002) (-992 "PR.spad" 1597055 1597067 1597754 1597881) (-991 "PRINT.spad" 1596807 1596815 1597045 1597050) (-990 "PRIMES.spad" 1595060 1595070 1596797 1596802) (-989 "PRIMELT.spad" 1593141 1593155 1595050 1595055) (-988 "PRIMCAT.spad" 1592768 1592776 1593131 1593136) (-987 "PRIMARR.spad" 1591620 1591630 1591798 1591825) (-986 "PRIMARR2.spad" 1590387 1590399 1591610 1591615) (-985 "PREASSOC.spad" 1589769 1589781 1590377 1590382) (-984 "PPCURVE.spad" 1588906 1588914 1589759 1589764) (-983 "PORTNUM.spad" 1588681 1588689 1588896 1588901) (-982 "POLYROOT.spad" 1587530 1587552 1588637 1588642) (-981 "POLY.spad" 1584865 1584875 1585380 1585507) (-980 "POLYLIFT.spad" 1584130 1584153 1584855 1584860) (-979 "POLYCATQ.spad" 1582248 1582270 1584120 1584125) (-978 "POLYCAT.spad" 1575718 1575739 1582116 1582243) (-977 "POLYCAT.spad" 1568526 1568549 1574926 1574931) (-976 "POLY2UP.spad" 1567978 1567992 1568516 1568521) (-975 "POLY2.spad" 1567575 1567587 1567968 1567973) (-974 "POLUTIL.spad" 1566516 1566545 1567531 1567536) (-973 "POLTOPOL.spad" 1565264 1565279 1566506 1566511) (-972 "POINT.spad" 1563949 1563959 1564036 1564063) (-971 "PNTHEORY.spad" 1560651 1560659 1563939 1563944) (-970 "PMTOOLS.spad" 1559426 1559440 1560641 1560646) (-969 "PMSYM.spad" 1558975 1558985 1559416 1559421) (-968 "PMQFCAT.spad" 1558566 1558580 1558965 1558970) (-967 "PMPRED.spad" 1558045 1558059 1558556 1558561) (-966 "PMPREDFS.spad" 1557499 1557521 1558035 1558040) (-965 "PMPLCAT.spad" 1556579 1556597 1557431 1557436) (-964 "PMLSAGG.spad" 1556164 1556178 1556569 1556574) (-963 "PMKERNEL.spad" 1555743 1555755 1556154 1556159) (-962 "PMINS.spad" 1555323 1555333 1555733 1555738) (-961 "PMFS.spad" 1554900 1554918 1555313 1555318) (-960 "PMDOWN.spad" 1554190 1554204 1554890 1554895) (-959 "PMASS.spad" 1553200 1553208 1554180 1554185) (-958 "PMASSFS.spad" 1552167 1552183 1553190 1553195) (-957 "PLOTTOOL.spad" 1551947 1551955 1552157 1552162) (-956 "PLOT.spad" 1546870 1546878 1551937 1551942) (-955 "PLOT3D.spad" 1543334 1543342 1546860 1546865) (-954 "PLOT1.spad" 1542491 1542501 1543324 1543329) (-953 "PLEQN.spad" 1529781 1529808 1542481 1542486) (-952 "PINTERP.spad" 1529403 1529422 1529771 1529776) (-951 "PINTERPA.spad" 1529187 1529203 1529393 1529398) (-950 "PI.spad" 1528796 1528804 1529161 1529182) (-949 "PID.spad" 1527766 1527774 1528722 1528791) (-948 "PICOERCE.spad" 1527423 1527433 1527756 1527761) (-947 "PGROEB.spad" 1526024 1526038 1527413 1527418) (-946 "PGE.spad" 1517641 1517649 1526014 1526019) (-945 "PGCD.spad" 1516531 1516548 1517631 1517636) (-944 "PFRPAC.spad" 1515680 1515690 1516521 1516526) (-943 "PFR.spad" 1512343 1512353 1515582 1515675) (-942 "PFOTOOLS.spad" 1511601 1511617 1512333 1512338) (-941 "PFOQ.spad" 1510971 1510989 1511591 1511596) (-940 "PFO.spad" 1510390 1510417 1510961 1510966) (-939 "PF.spad" 1509964 1509976 1510195 1510288) (-938 "PFECAT.spad" 1507646 1507654 1509890 1509959) (-937 "PFECAT.spad" 1505356 1505366 1507602 1507607) (-936 "PFBRU.spad" 1503244 1503256 1505346 1505351) (-935 "PFBR.spad" 1500804 1500827 1503234 1503239) (-934 "PERM.spad" 1496611 1496621 1500634 1500649) (-933 "PERMGRP.spad" 1491381 1491391 1496601 1496606) (-932 "PERMCAT.spad" 1490042 1490052 1491361 1491376) (-931 "PERMAN.spad" 1488574 1488588 1490032 1490037) (-930 "PENDTREE.spad" 1487798 1487808 1488086 1488091) (-929 "PDSPC.spad" 1486611 1486621 1487788 1487793) (-928 "PDSPC.spad" 1485422 1485434 1486601 1486606) (-927 "PDRING.spad" 1485264 1485274 1485402 1485417) (-926 "PDMOD.spad" 1485080 1485092 1485232 1485259) (-925 "PDEPROB.spad" 1484095 1484103 1485070 1485075) (-924 "PDEPACK.spad" 1478135 1478143 1484085 1484090) (-923 "PDECOMP.spad" 1477605 1477622 1478125 1478130) (-922 "PDECAT.spad" 1475961 1475969 1477595 1477600) (-921 "PDDOM.spad" 1475399 1475412 1475951 1475956) (-920 "PDDOM.spad" 1474835 1474850 1475389 1475394) (-919 "PCOMP.spad" 1474688 1474701 1474825 1474830) (-918 "PBWLB.spad" 1473276 1473293 1474678 1474683) (-917 "PATTERN.spad" 1467815 1467825 1473266 1473271) (-916 "PATTERN2.spad" 1467553 1467565 1467805 1467810) (-915 "PATTERN1.spad" 1465889 1465905 1467543 1467548) (-914 "PATRES.spad" 1463464 1463476 1465879 1465884) (-913 "PATRES2.spad" 1463136 1463150 1463454 1463459) (-912 "PATMATCH.spad" 1461333 1461364 1462844 1462849) (-911 "PATMAB.spad" 1460762 1460772 1461323 1461328) (-910 "PATLRES.spad" 1459848 1459862 1460752 1460757) (-909 "PATAB.spad" 1459612 1459622 1459838 1459843) (-908 "PARTPERM.spad" 1457620 1457628 1459602 1459607) (-907 "PARSURF.spad" 1457054 1457082 1457610 1457615) (-906 "PARSU2.spad" 1456851 1456867 1457044 1457049) (-905 "script-parser.spad" 1456371 1456379 1456841 1456846) (-904 "PARSCURV.spad" 1455805 1455833 1456361 1456366) (-903 "PARSC2.spad" 1455596 1455612 1455795 1455800) (-902 "PARPCURV.spad" 1455058 1455086 1455586 1455591) (-901 "PARPC2.spad" 1454849 1454865 1455048 1455053) (-900 "PARAMAST.spad" 1453977 1453985 1454839 1454844) (-899 "PAN2EXPR.spad" 1453389 1453397 1453967 1453972) (-898 "PALETTE.spad" 1452359 1452367 1453379 1453384) (-897 "PAIR.spad" 1451346 1451359 1451947 1451952) (-896 "PADICRC.spad" 1448587 1448605 1449758 1449851) (-895 "PADICRAT.spad" 1446495 1446507 1446716 1446809) (-894 "PADIC.spad" 1446190 1446202 1446421 1446490) (-893 "PADICCT.spad" 1444739 1444751 1446116 1446185) (-892 "PADEPAC.spad" 1443428 1443447 1444729 1444734) (-891 "PADE.spad" 1442180 1442196 1443418 1443423) (-890 "OWP.spad" 1441420 1441450 1442038 1442105) (-889 "OVERSET.spad" 1440993 1441001 1441410 1441415) (-888 "OVAR.spad" 1440774 1440797 1440983 1440988) (-887 "OUT.spad" 1439860 1439868 1440764 1440769) (-886 "OUTFORM.spad" 1429252 1429260 1439850 1439855) (-885 "OUTBFILE.spad" 1428670 1428678 1429242 1429247) (-884 "OUTBCON.spad" 1427676 1427684 1428660 1428665) (-883 "OUTBCON.spad" 1426680 1426690 1427666 1427671) (-882 "OSI.spad" 1426155 1426163 1426670 1426675) (-881 "OSGROUP.spad" 1426073 1426081 1426145 1426150) (-880 "ORTHPOL.spad" 1424558 1424568 1425990 1425995) (-879 "OREUP.spad" 1424011 1424039 1424238 1424277) (-878 "ORESUP.spad" 1423312 1423336 1423691 1423730) (-877 "OREPCTO.spad" 1421169 1421181 1423232 1423237) (-876 "OREPCAT.spad" 1415316 1415326 1421125 1421164) (-875 "OREPCAT.spad" 1409353 1409365 1415164 1415169) (-874 "ORDTYPE.spad" 1408590 1408598 1409343 1409348) (-873 "ORDTYPE.spad" 1407825 1407835 1408580 1408585) (-872 "ORDSTRCT.spad" 1407598 1407613 1407761 1407766) (-871 "ORDSET.spad" 1407298 1407306 1407588 1407593) (-870 "ORDRING.spad" 1406688 1406696 1407278 1407293) (-869 "ORDRING.spad" 1406086 1406096 1406678 1406683) (-868 "ORDMON.spad" 1405941 1405949 1406076 1406081) (-867 "ORDFUNS.spad" 1405073 1405089 1405931 1405936) (-866 "ORDFIN.spad" 1404893 1404901 1405063 1405068) (-865 "ORDCOMP.spad" 1403358 1403368 1404440 1404469) (-864 "ORDCOMP2.spad" 1402651 1402663 1403348 1403353) (-863 "OPTPROB.spad" 1401289 1401297 1402641 1402646) (-862 "OPTPACK.spad" 1393698 1393706 1401279 1401284) (-861 "OPTCAT.spad" 1391377 1391385 1393688 1393693) (-860 "OPSIG.spad" 1391031 1391039 1391367 1391372) (-859 "OPQUERY.spad" 1390580 1390588 1391021 1391026) (-858 "OP.spad" 1390322 1390332 1390402 1390469) (-857 "OPERCAT.spad" 1389788 1389798 1390312 1390317) (-856 "OPERCAT.spad" 1389252 1389264 1389778 1389783) (-855 "ONECOMP.spad" 1387997 1388007 1388799 1388828) (-854 "ONECOMP2.spad" 1387421 1387433 1387987 1387992) (-853 "OMSERVER.spad" 1386427 1386435 1387411 1387416) (-852 "OMSAGG.spad" 1386215 1386225 1386383 1386422) (-851 "OMPKG.spad" 1384831 1384839 1386205 1386210) (-850 "OM.spad" 1383804 1383812 1384821 1384826) (-849 "OMLO.spad" 1383229 1383241 1383690 1383729) (-848 "OMEXPR.spad" 1383063 1383073 1383219 1383224) (-847 "OMERR.spad" 1382608 1382616 1383053 1383058) (-846 "OMERRK.spad" 1381642 1381650 1382598 1382603) (-845 "OMENC.spad" 1380986 1380994 1381632 1381637) (-844 "OMDEV.spad" 1375295 1375303 1380976 1380981) (-843 "OMCONN.spad" 1374704 1374712 1375285 1375290) (-842 "OINTDOM.spad" 1374467 1374475 1374630 1374699) (-841 "OFMONOID.spad" 1372590 1372600 1374423 1374428) (-840 "ODVAR.spad" 1371851 1371861 1372580 1372585) (-839 "ODR.spad" 1371495 1371521 1371663 1371812) (-838 "ODPOL.spad" 1368784 1368794 1369124 1369251) (-837 "ODP.spad" 1356598 1356618 1356971 1357070) (-836 "ODETOOLS.spad" 1355247 1355266 1356588 1356593) (-835 "ODESYS.spad" 1352941 1352958 1355237 1355242) (-834 "ODERTRIC.spad" 1348950 1348967 1352898 1352903) (-833 "ODERED.spad" 1348349 1348373 1348940 1348945) (-832 "ODERAT.spad" 1345964 1345981 1348339 1348344) (-831 "ODEPRRIC.spad" 1343001 1343023 1345954 1345959) (-830 "ODEPROB.spad" 1342258 1342266 1342991 1342996) (-829 "ODEPRIM.spad" 1339592 1339614 1342248 1342253) (-828 "ODEPAL.spad" 1338978 1339002 1339582 1339587) (-827 "ODEPACK.spad" 1325644 1325652 1338968 1338973) (-826 "ODEINT.spad" 1325079 1325095 1325634 1325639) (-825 "ODEIFTBL.spad" 1322474 1322482 1325069 1325074) (-824 "ODEEF.spad" 1317965 1317981 1322464 1322469) (-823 "ODECONST.spad" 1317502 1317520 1317955 1317960) (-822 "ODECAT.spad" 1316100 1316108 1317492 1317497) (-821 "OCT.spad" 1314236 1314246 1314950 1314989) (-820 "OCTCT2.spad" 1313882 1313903 1314226 1314231) (-819 "OC.spad" 1311678 1311688 1313838 1313877) (-818 "OC.spad" 1309199 1309211 1311361 1311366) (-817 "OCAMON.spad" 1309047 1309055 1309189 1309194) (-816 "OASGP.spad" 1308862 1308870 1309037 1309042) (-815 "OAMONS.spad" 1308384 1308392 1308852 1308857) (-814 "OAMON.spad" 1308245 1308253 1308374 1308379) (-813 "OAGROUP.spad" 1308107 1308115 1308235 1308240) (-812 "NUMTUBE.spad" 1307698 1307714 1308097 1308102) (-811 "NUMQUAD.spad" 1295674 1295682 1307688 1307693) (-810 "NUMODE.spad" 1287028 1287036 1295664 1295669) (-809 "NUMINT.spad" 1284594 1284602 1287018 1287023) (-808 "NUMFMT.spad" 1283434 1283442 1284584 1284589) (-807 "NUMERIC.spad" 1275548 1275558 1283239 1283244) (-806 "NTSCAT.spad" 1274056 1274072 1275516 1275543) (-805 "NTPOLFN.spad" 1273607 1273617 1273973 1273978) (-804 "NSUP.spad" 1266560 1266570 1271100 1271253) (-803 "NSUP2.spad" 1265952 1265964 1266550 1266555) (-802 "NSMP.spad" 1262182 1262201 1262490 1262617) (-801 "NREP.spad" 1260560 1260574 1262172 1262177) (-800 "NPCOEF.spad" 1259806 1259826 1260550 1260555) (-799 "NORMRETR.spad" 1259404 1259443 1259796 1259801) (-798 "NORMPK.spad" 1257306 1257325 1259394 1259399) (-797 "NORMMA.spad" 1256994 1257020 1257296 1257301) (-796 "NONE.spad" 1256735 1256743 1256984 1256989) (-795 "NONE1.spad" 1256411 1256421 1256725 1256730) (-794 "NODE1.spad" 1255898 1255914 1256401 1256406) (-793 "NNI.spad" 1254793 1254801 1255872 1255893) (-792 "NLINSOL.spad" 1253419 1253429 1254783 1254788) (-791 "NIPROB.spad" 1251960 1251968 1253409 1253414) (-790 "NFINTBAS.spad" 1249520 1249537 1251950 1251955) (-789 "NETCLT.spad" 1249494 1249505 1249510 1249515) (-788 "NCODIV.spad" 1247710 1247726 1249484 1249489) (-787 "NCNTFRAC.spad" 1247352 1247366 1247700 1247705) (-786 "NCEP.spad" 1245518 1245532 1247342 1247347) (-785 "NASRING.spad" 1245114 1245122 1245508 1245513) (-784 "NASRING.spad" 1244708 1244718 1245104 1245109) (-783 "NARNG.spad" 1244060 1244068 1244698 1244703) (-782 "NARNG.spad" 1243410 1243420 1244050 1244055) (-781 "NAGSP.spad" 1242487 1242495 1243400 1243405) (-780 "NAGS.spad" 1232148 1232156 1242477 1242482) (-779 "NAGF07.spad" 1230579 1230587 1232138 1232143) (-778 "NAGF04.spad" 1224981 1224989 1230569 1230574) (-777 "NAGF02.spad" 1219050 1219058 1224971 1224976) (-776 "NAGF01.spad" 1214811 1214819 1219040 1219045) (-775 "NAGE04.spad" 1208511 1208519 1214801 1214806) (-774 "NAGE02.spad" 1199171 1199179 1208501 1208506) (-773 "NAGE01.spad" 1195173 1195181 1199161 1199166) (-772 "NAGD03.spad" 1193177 1193185 1195163 1195168) (-771 "NAGD02.spad" 1185924 1185932 1193167 1193172) (-770 "NAGD01.spad" 1180217 1180225 1185914 1185919) (-769 "NAGC06.spad" 1176092 1176100 1180207 1180212) (-768 "NAGC05.spad" 1174593 1174601 1176082 1176087) (-767 "NAGC02.spad" 1173860 1173868 1174583 1174588) (-766 "NAALG.spad" 1173401 1173411 1173828 1173855) (-765 "NAALG.spad" 1172962 1172974 1173391 1173396) (-764 "MULTSQFR.spad" 1169920 1169937 1172952 1172957) (-763 "MULTFACT.spad" 1169303 1169320 1169910 1169915) (-762 "MTSCAT.spad" 1167397 1167418 1169201 1169298) (-761 "MTHING.spad" 1167056 1167066 1167387 1167392) (-760 "MSYSCMD.spad" 1166490 1166498 1167046 1167051) (-759 "MSET.spad" 1164412 1164422 1166160 1166199) (-758 "MSETAGG.spad" 1164257 1164267 1164380 1164407) (-757 "MRING.spad" 1161234 1161246 1163965 1164032) (-756 "MRF2.spad" 1160804 1160818 1161224 1161229) (-755 "MRATFAC.spad" 1160350 1160367 1160794 1160799) (-754 "MPRFF.spad" 1158390 1158409 1160340 1160345) (-753 "MPOLY.spad" 1155861 1155876 1156220 1156347) (-752 "MPCPF.spad" 1155125 1155144 1155851 1155856) (-751 "MPC3.spad" 1154942 1154982 1155115 1155120) (-750 "MPC2.spad" 1154587 1154620 1154932 1154937) (-749 "MONOTOOL.spad" 1152938 1152955 1154577 1154582) (-748 "MONOID.spad" 1152257 1152265 1152928 1152933) (-747 "MONOID.spad" 1151574 1151584 1152247 1152252) (-746 "MONOGEN.spad" 1150322 1150335 1151434 1151569) (-745 "MONOGEN.spad" 1149092 1149107 1150206 1150211) (-744 "MONADWU.spad" 1147122 1147130 1149082 1149087) (-743 "MONADWU.spad" 1145150 1145160 1147112 1147117) (-742 "MONAD.spad" 1144310 1144318 1145140 1145145) (-741 "MONAD.spad" 1143468 1143478 1144300 1144305) (-740 "MOEBIUS.spad" 1142204 1142218 1143448 1143463) (-739 "MODULE.spad" 1142074 1142084 1142172 1142199) (-738 "MODULE.spad" 1141964 1141976 1142064 1142069) (-737 "MODRING.spad" 1141299 1141338 1141944 1141959) (-736 "MODOP.spad" 1139964 1139976 1141121 1141188) (-735 "MODMONOM.spad" 1139695 1139713 1139954 1139959) (-734 "MODMON.spad" 1136397 1136413 1137116 1137269) (-733 "MODFIELD.spad" 1135759 1135798 1136299 1136392) (-732 "MMLFORM.spad" 1134619 1134627 1135749 1135754) (-731 "MMAP.spad" 1134361 1134395 1134609 1134614) (-730 "MLO.spad" 1132820 1132830 1134317 1134356) (-729 "MLIFT.spad" 1131432 1131449 1132810 1132815) (-728 "MKUCFUNC.spad" 1130967 1130985 1131422 1131427) (-727 "MKRECORD.spad" 1130571 1130584 1130957 1130962) (-726 "MKFUNC.spad" 1129978 1129988 1130561 1130566) (-725 "MKFLCFN.spad" 1128946 1128956 1129968 1129973) (-724 "MKBCFUNC.spad" 1128441 1128459 1128936 1128941) (-723 "MINT.spad" 1127880 1127888 1128343 1128436) (-722 "MHROWRED.spad" 1126391 1126401 1127870 1127875) (-721 "MFLOAT.spad" 1124911 1124919 1126281 1126386) (-720 "MFINFACT.spad" 1124311 1124333 1124901 1124906) (-719 "MESH.spad" 1122093 1122101 1124301 1124306) (-718 "MDDFACT.spad" 1120304 1120314 1122083 1122088) (-717 "MDAGG.spad" 1119595 1119605 1120284 1120299) (-716 "MCMPLX.spad" 1115026 1115034 1115640 1115841) (-715 "MCDEN.spad" 1114236 1114248 1115016 1115021) (-714 "MCALCFN.spad" 1111358 1111384 1114226 1114231) (-713 "MAYBE.spad" 1110642 1110653 1111348 1111353) (-712 "MATSTOR.spad" 1107950 1107960 1110632 1110637) (-711 "MATRIX.spad" 1106537 1106547 1107021 1107048) (-710 "MATLIN.spad" 1103881 1103905 1106421 1106426) (-709 "MATCAT.spad" 1095403 1095425 1103849 1103876) (-708 "MATCAT.spad" 1086797 1086821 1095245 1095250) (-707 "MATCAT2.spad" 1086079 1086127 1086787 1086792) (-706 "MAPPKG3.spad" 1084994 1085008 1086069 1086074) (-705 "MAPPKG2.spad" 1084332 1084344 1084984 1084989) (-704 "MAPPKG1.spad" 1083160 1083170 1084322 1084327) (-703 "MAPPAST.spad" 1082475 1082483 1083150 1083155) (-702 "MAPHACK3.spad" 1082287 1082301 1082465 1082470) (-701 "MAPHACK2.spad" 1082056 1082068 1082277 1082282) (-700 "MAPHACK1.spad" 1081700 1081710 1082046 1082051) (-699 "MAGMA.spad" 1079490 1079507 1081690 1081695) (-698 "MACROAST.spad" 1079069 1079077 1079480 1079485) (-697 "M3D.spad" 1076672 1076682 1078330 1078335) (-696 "LZSTAGG.spad" 1073910 1073920 1076662 1076667) (-695 "LZSTAGG.spad" 1071146 1071158 1073900 1073905) (-694 "LWORD.spad" 1067851 1067868 1071136 1071141) (-693 "LSTAST.spad" 1067635 1067643 1067841 1067846) (-692 "LSQM.spad" 1065792 1065806 1066186 1066237) (-691 "LSPP.spad" 1065327 1065344 1065782 1065787) (-690 "LSMP.spad" 1064177 1064205 1065317 1065322) (-689 "LSMP1.spad" 1061995 1062009 1064167 1064172) (-688 "LSAGG.spad" 1061664 1061674 1061963 1061990) (-687 "LSAGG.spad" 1061353 1061365 1061654 1061659) (-686 "LPOLY.spad" 1060307 1060326 1061209 1061278) (-685 "LPEFRAC.spad" 1059578 1059588 1060297 1060302) (-684 "LO.spad" 1058979 1058993 1059512 1059539) (-683 "LOGIC.spad" 1058581 1058589 1058969 1058974) (-682 "LOGIC.spad" 1058181 1058191 1058571 1058576) (-681 "LODOOPS.spad" 1057111 1057123 1058171 1058176) (-680 "LODO.spad" 1056495 1056511 1056791 1056830) (-679 "LODOF.spad" 1055541 1055558 1056452 1056457) (-678 "LODOCAT.spad" 1054207 1054217 1055497 1055536) (-677 "LODOCAT.spad" 1052871 1052883 1054163 1054168) (-676 "LODO2.spad" 1052144 1052156 1052551 1052590) (-675 "LODO1.spad" 1051544 1051554 1051824 1051863) (-674 "LODEEF.spad" 1050346 1050364 1051534 1051539) (-673 "LNAGG.spad" 1046493 1046503 1050336 1050341) (-672 "LNAGG.spad" 1042604 1042616 1046449 1046454) (-671 "LMOPS.spad" 1039372 1039389 1042594 1042599) (-670 "LMODULE.spad" 1039140 1039150 1039362 1039367) (-669 "LMDICT.spad" 1038310 1038320 1038574 1038601) (-668 "LLINSET.spad" 1038017 1038027 1038300 1038305) (-667 "LITERAL.spad" 1037923 1037934 1038007 1038012) (-666 "LIST.spad" 1035505 1035515 1036917 1036944) (-665 "LIST3.spad" 1034816 1034830 1035495 1035500) (-664 "LIST2.spad" 1033518 1033530 1034806 1034811) (-663 "LIST2MAP.spad" 1030421 1030433 1033508 1033513) (-662 "LINSET.spad" 1030200 1030210 1030411 1030416) (-661 "LINFORM.spad" 1029663 1029675 1030168 1030195) (-660 "LINEXP.spad" 1028406 1028416 1029653 1029658) (-659 "LINELT.spad" 1027777 1027789 1028289 1028316) (-658 "LINDEP.spad" 1026586 1026598 1027689 1027694) (-657 "LINBASIS.spad" 1026222 1026237 1026576 1026581) (-656 "LIMITRF.spad" 1024150 1024160 1026212 1026217) (-655 "LIMITPS.spad" 1023053 1023066 1024140 1024145) (-654 "LIE.spad" 1021069 1021081 1022343 1022488) (-653 "LIECAT.spad" 1020545 1020555 1020995 1021064) (-652 "LIECAT.spad" 1020049 1020061 1020501 1020506) (-651 "LIB.spad" 1017800 1017808 1018246 1018261) (-650 "LGROBP.spad" 1015153 1015172 1017790 1017795) (-649 "LF.spad" 1014108 1014124 1015143 1015148) (-648 "LFCAT.spad" 1013167 1013175 1014098 1014103) (-647 "LEXTRIPK.spad" 1008670 1008685 1013157 1013162) (-646 "LEXP.spad" 1006673 1006700 1008650 1008665) (-645 "LETAST.spad" 1006372 1006380 1006663 1006668) (-644 "LEADCDET.spad" 1004770 1004787 1006362 1006367) (-643 "LAZM3PK.spad" 1003474 1003496 1004760 1004765) (-642 "LAUPOL.spad" 1002074 1002087 1002974 1003043) (-641 "LAPLACE.spad" 1001657 1001673 1002064 1002069) (-640 "LA.spad" 1001097 1001111 1001579 1001618) (-639 "LALG.spad" 1000873 1000883 1001077 1001092) (-638 "LALG.spad" 1000657 1000669 1000863 1000868) (-637 "KVTFROM.spad" 1000392 1000402 1000647 1000652) (-636 "KTVLOGIC.spad" 999904 999912 1000382 1000387) (-635 "KRCFROM.spad" 999642 999652 999894 999899) (-634 "KOVACIC.spad" 998365 998382 999632 999637) (-633 "KONVERT.spad" 998087 998097 998355 998360) (-632 "KOERCE.spad" 997824 997834 998077 998082) (-631 "KERNEL.spad" 996479 996489 997608 997613) (-630 "KERNEL2.spad" 996182 996194 996469 996474) (-629 "KDAGG.spad" 995291 995313 996162 996177) (-628 "KDAGG.spad" 994408 994432 995281 995286) (-627 "KAFILE.spad" 993262 993278 993497 993524) (-626 "JVMOP.spad" 993167 993175 993252 993257) (-625 "JVMMDACC.spad" 992205 992213 993157 993162) (-624 "JVMFDACC.spad" 991513 991521 992195 992200) (-623 "JVMCSTTG.spad" 990242 990250 991503 991508) (-622 "JVMCFACC.spad" 989672 989680 990232 990237) (-621 "JVMBCODE.spad" 989575 989583 989662 989667) (-620 "JORDAN.spad" 987404 987416 988865 989010) (-619 "JOINAST.spad" 987098 987106 987394 987399) (-618 "IXAGG.spad" 985231 985255 987088 987093) (-617 "IXAGG.spad" 983219 983245 985078 985083) (-616 "IVECTOR.spad" 981836 981851 981991 982018) (-615 "ITUPLE.spad" 980997 981007 981826 981831) (-614 "ITRIGMNP.spad" 979836 979855 980987 980992) (-613 "ITFUN3.spad" 979342 979356 979826 979831) (-612 "ITFUN2.spad" 979086 979098 979332 979337) (-611 "ITFORM.spad" 978441 978449 979076 979081) (-610 "ITAYLOR.spad" 976435 976450 978305 978402) (-609 "ISUPS.spad" 968872 968887 975409 975506) (-608 "ISUMP.spad" 968373 968389 968862 968867) (-607 "ISTRING.spad" 967300 967313 967381 967408) (-606 "ISAST.spad" 967019 967027 967290 967295) (-605 "IRURPK.spad" 965736 965755 967009 967014) (-604 "IRSN.spad" 963708 963716 965726 965731) (-603 "IRRF2F.spad" 962193 962203 963664 963669) (-602 "IRREDFFX.spad" 961794 961805 962183 962188) (-601 "IROOT.spad" 960133 960143 961784 961789) (-600 "IR.spad" 957934 957948 959988 960015) (-599 "IRFORM.spad" 957258 957266 957924 957929) (-598 "IR2.spad" 956286 956302 957248 957253) (-597 "IR2F.spad" 955492 955508 956276 956281) (-596 "IPRNTPK.spad" 955252 955260 955482 955487) (-595 "IPF.spad" 954817 954829 955057 955150) (-594 "IPADIC.spad" 954578 954604 954743 954812) (-593 "IP4ADDR.spad" 954135 954143 954568 954573) (-592 "IOMODE.spad" 953657 953665 954125 954130) (-591 "IOBFILE.spad" 953018 953026 953647 953652) (-590 "IOBCON.spad" 952883 952891 953008 953013) (-589 "INVLAPLA.spad" 952532 952548 952873 952878) (-588 "INTTR.spad" 945914 945931 952522 952527) (-587 "INTTOOLS.spad" 943669 943685 945488 945493) (-586 "INTSLPE.spad" 942989 942997 943659 943664) (-585 "INTRVL.spad" 942555 942565 942903 942984) (-584 "INTRF.spad" 940979 940993 942545 942550) (-583 "INTRET.spad" 940411 940421 940969 940974) (-582 "INTRAT.spad" 939138 939155 940401 940406) (-581 "INTPM.spad" 937523 937539 938781 938786) (-580 "INTPAF.spad" 935387 935405 937455 937460) (-579 "INTPACK.spad" 925761 925769 935377 935382) (-578 "INT.spad" 925209 925217 925615 925756) (-577 "INTHERTR.spad" 924483 924500 925199 925204) (-576 "INTHERAL.spad" 924153 924177 924473 924478) (-575 "INTHEORY.spad" 920592 920600 924143 924148) (-574 "INTG0.spad" 914325 914343 920524 920529) (-573 "INTFTBL.spad" 908354 908362 914315 914320) (-572 "INTFACT.spad" 907413 907423 908344 908349) (-571 "INTEF.spad" 905798 905814 907403 907408) (-570 "INTDOM.spad" 904421 904429 905724 905793) (-569 "INTDOM.spad" 903106 903116 904411 904416) (-568 "INTCAT.spad" 901365 901375 903020 903101) (-567 "INTBIT.spad" 900872 900880 901355 901360) (-566 "INTALG.spad" 900060 900087 900862 900867) (-565 "INTAF.spad" 899560 899576 900050 900055) (-564 "INTABL.spad" 897636 897667 897799 897826) (-563 "INT8.spad" 897516 897524 897626 897631) (-562 "INT64.spad" 897395 897403 897506 897511) (-561 "INT32.spad" 897274 897282 897385 897390) (-560 "INT16.spad" 897153 897161 897264 897269) (-559 "INS.spad" 894656 894664 897055 897148) (-558 "INS.spad" 892245 892255 894646 894651) (-557 "INPSIGN.spad" 891693 891706 892235 892240) (-556 "INPRODPF.spad" 890789 890808 891683 891688) (-555 "INPRODFF.spad" 889877 889901 890779 890784) (-554 "INNMFACT.spad" 888852 888869 889867 889872) (-553 "INMODGCD.spad" 888340 888370 888842 888847) (-552 "INFSP.spad" 886637 886659 888330 888335) (-551 "INFPROD0.spad" 885717 885736 886627 886632) (-550 "INFORM.spad" 882916 882924 885707 885712) (-549 "INFORM1.spad" 882541 882551 882906 882911) (-548 "INFINITY.spad" 882093 882101 882531 882536) (-547 "INETCLTS.spad" 882070 882078 882083 882088) (-546 "INEP.spad" 880608 880630 882060 882065) (-545 "INDE.spad" 880257 880274 880518 880523) (-544 "INCRMAPS.spad" 879678 879688 880247 880252) (-543 "INBFILE.spad" 878750 878758 879668 879673) (-542 "INBFF.spad" 874544 874555 878740 878745) (-541 "INBCON.spad" 872834 872842 874534 874539) (-540 "INBCON.spad" 871122 871132 872824 872829) (-539 "INAST.spad" 870783 870791 871112 871117) (-538 "IMPTAST.spad" 870491 870499 870773 870778) (-537 "IMATRIX.spad" 869319 869345 869831 869858) (-536 "IMATQF.spad" 868413 868457 869275 869280) (-535 "IMATLIN.spad" 867018 867042 868369 868374) (-534 "ILIST.spad" 865523 865538 866048 866075) (-533 "IIARRAY2.spad" 864794 864832 865013 865040) (-532 "IFF.spad" 864204 864220 864475 864568) (-531 "IFAST.spad" 863818 863826 864194 864199) (-530 "IFARRAY.spad" 861158 861173 862848 862875) (-529 "IFAMON.spad" 861020 861037 861114 861119) (-528 "IEVALAB.spad" 860425 860437 861010 861015) (-527 "IEVALAB.spad" 859828 859842 860415 860420) (-526 "IDPO.spad" 859563 859575 859740 859745) (-525 "IDPOAMS.spad" 859241 859253 859475 859480) (-524 "IDPOAM.spad" 858883 858895 859153 859158) (-523 "IDPC.spad" 857612 857624 858873 858878) (-522 "IDPAM.spad" 857279 857291 857524 857529) (-521 "IDPAG.spad" 856948 856960 857191 857196) (-520 "IDENT.spad" 856598 856606 856938 856943) (-519 "IDECOMP.spad" 853837 853855 856588 856593) (-518 "IDEAL.spad" 848786 848825 853772 853777) (-517 "ICDEN.spad" 847975 847991 848776 848781) (-516 "ICARD.spad" 847166 847174 847965 847970) (-515 "IBPTOOLS.spad" 845773 845790 847156 847161) (-514 "IBITS.spad" 844938 844951 845371 845398) (-513 "IBATOOL.spad" 841915 841934 844928 844933) (-512 "IBACHIN.spad" 840422 840437 841905 841910) (-511 "IARRAY2.spad" 839293 839319 839912 839939) (-510 "IARRAY1.spad" 838185 838200 838323 838350) (-509 "IAN.spad" 836408 836416 838001 838094) (-508 "IALGFACT.spad" 836011 836044 836398 836403) (-507 "HYPCAT.spad" 835435 835443 836001 836006) (-506 "HYPCAT.spad" 834857 834867 835425 835430) (-505 "HOSTNAME.spad" 834665 834673 834847 834852) (-504 "HOMOTOP.spad" 834408 834418 834655 834660) (-503 "HOAGG.spad" 831690 831700 834398 834403) (-502 "HOAGG.spad" 828711 828723 831421 831426) (-501 "HEXADEC.spad" 826716 826724 827081 827174) (-500 "HEUGCD.spad" 825751 825762 826706 826711) (-499 "HELLFDIV.spad" 825341 825365 825741 825746) (-498 "HEAP.spad" 824616 824626 824831 824858) (-497 "HEADAST.spad" 824149 824157 824606 824611) (-496 "HDP.spad" 811959 811975 812336 812435) (-495 "HDMP.spad" 809173 809188 809789 809916) (-494 "HB.spad" 807424 807432 809163 809168) (-493 "HASHTBL.spad" 805452 805483 805663 805690) (-492 "HASAST.spad" 805168 805176 805442 805447) (-491 "HACKPI.spad" 804659 804667 805070 805163) (-490 "GTSET.spad" 803562 803578 804269 804296) (-489 "GSTBL.spad" 801639 801674 801813 801828) (-488 "GSERIES.spad" 798952 798979 799771 799920) (-487 "GROUP.spad" 798225 798233 798932 798947) (-486 "GROUP.spad" 797506 797516 798215 798220) (-485 "GROEBSOL.spad" 796000 796021 797496 797501) (-484 "GRMOD.spad" 794571 794583 795990 795995) (-483 "GRMOD.spad" 793140 793154 794561 794566) (-482 "GRIMAGE.spad" 786029 786037 793130 793135) (-481 "GRDEF.spad" 784408 784416 786019 786024) (-480 "GRAY.spad" 782871 782879 784398 784403) (-479 "GRALG.spad" 781948 781960 782861 782866) (-478 "GRALG.spad" 781023 781037 781938 781943) (-477 "GPOLSET.spad" 780441 780464 780669 780696) (-476 "GOSPER.spad" 779710 779728 780431 780436) (-475 "GMODPOL.spad" 778858 778885 779678 779705) (-474 "GHENSEL.spad" 777941 777955 778848 778853) (-473 "GENUPS.spad" 774234 774247 777931 777936) (-472 "GENUFACT.spad" 773811 773821 774224 774229) (-471 "GENPGCD.spad" 773397 773414 773801 773806) (-470 "GENMFACT.spad" 772849 772868 773387 773392) (-469 "GENEEZ.spad" 770800 770813 772839 772844) (-468 "GDMP.spad" 767856 767873 768630 768757) (-467 "GCNAALG.spad" 761779 761806 767650 767717) (-466 "GCDDOM.spad" 760955 760963 761705 761774) (-465 "GCDDOM.spad" 760193 760203 760945 760950) (-464 "GB.spad" 757719 757757 760149 760154) (-463 "GBINTERN.spad" 753739 753777 757709 757714) (-462 "GBF.spad" 749506 749544 753729 753734) (-461 "GBEUCLID.spad" 747388 747426 749496 749501) (-460 "GAUSSFAC.spad" 746701 746709 747378 747383) (-459 "GALUTIL.spad" 745027 745037 746657 746662) (-458 "GALPOLYU.spad" 743481 743494 745017 745022) (-457 "GALFACTU.spad" 741654 741673 743471 743476) (-456 "GALFACT.spad" 731843 731854 741644 741649) (-455 "FVFUN.spad" 728866 728874 731833 731838) (-454 "FVC.spad" 727918 727926 728856 728861) (-453 "FUNDESC.spad" 727596 727604 727908 727913) (-452 "FUNCTION.spad" 727445 727457 727586 727591) (-451 "FT.spad" 725742 725750 727435 727440) (-450 "FTEM.spad" 724907 724915 725732 725737) (-449 "FSUPFACT.spad" 723807 723826 724843 724848) (-448 "FST.spad" 721893 721901 723797 723802) (-447 "FSRED.spad" 721373 721389 721883 721888) (-446 "FSPRMELT.spad" 720255 720271 721330 721335) (-445 "FSPECF.spad" 718346 718362 720245 720250) (-444 "FS.spad" 712614 712624 718121 718341) (-443 "FS.spad" 706660 706672 712169 712174) (-442 "FSINT.spad" 706320 706336 706650 706655) (-441 "FSERIES.spad" 705511 705523 706140 706239) (-440 "FSCINT.spad" 704828 704844 705501 705506) (-439 "FSAGG.spad" 703945 703955 704784 704823) (-438 "FSAGG.spad" 703024 703036 703865 703870) (-437 "FSAGG2.spad" 701767 701783 703014 703019) (-436 "FS2UPS.spad" 696258 696292 701757 701762) (-435 "FS2.spad" 695905 695921 696248 696253) (-434 "FS2EXPXP.spad" 695030 695053 695895 695900) (-433 "FRUTIL.spad" 693984 693994 695020 695025) (-432 "FR.spad" 687607 687617 692915 692984) (-431 "FRNAALG.spad" 682876 682886 687549 687602) (-430 "FRNAALG.spad" 678157 678169 682832 682837) (-429 "FRNAAF2.spad" 677613 677631 678147 678152) (-428 "FRMOD.spad" 677023 677053 677544 677549) (-427 "FRIDEAL.spad" 676248 676269 677003 677018) (-426 "FRIDEAL2.spad" 675852 675884 676238 676243) (-425 "FRETRCT.spad" 675363 675373 675842 675847) (-424 "FRETRCT.spad" 674740 674752 675221 675226) (-423 "FRAMALG.spad" 673088 673101 674696 674735) (-422 "FRAMALG.spad" 671468 671483 673078 673083) (-421 "FRAC.spad" 668474 668484 668877 669050) (-420 "FRAC2.spad" 668079 668091 668464 668469) (-419 "FR2.spad" 667415 667427 668069 668074) (-418 "FPS.spad" 664230 664238 667305 667410) (-417 "FPS.spad" 661073 661083 664150 664155) (-416 "FPC.spad" 660119 660127 660975 661068) (-415 "FPC.spad" 659251 659261 660109 660114) (-414 "FPATMAB.spad" 659013 659023 659241 659246) (-413 "FPARFRAC.spad" 657863 657880 659003 659008) (-412 "FORTRAN.spad" 656369 656412 657853 657858) (-411 "FORT.spad" 655318 655326 656359 656364) (-410 "FORTFN.spad" 652488 652496 655308 655313) (-409 "FORTCAT.spad" 652172 652180 652478 652483) (-408 "FORMULA.spad" 649646 649654 652162 652167) (-407 "FORMULA1.spad" 649125 649135 649636 649641) (-406 "FORDER.spad" 648816 648840 649115 649120) (-405 "FOP.spad" 648017 648025 648806 648811) (-404 "FNLA.spad" 647441 647463 647985 648012) (-403 "FNCAT.spad" 646036 646044 647431 647436) (-402 "FNAME.spad" 645928 645936 646026 646031) (-401 "FMTC.spad" 645726 645734 645854 645923) (-400 "FMONOID.spad" 645391 645401 645682 645687) (-399 "FMONCAT.spad" 642544 642554 645381 645386) (-398 "FM.spad" 642159 642171 642398 642425) (-397 "FMFUN.spad" 639189 639197 642149 642154) (-396 "FMC.spad" 638241 638249 639179 639184) (-395 "FMCAT.spad" 635909 635927 638209 638236) (-394 "FM1.spad" 635266 635278 635843 635870) (-393 "FLOATRP.spad" 633001 633015 635256 635261) (-392 "FLOAT.spad" 626315 626323 632867 632996) (-391 "FLOATCP.spad" 623746 623760 626305 626310) (-390 "FLINEXP.spad" 623468 623478 623736 623741) (-389 "FLINEXP.spad" 623134 623146 623404 623409) (-388 "FLASORT.spad" 622460 622472 623124 623129) (-387 "FLALG.spad" 620106 620125 622386 622455) (-386 "FLAGG.spad" 617148 617158 620086 620101) (-385 "FLAGG.spad" 614091 614103 617031 617036) (-384 "FLAGG2.spad" 612816 612832 614081 614086) (-383 "FINRALG.spad" 610877 610890 612772 612811) (-382 "FINRALG.spad" 608864 608879 610761 610766) (-381 "FINITE.spad" 608016 608024 608854 608859) (-380 "FINAALG.spad" 597137 597147 607958 608011) (-379 "FINAALG.spad" 586270 586282 597093 597098) (-378 "FILE.spad" 585853 585863 586260 586265) (-377 "FILECAT.spad" 584379 584396 585843 585848) (-376 "FIELD.spad" 583785 583793 584281 584374) (-375 "FIELD.spad" 583277 583287 583775 583780) (-374 "FGROUP.spad" 581924 581934 583257 583272) (-373 "FGLMICPK.spad" 580711 580726 581914 581919) (-372 "FFX.spad" 580086 580101 580427 580520) (-371 "FFSLPE.spad" 579589 579610 580076 580081) (-370 "FFPOLY.spad" 570851 570862 579579 579584) (-369 "FFPOLY2.spad" 569911 569928 570841 570846) (-368 "FFP.spad" 569308 569328 569627 569720) (-367 "FF.spad" 568756 568772 568989 569082) (-366 "FFNBX.spad" 567268 567288 568472 568565) (-365 "FFNBP.spad" 565781 565798 566984 567077) (-364 "FFNB.spad" 564246 564267 565462 565555) (-363 "FFINTBAS.spad" 561760 561779 564236 564241) (-362 "FFIELDC.spad" 559337 559345 561662 561755) (-361 "FFIELDC.spad" 557000 557010 559327 559332) (-360 "FFHOM.spad" 555748 555765 556990 556995) (-359 "FFF.spad" 553183 553194 555738 555743) (-358 "FFCGX.spad" 552030 552050 552899 552992) (-357 "FFCGP.spad" 550919 550939 551746 551839) (-356 "FFCG.spad" 549711 549732 550600 550693) (-355 "FFCAT.spad" 542884 542906 549550 549706) (-354 "FFCAT.spad" 536136 536160 542804 542809) (-353 "FFCAT2.spad" 535883 535923 536126 536131) (-352 "FEXPR.spad" 527600 527646 535639 535678) (-351 "FEVALAB.spad" 527308 527318 527590 527595) (-350 "FEVALAB.spad" 526801 526813 527085 527090) (-349 "FDIV.spad" 526243 526267 526791 526796) (-348 "FDIVCAT.spad" 524307 524331 526233 526238) (-347 "FDIVCAT.spad" 522369 522395 524297 524302) (-346 "FDIV2.spad" 522025 522065 522359 522364) (-345 "FCTRDATA.spad" 521033 521041 522015 522020) (-344 "FCPAK1.spad" 519600 519608 521023 521028) (-343 "FCOMP.spad" 518979 518989 519590 519595) (-342 "FC.spad" 508986 508994 518969 518974) (-341 "FAXF.spad" 501957 501971 508888 508981) (-340 "FAXF.spad" 494980 494996 501913 501918) (-339 "FARRAY.spad" 492977 492987 494010 494037) (-338 "FAMR.spad" 491113 491125 492875 492972) (-337 "FAMR.spad" 489233 489247 490997 491002) (-336 "FAMONOID.spad" 488901 488911 489187 489192) (-335 "FAMONC.spad" 487197 487209 488891 488896) (-334 "FAGROUP.spad" 486821 486831 487093 487120) (-333 "FACUTIL.spad" 485025 485042 486811 486816) (-332 "FACTFUNC.spad" 484219 484229 485015 485020) (-331 "EXPUPXS.spad" 481052 481075 482351 482500) (-330 "EXPRTUBE.spad" 478340 478348 481042 481047) (-329 "EXPRODE.spad" 475500 475516 478330 478335) (-328 "EXPR.spad" 470675 470685 471389 471684) (-327 "EXPR2UPS.spad" 466797 466810 470665 470670) (-326 "EXPR2.spad" 466502 466514 466787 466792) (-325 "EXPEXPAN.spad" 463303 463328 463935 464028) (-324 "EXIT.spad" 462974 462982 463293 463298) (-323 "EXITAST.spad" 462710 462718 462964 462969) (-322 "EVALCYC.spad" 462170 462184 462700 462705) (-321 "EVALAB.spad" 461742 461752 462160 462165) (-320 "EVALAB.spad" 461312 461324 461732 461737) (-319 "EUCDOM.spad" 458886 458894 461238 461307) (-318 "EUCDOM.spad" 456522 456532 458876 458881) (-317 "ESTOOLS.spad" 448368 448376 456512 456517) (-316 "ESTOOLS2.spad" 447971 447985 448358 448363) (-315 "ESTOOLS1.spad" 447656 447667 447961 447966) (-314 "ES.spad" 440471 440479 447646 447651) (-313 "ES.spad" 433192 433202 440369 440374) (-312 "ESCONT.spad" 429985 429993 433182 433187) (-311 "ESCONT1.spad" 429734 429746 429975 429980) (-310 "ES2.spad" 429239 429255 429724 429729) (-309 "ES1.spad" 428809 428825 429229 429234) (-308 "ERROR.spad" 426136 426144 428799 428804) (-307 "EQTBL.spad" 424166 424188 424375 424402) (-306 "EQ.spad" 418971 418981 421758 421870) (-305 "EQ2.spad" 418689 418701 418961 418966) (-304 "EP.spad" 415015 415025 418679 418684) (-303 "ENV.spad" 413693 413701 415005 415010) (-302 "ENTIRER.spad" 413361 413369 413637 413688) (-301 "EMR.spad" 412649 412690 413287 413356) (-300 "ELTAGG.spad" 410903 410922 412639 412644) (-299 "ELTAGG.spad" 409121 409142 410859 410864) (-298 "ELTAB.spad" 408596 408609 409111 409116) (-297 "ELFUTS.spad" 407983 408002 408586 408591) (-296 "ELEMFUN.spad" 407672 407680 407973 407978) (-295 "ELEMFUN.spad" 407359 407369 407662 407667) (-294 "ELAGG.spad" 405330 405340 407339 407354) (-293 "ELAGG.spad" 403238 403250 405249 405254) (-292 "ELABOR.spad" 402584 402592 403228 403233) (-291 "ELABEXPR.spad" 401516 401524 402574 402579) (-290 "EFUPXS.spad" 398292 398322 401472 401477) (-289 "EFULS.spad" 395128 395151 398248 398253) (-288 "EFSTRUC.spad" 393143 393159 395118 395123) (-287 "EF.spad" 387919 387935 393133 393138) (-286 "EAB.spad" 386195 386203 387909 387914) (-285 "E04UCFA.spad" 385731 385739 386185 386190) (-284 "E04NAFA.spad" 385308 385316 385721 385726) (-283 "E04MBFA.spad" 384888 384896 385298 385303) (-282 "E04JAFA.spad" 384424 384432 384878 384883) (-281 "E04GCFA.spad" 383960 383968 384414 384419) (-280 "E04FDFA.spad" 383496 383504 383950 383955) (-279 "E04DGFA.spad" 383032 383040 383486 383491) (-278 "E04AGNT.spad" 378882 378890 383022 383027) (-277 "DVARCAT.spad" 375772 375782 378872 378877) (-276 "DVARCAT.spad" 372660 372672 375762 375767) (-275 "DSMP.spad" 370034 370048 370339 370466) (-274 "DSEXT.spad" 369336 369346 370024 370029) (-273 "DSEXT.spad" 368545 368557 369235 369240) (-272 "DROPT.spad" 362504 362512 368535 368540) (-271 "DROPT1.spad" 362169 362179 362494 362499) (-270 "DROPT0.spad" 357026 357034 362159 362164) (-269 "DRAWPT.spad" 355199 355207 357016 357021) (-268 "DRAW.spad" 348075 348088 355189 355194) (-267 "DRAWHACK.spad" 347383 347393 348065 348070) (-266 "DRAWCX.spad" 344853 344861 347373 347378) (-265 "DRAWCURV.spad" 344400 344415 344843 344848) (-264 "DRAWCFUN.spad" 333932 333940 344390 344395) (-263 "DQAGG.spad" 332110 332120 333900 333927) (-262 "DPOLCAT.spad" 327459 327475 331978 332105) (-261 "DPOLCAT.spad" 322894 322912 327415 327420) (-260 "DPMO.spad" 314654 314670 314792 315005) (-259 "DPMM.spad" 306427 306445 306552 306765) (-258 "DOMTMPLT.spad" 306198 306206 306417 306422) (-257 "DOMCTOR.spad" 305953 305961 306188 306193) (-256 "DOMAIN.spad" 305040 305048 305943 305948) (-255 "DMP.spad" 302300 302315 302870 302997) (-254 "DMEXT.spad" 302167 302177 302268 302295) (-253 "DLP.spad" 301519 301529 302157 302162) (-252 "DLIST.spad" 299945 299955 300549 300576) (-251 "DLAGG.spad" 298362 298372 299935 299940) (-250 "DIVRING.spad" 297904 297912 298306 298357) (-249 "DIVRING.spad" 297490 297500 297894 297899) (-248 "DISPLAY.spad" 295680 295688 297480 297485) (-247 "DIRPROD.spad" 283227 283243 283867 283966) (-246 "DIRPROD2.spad" 282045 282063 283217 283222) (-245 "DIRPCAT.spad" 281238 281254 281941 282040) (-244 "DIRPCAT.spad" 280058 280076 280763 280768) (-243 "DIOSP.spad" 278883 278891 280048 280053) (-242 "DIOPS.spad" 277879 277889 278863 278878) (-241 "DIOPS.spad" 276849 276861 277835 277840) (-240 "DIFRING.spad" 276687 276695 276829 276844) (-239 "DIFFSPC.spad" 276266 276274 276677 276682) (-238 "DIFFSPC.spad" 275843 275853 276256 276261) (-237 "DIFFMOD.spad" 275332 275342 275811 275838) (-236 "DIFFDOM.spad" 274497 274508 275322 275327) (-235 "DIFFDOM.spad" 273660 273673 274487 274492) (-234 "DIFEXT.spad" 273479 273489 273640 273655) (-233 "DIAGG.spad" 273109 273119 273459 273474) (-232 "DIAGG.spad" 272747 272759 273099 273104) (-231 "DHMATRIX.spad" 270942 270952 272087 272114) (-230 "DFSFUN.spad" 264582 264590 270932 270937) (-229 "DFLOAT.spad" 261313 261321 264472 264577) (-228 "DFINTTLS.spad" 259544 259560 261303 261308) (-227 "DERHAM.spad" 257458 257490 259524 259539) (-226 "DEQUEUE.spad" 256665 256675 256948 256975) (-225 "DEGRED.spad" 256282 256296 256655 256660) (-224 "DEFINTRF.spad" 253819 253829 256272 256277) (-223 "DEFINTEF.spad" 252329 252345 253809 253814) (-222 "DEFAST.spad" 251697 251705 252319 252324) (-221 "DECIMAL.spad" 249706 249714 250067 250160) (-220 "DDFACT.spad" 247519 247536 249696 249701) (-219 "DBLRESP.spad" 247119 247143 247509 247514) (-218 "DBASIS.spad" 246745 246760 247109 247114) (-217 "DBASE.spad" 245409 245419 246735 246740) (-216 "DATAARY.spad" 244871 244884 245399 245404) (-215 "D03FAFA.spad" 244699 244707 244861 244866) (-214 "D03EEFA.spad" 244519 244527 244689 244694) (-213 "D03AGNT.spad" 243605 243613 244509 244514) (-212 "D02EJFA.spad" 243067 243075 243595 243600) (-211 "D02CJFA.spad" 242545 242553 243057 243062) (-210 "D02BHFA.spad" 242035 242043 242535 242540) (-209 "D02BBFA.spad" 241525 241533 242025 242030) (-208 "D02AGNT.spad" 236339 236347 241515 241520) (-207 "D01WGTS.spad" 234658 234666 236329 236334) (-206 "D01TRNS.spad" 234635 234643 234648 234653) (-205 "D01GBFA.spad" 234157 234165 234625 234630) (-204 "D01FCFA.spad" 233679 233687 234147 234152) (-203 "D01ASFA.spad" 233147 233155 233669 233674) (-202 "D01AQFA.spad" 232593 232601 233137 233142) (-201 "D01APFA.spad" 232017 232025 232583 232588) (-200 "D01ANFA.spad" 231511 231519 232007 232012) (-199 "D01AMFA.spad" 231021 231029 231501 231506) (-198 "D01ALFA.spad" 230561 230569 231011 231016) (-197 "D01AKFA.spad" 230087 230095 230551 230556) (-196 "D01AJFA.spad" 229610 229618 230077 230082) (-195 "D01AGNT.spad" 225677 225685 229600 229605) (-194 "CYCLOTOM.spad" 225183 225191 225667 225672) (-193 "CYCLES.spad" 221975 221983 225173 225178) (-192 "CVMP.spad" 221392 221402 221965 221970) (-191 "CTRIGMNP.spad" 219892 219908 221382 221387) (-190 "CTOR.spad" 219583 219591 219882 219887) (-189 "CTORKIND.spad" 219186 219194 219573 219578) (-188 "CTORCAT.spad" 218435 218443 219176 219181) (-187 "CTORCAT.spad" 217682 217692 218425 218430) (-186 "CTORCALL.spad" 217271 217281 217672 217677) (-185 "CSTTOOLS.spad" 216516 216529 217261 217266) (-184 "CRFP.spad" 210240 210253 216506 216511) (-183 "CRCEAST.spad" 209960 209968 210230 210235) (-182 "CRAPACK.spad" 209011 209021 209950 209955) (-181 "CPMATCH.spad" 208515 208530 208936 208941) (-180 "CPIMA.spad" 208220 208239 208505 208510) (-179 "COORDSYS.spad" 203229 203239 208210 208215) (-178 "CONTOUR.spad" 202640 202648 203219 203224) (-177 "CONTFRAC.spad" 198390 198400 202542 202635) (-176 "CONDUIT.spad" 198148 198156 198380 198385) (-175 "COMRING.spad" 197822 197830 198086 198143) (-174 "COMPPROP.spad" 197340 197348 197812 197817) (-173 "COMPLPAT.spad" 197107 197122 197330 197335) (-172 "COMPLEX.spad" 192484 192494 192728 192989) (-171 "COMPLEX2.spad" 192199 192211 192474 192479) (-170 "COMPILER.spad" 191748 191756 192189 192194) (-169 "COMPFACT.spad" 191350 191364 191738 191743) (-168 "COMPCAT.spad" 189422 189432 191084 191345) (-167 "COMPCAT.spad" 187222 187234 188886 188891) (-166 "COMMUPC.spad" 186970 186988 187212 187217) (-165 "COMMONOP.spad" 186503 186511 186960 186965) (-164 "COMM.spad" 186314 186322 186493 186498) (-163 "COMMAAST.spad" 186077 186085 186304 186309) (-162 "COMBOPC.spad" 184992 185000 186067 186072) (-161 "COMBINAT.spad" 183759 183769 184982 184987) (-160 "COMBF.spad" 181141 181157 183749 183754) (-159 "COLOR.spad" 179978 179986 181131 181136) (-158 "COLONAST.spad" 179644 179652 179968 179973) (-157 "CMPLXRT.spad" 179355 179372 179634 179639) (-156 "CLLCTAST.spad" 179017 179025 179345 179350) (-155 "CLIP.spad" 175125 175133 179007 179012) (-154 "CLIF.spad" 173780 173796 175081 175120) (-153 "CLAGG.spad" 170285 170295 173770 173775) (-152 "CLAGG.spad" 166661 166673 170148 170153) (-151 "CINTSLPE.spad" 165992 166005 166651 166656) (-150 "CHVAR.spad" 164130 164152 165982 165987) (-149 "CHARZ.spad" 164045 164053 164110 164125) (-148 "CHARPOL.spad" 163555 163565 164035 164040) (-147 "CHARNZ.spad" 163308 163316 163535 163550) (-146 "CHAR.spad" 160742 160750 163298 163303) (-145 "CFCAT.spad" 160070 160078 160732 160737) (-144 "CDEN.spad" 159266 159280 160060 160065) (-143 "CCLASS.spad" 157377 157385 158639 158678) (-142 "CATEGORY.spad" 156419 156427 157367 157372) (-141 "CATCTOR.spad" 156310 156318 156409 156414) (-140 "CATAST.spad" 155928 155936 156300 156305) (-139 "CASEAST.spad" 155642 155650 155918 155923) (-138 "CARTEN.spad" 151009 151033 155632 155637) (-137 "CARTEN2.spad" 150399 150426 150999 151004) (-136 "CARD.spad" 147694 147702 150373 150394) (-135 "CAPSLAST.spad" 147468 147476 147684 147689) (-134 "CACHSET.spad" 147092 147100 147458 147463) (-133 "CABMON.spad" 146647 146655 147082 147087) (-132 "BYTEORD.spad" 146322 146330 146637 146642) (-131 "BYTE.spad" 145749 145757 146312 146317) (-130 "BYTEBUF.spad" 143447 143455 144757 144784) (-129 "BTREE.spad" 142403 142413 142937 142964) (-128 "BTOURN.spad" 141291 141301 141893 141920) (-127 "BTCAT.spad" 140683 140693 141259 141286) (-126 "BTCAT.spad" 140095 140107 140673 140678) (-125 "BTAGG.spad" 139561 139569 140063 140090) (-124 "BTAGG.spad" 139047 139057 139551 139556) (-123 "BSTREE.spad" 137671 137681 138537 138564) (-122 "BRILL.spad" 135868 135879 137661 137666) (-121 "BRAGG.spad" 134808 134818 135858 135863) (-120 "BRAGG.spad" 133712 133724 134764 134769) (-119 "BPADICRT.spad" 131586 131598 131841 131934) (-118 "BPADIC.spad" 131250 131262 131512 131581) (-117 "BOUNDZRO.spad" 130906 130923 131240 131245) (-116 "BOP.spad" 126088 126096 130896 130901) (-115 "BOP1.spad" 123554 123564 126078 126083) (-114 "BOOLE.spad" 123204 123212 123544 123549) (-113 "BOOLE.spad" 122852 122862 123194 123199) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2300660 2300665 2300670 2300675) (-2 NIL 2300640 2300645 2300650 2300655) (-1 NIL 2300620 2300625 2300630 2300635) (0 NIL 2300600 2300605 2300610 2300615) (-1327 "ZMOD.spad" 2300409 2300422 2300538 2300595) (-1326 "ZLINDEP.spad" 2299475 2299486 2300399 2300404) (-1325 "ZDSOLVE.spad" 2289419 2289441 2299465 2299470) (-1324 "YSTREAM.spad" 2288914 2288925 2289409 2289414) (-1323 "YDIAGRAM.spad" 2288548 2288557 2288904 2288909) (-1322 "XRPOLY.spad" 2287768 2287788 2288404 2288473) (-1321 "XPR.spad" 2285563 2285576 2287486 2287585) (-1320 "XPOLY.spad" 2285118 2285129 2285419 2285488) (-1319 "XPOLYC.spad" 2284437 2284453 2285044 2285113) (-1318 "XPBWPOLY.spad" 2282874 2282894 2284217 2284286) (-1317 "XF.spad" 2281337 2281352 2282776 2282869) (-1316 "XF.spad" 2279780 2279797 2281221 2281226) (-1315 "XFALG.spad" 2276828 2276844 2279706 2279775) (-1314 "XEXPPKG.spad" 2276079 2276105 2276818 2276823) (-1313 "XDPOLY.spad" 2275693 2275709 2275935 2276004) (-1312 "XALG.spad" 2275353 2275364 2275649 2275688) (-1311 "WUTSET.spad" 2271156 2271173 2274963 2274990) (-1310 "WP.spad" 2270355 2270399 2271014 2271081) (-1309 "WHILEAST.spad" 2270153 2270162 2270345 2270350) (-1308 "WHEREAST.spad" 2269824 2269833 2270143 2270148) (-1307 "WFFINTBS.spad" 2267487 2267509 2269814 2269819) (-1306 "WEIER.spad" 2265709 2265720 2267477 2267482) (-1305 "VSPACE.spad" 2265382 2265393 2265677 2265704) (-1304 "VSPACE.spad" 2265075 2265088 2265372 2265377) (-1303 "VOID.spad" 2264752 2264761 2265065 2265070) (-1302 "VIEW.spad" 2262432 2262441 2264742 2264747) (-1301 "VIEWDEF.spad" 2257633 2257642 2262422 2262427) (-1300 "VIEW3D.spad" 2241594 2241603 2257623 2257628) (-1299 "VIEW2D.spad" 2229485 2229494 2241584 2241589) (-1298 "VECTOR.spad" 2228006 2228017 2228257 2228284) (-1297 "VECTOR2.spad" 2226645 2226658 2227996 2228001) (-1296 "VECTCAT.spad" 2224549 2224560 2226613 2226640) (-1295 "VECTCAT.spad" 2222260 2222273 2224326 2224331) (-1294 "VARIABLE.spad" 2222040 2222055 2222250 2222255) (-1293 "UTYPE.spad" 2221684 2221693 2222030 2222035) (-1292 "UTSODETL.spad" 2220979 2221003 2221640 2221645) (-1291 "UTSODE.spad" 2219195 2219215 2220969 2220974) (-1290 "UTS.spad" 2214142 2214170 2217662 2217759) (-1289 "UTSCAT.spad" 2211621 2211637 2214040 2214137) (-1288 "UTSCAT.spad" 2208744 2208762 2211165 2211170) (-1287 "UTS2.spad" 2208339 2208374 2208734 2208739) (-1286 "URAGG.spad" 2203012 2203023 2208329 2208334) (-1285 "URAGG.spad" 2197649 2197662 2202968 2202973) (-1284 "UPXSSING.spad" 2195294 2195320 2196730 2196863) (-1283 "UPXS.spad" 2192590 2192618 2193426 2193575) (-1282 "UPXSCONS.spad" 2190349 2190369 2190722 2190871) (-1281 "UPXSCCA.spad" 2188920 2188940 2190195 2190344) (-1280 "UPXSCCA.spad" 2187633 2187655 2188910 2188915) (-1279 "UPXSCAT.spad" 2186222 2186238 2187479 2187628) (-1278 "UPXS2.spad" 2185765 2185818 2186212 2186217) (-1277 "UPSQFREE.spad" 2184179 2184193 2185755 2185760) (-1276 "UPSCAT.spad" 2181966 2181990 2184077 2184174) (-1275 "UPSCAT.spad" 2179459 2179485 2181572 2181577) (-1274 "UPOLYC.spad" 2174499 2174510 2179301 2179454) (-1273 "UPOLYC.spad" 2169431 2169444 2174235 2174240) (-1272 "UPOLYC2.spad" 2168902 2168921 2169421 2169426) (-1271 "UP.spad" 2166008 2166023 2166395 2166548) (-1270 "UPMP.spad" 2164908 2164921 2165998 2166003) (-1269 "UPDIVP.spad" 2164473 2164487 2164898 2164903) (-1268 "UPDECOMP.spad" 2162718 2162732 2164463 2164468) (-1267 "UPCDEN.spad" 2161927 2161943 2162708 2162713) (-1266 "UP2.spad" 2161291 2161312 2161917 2161922) (-1265 "UNISEG.spad" 2160644 2160655 2161210 2161215) (-1264 "UNISEG2.spad" 2160141 2160154 2160600 2160605) (-1263 "UNIFACT.spad" 2159244 2159256 2160131 2160136) (-1262 "ULS.spad" 2149028 2149056 2149973 2150402) (-1261 "ULSCONS.spad" 2140162 2140182 2140532 2140681) (-1260 "ULSCCAT.spad" 2137899 2137919 2140008 2140157) (-1259 "ULSCCAT.spad" 2135744 2135766 2137855 2137860) (-1258 "ULSCAT.spad" 2133976 2133992 2135590 2135739) (-1257 "ULS2.spad" 2133490 2133543 2133966 2133971) (-1256 "UINT8.spad" 2133367 2133376 2133480 2133485) (-1255 "UINT64.spad" 2133243 2133252 2133357 2133362) (-1254 "UINT32.spad" 2133119 2133128 2133233 2133238) (-1253 "UINT16.spad" 2132995 2133004 2133109 2133114) (-1252 "UFD.spad" 2132060 2132069 2132921 2132990) (-1251 "UFD.spad" 2131187 2131198 2132050 2132055) (-1250 "UDVO.spad" 2130068 2130077 2131177 2131182) (-1249 "UDPO.spad" 2127561 2127572 2130024 2130029) (-1248 "TYPE.spad" 2127493 2127502 2127551 2127556) (-1247 "TYPEAST.spad" 2127412 2127421 2127483 2127488) (-1246 "TWOFACT.spad" 2126064 2126079 2127402 2127407) (-1245 "TUPLE.spad" 2125550 2125561 2125963 2125968) (-1244 "TUBETOOL.spad" 2122417 2122426 2125540 2125545) (-1243 "TUBE.spad" 2121064 2121081 2122407 2122412) (-1242 "TS.spad" 2119663 2119679 2120629 2120726) (-1241 "TSETCAT.spad" 2106790 2106807 2119631 2119658) (-1240 "TSETCAT.spad" 2093903 2093922 2106746 2106751) (-1239 "TRMANIP.spad" 2088269 2088286 2093609 2093614) (-1238 "TRIMAT.spad" 2087232 2087257 2088259 2088264) (-1237 "TRIGMNIP.spad" 2085759 2085776 2087222 2087227) (-1236 "TRIGCAT.spad" 2085271 2085280 2085749 2085754) (-1235 "TRIGCAT.spad" 2084781 2084792 2085261 2085266) (-1234 "TREE.spad" 2083239 2083250 2084271 2084298) (-1233 "TRANFUN.spad" 2083078 2083087 2083229 2083234) (-1232 "TRANFUN.spad" 2082915 2082926 2083068 2083073) (-1231 "TOPSP.spad" 2082589 2082598 2082905 2082910) (-1230 "TOOLSIGN.spad" 2082252 2082263 2082579 2082584) (-1229 "TEXTFILE.spad" 2080813 2080822 2082242 2082247) (-1228 "TEX.spad" 2077959 2077968 2080803 2080808) (-1227 "TEX1.spad" 2077515 2077526 2077949 2077954) (-1226 "TEMUTL.spad" 2077070 2077079 2077505 2077510) (-1225 "TBCMPPK.spad" 2075163 2075186 2077060 2077065) (-1224 "TBAGG.spad" 2074213 2074236 2075143 2075158) (-1223 "TBAGG.spad" 2073271 2073296 2074203 2074208) (-1222 "TANEXP.spad" 2072679 2072690 2073261 2073266) (-1221 "TALGOP.spad" 2072403 2072414 2072669 2072674) (-1220 "TABLE.spad" 2070372 2070395 2070642 2070669) (-1219 "TABLEAU.spad" 2069853 2069864 2070362 2070367) (-1218 "TABLBUMP.spad" 2066656 2066667 2069843 2069848) (-1217 "SYSTEM.spad" 2065884 2065893 2066646 2066651) (-1216 "SYSSOLP.spad" 2063367 2063378 2065874 2065879) (-1215 "SYSPTR.spad" 2063266 2063275 2063357 2063362) (-1214 "SYSNNI.spad" 2062457 2062468 2063256 2063261) (-1213 "SYSINT.spad" 2061861 2061872 2062447 2062452) (-1212 "SYNTAX.spad" 2058067 2058076 2061851 2061856) (-1211 "SYMTAB.spad" 2056135 2056144 2058057 2058062) (-1210 "SYMS.spad" 2052158 2052167 2056125 2056130) (-1209 "SYMPOLY.spad" 2051164 2051175 2051246 2051373) (-1208 "SYMFUNC.spad" 2050665 2050676 2051154 2051159) (-1207 "SYMBOL.spad" 2048168 2048177 2050655 2050660) (-1206 "SWITCH.spad" 2044939 2044948 2048158 2048163) (-1205 "SUTS.spad" 2041987 2042015 2043406 2043503) (-1204 "SUPXS.spad" 2039270 2039298 2040119 2040268) (-1203 "SUP.spad" 2035990 2036001 2036763 2036916) (-1202 "SUPFRACF.spad" 2035095 2035113 2035980 2035985) (-1201 "SUP2.spad" 2034487 2034500 2035085 2035090) (-1200 "SUMRF.spad" 2033461 2033472 2034477 2034482) (-1199 "SUMFS.spad" 2033098 2033115 2033451 2033456) (-1198 "SULS.spad" 2022869 2022897 2023827 2024256) (-1197 "SUCHTAST.spad" 2022638 2022647 2022859 2022864) (-1196 "SUCH.spad" 2022320 2022335 2022628 2022633) (-1195 "SUBSPACE.spad" 2014435 2014450 2022310 2022315) (-1194 "SUBRESP.spad" 2013605 2013619 2014391 2014396) (-1193 "STTF.spad" 2009704 2009720 2013595 2013600) (-1192 "STTFNC.spad" 2006172 2006188 2009694 2009699) (-1191 "STTAYLOR.spad" 1998807 1998818 2006053 2006058) (-1190 "STRTBL.spad" 1996858 1996875 1997007 1997034) (-1189 "STRING.spad" 1995645 1995654 1995866 1995893) (-1188 "STREAM.spad" 1992446 1992457 1995053 1995068) (-1187 "STREAM3.spad" 1992019 1992034 1992436 1992441) (-1186 "STREAM2.spad" 1991147 1991160 1992009 1992014) (-1185 "STREAM1.spad" 1990853 1990864 1991137 1991142) (-1184 "STINPROD.spad" 1989789 1989805 1990843 1990848) (-1183 "STEP.spad" 1988990 1988999 1989779 1989784) (-1182 "STEPAST.spad" 1988224 1988233 1988980 1988985) (-1181 "STBL.spad" 1986308 1986336 1986475 1986490) (-1180 "STAGG.spad" 1985383 1985394 1986298 1986303) (-1179 "STAGG.spad" 1984456 1984469 1985373 1985378) (-1178 "STACK.spad" 1983696 1983707 1983946 1983973) (-1177 "SREGSET.spad" 1981364 1981381 1983306 1983333) (-1176 "SRDCMPK.spad" 1979925 1979945 1981354 1981359) (-1175 "SRAGG.spad" 1975068 1975077 1979893 1979920) (-1174 "SRAGG.spad" 1970231 1970242 1975058 1975063) (-1173 "SQMATRIX.spad" 1967774 1967792 1968690 1968777) (-1172 "SPLTREE.spad" 1962170 1962183 1967054 1967081) (-1171 "SPLNODE.spad" 1958758 1958771 1962160 1962165) (-1170 "SPFCAT.spad" 1957567 1957576 1958748 1958753) (-1169 "SPECOUT.spad" 1956119 1956128 1957557 1957562) (-1168 "SPADXPT.spad" 1947714 1947723 1956109 1956114) (-1167 "spad-parser.spad" 1947179 1947188 1947704 1947709) (-1166 "SPADAST.spad" 1946880 1946889 1947169 1947174) (-1165 "SPACEC.spad" 1931079 1931090 1946870 1946875) (-1164 "SPACE3.spad" 1930855 1930866 1931069 1931074) (-1163 "SORTPAK.spad" 1930404 1930417 1930811 1930816) (-1162 "SOLVETRA.spad" 1928167 1928178 1930394 1930399) (-1161 "SOLVESER.spad" 1926695 1926706 1928157 1928162) (-1160 "SOLVERAD.spad" 1922721 1922732 1926685 1926690) (-1159 "SOLVEFOR.spad" 1921183 1921201 1922711 1922716) (-1158 "SNTSCAT.spad" 1920783 1920800 1921151 1921178) (-1157 "SMTS.spad" 1919055 1919081 1920348 1920445) (-1156 "SMP.spad" 1916530 1916550 1916920 1917047) (-1155 "SMITH.spad" 1915375 1915400 1916520 1916525) (-1154 "SMATCAT.spad" 1913485 1913515 1915319 1915370) (-1153 "SMATCAT.spad" 1911527 1911559 1913363 1913368) (-1152 "SKAGG.spad" 1910490 1910501 1911495 1911522) (-1151 "SINT.spad" 1909430 1909439 1910356 1910485) (-1150 "SIMPAN.spad" 1909158 1909167 1909420 1909425) (-1149 "SIG.spad" 1908488 1908497 1909148 1909153) (-1148 "SIGNRF.spad" 1907606 1907617 1908478 1908483) (-1147 "SIGNEF.spad" 1906885 1906902 1907596 1907601) (-1146 "SIGAST.spad" 1906270 1906279 1906875 1906880) (-1145 "SHP.spad" 1904198 1904213 1906226 1906231) (-1144 "SHDP.spad" 1891876 1891903 1892385 1892484) (-1143 "SGROUP.spad" 1891484 1891493 1891866 1891871) (-1142 "SGROUP.spad" 1891090 1891101 1891474 1891479) (-1141 "SGCF.spad" 1884229 1884238 1891080 1891085) (-1140 "SFRTCAT.spad" 1883159 1883176 1884197 1884224) (-1139 "SFRGCD.spad" 1882222 1882242 1883149 1883154) (-1138 "SFQCMPK.spad" 1876859 1876879 1882212 1882217) (-1137 "SFORT.spad" 1876298 1876312 1876849 1876854) (-1136 "SEXOF.spad" 1876141 1876181 1876288 1876293) (-1135 "SEX.spad" 1876033 1876042 1876131 1876136) (-1134 "SEXCAT.spad" 1873805 1873845 1876023 1876028) (-1133 "SET.spad" 1872093 1872104 1873190 1873229) (-1132 "SETMN.spad" 1870543 1870560 1872083 1872088) (-1131 "SETCAT.spad" 1870028 1870037 1870533 1870538) (-1130 "SETCAT.spad" 1869511 1869522 1870018 1870023) (-1129 "SETAGG.spad" 1866060 1866071 1869491 1869506) (-1128 "SETAGG.spad" 1862617 1862630 1866050 1866055) (-1127 "SEQAST.spad" 1862320 1862329 1862607 1862612) (-1126 "SEGXCAT.spad" 1861476 1861489 1862310 1862315) (-1125 "SEG.spad" 1861289 1861300 1861395 1861400) (-1124 "SEGCAT.spad" 1860214 1860225 1861279 1861284) (-1123 "SEGBIND.spad" 1859972 1859983 1860161 1860166) (-1122 "SEGBIND2.spad" 1859670 1859683 1859962 1859967) (-1121 "SEGAST.spad" 1859384 1859393 1859660 1859665) (-1120 "SEG2.spad" 1858819 1858832 1859340 1859345) (-1119 "SDVAR.spad" 1858095 1858106 1858809 1858814) (-1118 "SDPOL.spad" 1855428 1855439 1855719 1855846) (-1117 "SCPKG.spad" 1853517 1853528 1855418 1855423) (-1116 "SCOPE.spad" 1852670 1852679 1853507 1853512) (-1115 "SCACHE.spad" 1851366 1851377 1852660 1852665) (-1114 "SASTCAT.spad" 1851275 1851284 1851356 1851361) (-1113 "SAOS.spad" 1851147 1851156 1851265 1851270) (-1112 "SAERFFC.spad" 1850860 1850880 1851137 1851142) (-1111 "SAE.spad" 1848330 1848346 1848941 1849076) (-1110 "SAEFACT.spad" 1848031 1848051 1848320 1848325) (-1109 "RURPK.spad" 1845690 1845706 1848021 1848026) (-1108 "RULESET.spad" 1845143 1845167 1845680 1845685) (-1107 "RULE.spad" 1843383 1843407 1845133 1845138) (-1106 "RULECOLD.spad" 1843235 1843248 1843373 1843378) (-1105 "RTVALUE.spad" 1842970 1842979 1843225 1843230) (-1104 "RSTRCAST.spad" 1842687 1842696 1842960 1842965) (-1103 "RSETGCD.spad" 1839065 1839085 1842677 1842682) (-1102 "RSETCAT.spad" 1829001 1829018 1839033 1839060) (-1101 "RSETCAT.spad" 1818957 1818976 1828991 1828996) (-1100 "RSDCMPK.spad" 1817409 1817429 1818947 1818952) (-1099 "RRCC.spad" 1815793 1815823 1817399 1817404) (-1098 "RRCC.spad" 1814175 1814207 1815783 1815788) (-1097 "RPTAST.spad" 1813877 1813886 1814165 1814170) (-1096 "RPOLCAT.spad" 1793237 1793252 1813745 1813872) (-1095 "RPOLCAT.spad" 1772310 1772327 1792820 1792825) (-1094 "ROUTINE.spad" 1767731 1767740 1770495 1770522) (-1093 "ROMAN.spad" 1767059 1767068 1767597 1767726) (-1092 "ROIRC.spad" 1766139 1766171 1767049 1767054) (-1091 "RNS.spad" 1765042 1765051 1766041 1766134) (-1090 "RNS.spad" 1764031 1764042 1765032 1765037) (-1089 "RNG.spad" 1763766 1763775 1764021 1764026) (-1088 "RNGBIND.spad" 1762926 1762940 1763721 1763726) (-1087 "RMODULE.spad" 1762691 1762702 1762916 1762921) (-1086 "RMCAT2.spad" 1762111 1762168 1762681 1762686) (-1085 "RMATRIX.spad" 1760899 1760918 1761242 1761281) (-1084 "RMATCAT.spad" 1756478 1756509 1760855 1760894) (-1083 "RMATCAT.spad" 1751947 1751980 1756326 1756331) (-1082 "RLINSET.spad" 1751651 1751662 1751937 1751942) (-1081 "RINTERP.spad" 1751539 1751559 1751641 1751646) (-1080 "RING.spad" 1751009 1751018 1751519 1751534) (-1079 "RING.spad" 1750487 1750498 1750999 1751004) (-1078 "RIDIST.spad" 1749879 1749888 1750477 1750482) (-1077 "RGCHAIN.spad" 1748407 1748423 1749309 1749336) (-1076 "RGBCSPC.spad" 1748188 1748200 1748397 1748402) (-1075 "RGBCMDL.spad" 1747718 1747730 1748178 1748183) (-1074 "RF.spad" 1745360 1745371 1747708 1747713) (-1073 "RFFACTOR.spad" 1744822 1744833 1745350 1745355) (-1072 "RFFACT.spad" 1744557 1744569 1744812 1744817) (-1071 "RFDIST.spad" 1743553 1743562 1744547 1744552) (-1070 "RETSOL.spad" 1742972 1742985 1743543 1743548) (-1069 "RETRACT.spad" 1742400 1742411 1742962 1742967) (-1068 "RETRACT.spad" 1741826 1741839 1742390 1742395) (-1067 "RETAST.spad" 1741638 1741647 1741816 1741821) (-1066 "RESULT.spad" 1739236 1739245 1739823 1739850) (-1065 "RESRING.spad" 1738583 1738630 1739174 1739231) (-1064 "RESLATC.spad" 1737907 1737918 1738573 1738578) (-1063 "REPSQ.spad" 1737638 1737649 1737897 1737902) (-1062 "REP.spad" 1735192 1735201 1737628 1737633) (-1061 "REPDB.spad" 1734899 1734910 1735182 1735187) (-1060 "REP2.spad" 1724557 1724568 1734741 1734746) (-1059 "REP1.spad" 1718753 1718764 1724507 1724512) (-1058 "REGSET.spad" 1716514 1716531 1718363 1718390) (-1057 "REF.spad" 1715849 1715860 1716469 1716474) (-1056 "REDORDER.spad" 1715055 1715072 1715839 1715844) (-1055 "RECLOS.spad" 1713838 1713858 1714542 1714635) (-1054 "REALSOLV.spad" 1712978 1712987 1713828 1713833) (-1053 "REAL.spad" 1712850 1712859 1712968 1712973) (-1052 "REAL0Q.spad" 1710148 1710163 1712840 1712845) (-1051 "REAL0.spad" 1706992 1707007 1710138 1710143) (-1050 "RDUCEAST.spad" 1706713 1706722 1706982 1706987) (-1049 "RDIV.spad" 1706368 1706393 1706703 1706708) (-1048 "RDIST.spad" 1705935 1705946 1706358 1706363) (-1047 "RDETRS.spad" 1704799 1704817 1705925 1705930) (-1046 "RDETR.spad" 1702938 1702956 1704789 1704794) (-1045 "RDEEFS.spad" 1702037 1702054 1702928 1702933) (-1044 "RDEEF.spad" 1701047 1701064 1702027 1702032) (-1043 "RCFIELD.spad" 1698233 1698242 1700949 1701042) (-1042 "RCFIELD.spad" 1695505 1695516 1698223 1698228) (-1041 "RCAGG.spad" 1693433 1693444 1695495 1695500) (-1040 "RCAGG.spad" 1691288 1691301 1693352 1693357) (-1039 "RATRET.spad" 1690648 1690659 1691278 1691283) (-1038 "RATFACT.spad" 1690340 1690352 1690638 1690643) (-1037 "RANDSRC.spad" 1689659 1689668 1690330 1690335) (-1036 "RADUTIL.spad" 1689415 1689424 1689649 1689654) (-1035 "RADIX.spad" 1686239 1686253 1687785 1687878) (-1034 "RADFF.spad" 1683978 1684015 1684097 1684253) (-1033 "RADCAT.spad" 1683573 1683582 1683968 1683973) (-1032 "RADCAT.spad" 1683166 1683177 1683563 1683568) (-1031 "QUEUE.spad" 1682397 1682408 1682656 1682683) (-1030 "QUAT.spad" 1680885 1680896 1681228 1681293) (-1029 "QUATCT2.spad" 1680505 1680524 1680875 1680880) (-1028 "QUATCAT.spad" 1678675 1678686 1680435 1680500) (-1027 "QUATCAT.spad" 1676596 1676609 1678358 1678363) (-1026 "QUAGG.spad" 1675423 1675434 1676564 1676591) (-1025 "QQUTAST.spad" 1675191 1675200 1675413 1675418) (-1024 "QFORM.spad" 1674809 1674824 1675181 1675186) (-1023 "QFCAT.spad" 1673511 1673522 1674711 1674804) (-1022 "QFCAT.spad" 1671804 1671817 1673006 1673011) (-1021 "QFCAT2.spad" 1671496 1671513 1671794 1671799) (-1020 "QEQUAT.spad" 1671054 1671063 1671486 1671491) (-1019 "QCMPACK.spad" 1665800 1665820 1671044 1671049) (-1018 "QALGSET.spad" 1661878 1661911 1665714 1665719) (-1017 "QALGSET2.spad" 1659873 1659892 1661868 1661873) (-1016 "PWFFINTB.spad" 1657288 1657310 1659863 1659868) (-1015 "PUSHVAR.spad" 1656626 1656646 1657278 1657283) (-1014 "PTRANFN.spad" 1652753 1652764 1656616 1656621) (-1013 "PTPACK.spad" 1649840 1649851 1652743 1652748) (-1012 "PTFUNC2.spad" 1649662 1649677 1649830 1649835) (-1011 "PTCAT.spad" 1648916 1648927 1649630 1649657) (-1010 "PSQFR.spad" 1648222 1648247 1648906 1648911) (-1009 "PSEUDLIN.spad" 1647107 1647118 1648212 1648217) (-1008 "PSETPK.spad" 1632539 1632556 1646985 1646990) (-1007 "PSETCAT.spad" 1626458 1626482 1632519 1632534) (-1006 "PSETCAT.spad" 1620351 1620377 1626414 1626419) (-1005 "PSCURVE.spad" 1619333 1619342 1620341 1620346) (-1004 "PSCAT.spad" 1618115 1618145 1619231 1619328) (-1003 "PSCAT.spad" 1616987 1617019 1618105 1618110) (-1002 "PRTITION.spad" 1615684 1615693 1616977 1616982) (-1001 "PRTDAST.spad" 1615402 1615411 1615674 1615679) (-1000 "PRS.spad" 1604963 1604981 1615358 1615363) (-999 "PRQAGG.spad" 1604398 1604408 1604931 1604958) (-998 "PROPLOG.spad" 1603970 1603978 1604388 1604393) (-997 "PROPFUN2.spad" 1603593 1603606 1603960 1603965) (-996 "PROPFUN1.spad" 1602991 1603002 1603583 1603588) (-995 "PROPFRML.spad" 1601559 1601570 1602981 1602986) (-994 "PROPERTY.spad" 1601047 1601055 1601549 1601554) (-993 "PRODUCT.spad" 1598729 1598741 1599013 1599068) (-992 "PR.spad" 1597121 1597133 1597820 1597947) (-991 "PRINT.spad" 1596873 1596881 1597111 1597116) (-990 "PRIMES.spad" 1595126 1595136 1596863 1596868) (-989 "PRIMELT.spad" 1593207 1593221 1595116 1595121) (-988 "PRIMCAT.spad" 1592834 1592842 1593197 1593202) (-987 "PRIMARR.spad" 1591686 1591696 1591864 1591891) (-986 "PRIMARR2.spad" 1590453 1590465 1591676 1591681) (-985 "PREASSOC.spad" 1589835 1589847 1590443 1590448) (-984 "PPCURVE.spad" 1588972 1588980 1589825 1589830) (-983 "PORTNUM.spad" 1588747 1588755 1588962 1588967) (-982 "POLYROOT.spad" 1587596 1587618 1588703 1588708) (-981 "POLY.spad" 1584931 1584941 1585446 1585573) (-980 "POLYLIFT.spad" 1584196 1584219 1584921 1584926) (-979 "POLYCATQ.spad" 1582314 1582336 1584186 1584191) (-978 "POLYCAT.spad" 1575784 1575805 1582182 1582309) (-977 "POLYCAT.spad" 1568592 1568615 1574992 1574997) (-976 "POLY2UP.spad" 1568044 1568058 1568582 1568587) (-975 "POLY2.spad" 1567641 1567653 1568034 1568039) (-974 "POLUTIL.spad" 1566582 1566611 1567597 1567602) (-973 "POLTOPOL.spad" 1565330 1565345 1566572 1566577) (-972 "POINT.spad" 1564015 1564025 1564102 1564129) (-971 "PNTHEORY.spad" 1560717 1560725 1564005 1564010) (-970 "PMTOOLS.spad" 1559492 1559506 1560707 1560712) (-969 "PMSYM.spad" 1559041 1559051 1559482 1559487) (-968 "PMQFCAT.spad" 1558632 1558646 1559031 1559036) (-967 "PMPRED.spad" 1558111 1558125 1558622 1558627) (-966 "PMPREDFS.spad" 1557565 1557587 1558101 1558106) (-965 "PMPLCAT.spad" 1556645 1556663 1557497 1557502) (-964 "PMLSAGG.spad" 1556230 1556244 1556635 1556640) (-963 "PMKERNEL.spad" 1555809 1555821 1556220 1556225) (-962 "PMINS.spad" 1555389 1555399 1555799 1555804) (-961 "PMFS.spad" 1554966 1554984 1555379 1555384) (-960 "PMDOWN.spad" 1554256 1554270 1554956 1554961) (-959 "PMASS.spad" 1553266 1553274 1554246 1554251) (-958 "PMASSFS.spad" 1552233 1552249 1553256 1553261) (-957 "PLOTTOOL.spad" 1552013 1552021 1552223 1552228) (-956 "PLOT.spad" 1546936 1546944 1552003 1552008) (-955 "PLOT3D.spad" 1543400 1543408 1546926 1546931) (-954 "PLOT1.spad" 1542557 1542567 1543390 1543395) (-953 "PLEQN.spad" 1529847 1529874 1542547 1542552) (-952 "PINTERP.spad" 1529469 1529488 1529837 1529842) (-951 "PINTERPA.spad" 1529253 1529269 1529459 1529464) (-950 "PI.spad" 1528862 1528870 1529227 1529248) (-949 "PID.spad" 1527832 1527840 1528788 1528857) (-948 "PICOERCE.spad" 1527489 1527499 1527822 1527827) (-947 "PGROEB.spad" 1526090 1526104 1527479 1527484) (-946 "PGE.spad" 1517707 1517715 1526080 1526085) (-945 "PGCD.spad" 1516597 1516614 1517697 1517702) (-944 "PFRPAC.spad" 1515746 1515756 1516587 1516592) (-943 "PFR.spad" 1512409 1512419 1515648 1515741) (-942 "PFOTOOLS.spad" 1511667 1511683 1512399 1512404) (-941 "PFOQ.spad" 1511037 1511055 1511657 1511662) (-940 "PFO.spad" 1510456 1510483 1511027 1511032) (-939 "PF.spad" 1510030 1510042 1510261 1510354) (-938 "PFECAT.spad" 1507712 1507720 1509956 1510025) (-937 "PFECAT.spad" 1505422 1505432 1507668 1507673) (-936 "PFBRU.spad" 1503310 1503322 1505412 1505417) (-935 "PFBR.spad" 1500870 1500893 1503300 1503305) (-934 "PERM.spad" 1496677 1496687 1500700 1500715) (-933 "PERMGRP.spad" 1491447 1491457 1496667 1496672) (-932 "PERMCAT.spad" 1490108 1490118 1491427 1491442) (-931 "PERMAN.spad" 1488640 1488654 1490098 1490103) (-930 "PENDTREE.spad" 1487864 1487874 1488152 1488157) (-929 "PDSPC.spad" 1486677 1486687 1487854 1487859) (-928 "PDSPC.spad" 1485488 1485500 1486667 1486672) (-927 "PDRING.spad" 1485330 1485340 1485468 1485483) (-926 "PDMOD.spad" 1485146 1485158 1485298 1485325) (-925 "PDEPROB.spad" 1484161 1484169 1485136 1485141) (-924 "PDEPACK.spad" 1478201 1478209 1484151 1484156) (-923 "PDECOMP.spad" 1477671 1477688 1478191 1478196) (-922 "PDECAT.spad" 1476027 1476035 1477661 1477666) (-921 "PDDOM.spad" 1475465 1475478 1476017 1476022) (-920 "PDDOM.spad" 1474901 1474916 1475455 1475460) (-919 "PCOMP.spad" 1474754 1474767 1474891 1474896) (-918 "PBWLB.spad" 1473342 1473359 1474744 1474749) (-917 "PATTERN.spad" 1467881 1467891 1473332 1473337) (-916 "PATTERN2.spad" 1467619 1467631 1467871 1467876) (-915 "PATTERN1.spad" 1465955 1465971 1467609 1467614) (-914 "PATRES.spad" 1463530 1463542 1465945 1465950) (-913 "PATRES2.spad" 1463202 1463216 1463520 1463525) (-912 "PATMATCH.spad" 1461399 1461430 1462910 1462915) (-911 "PATMAB.spad" 1460828 1460838 1461389 1461394) (-910 "PATLRES.spad" 1459914 1459928 1460818 1460823) (-909 "PATAB.spad" 1459678 1459688 1459904 1459909) (-908 "PARTPERM.spad" 1457686 1457694 1459668 1459673) (-907 "PARSURF.spad" 1457120 1457148 1457676 1457681) (-906 "PARSU2.spad" 1456917 1456933 1457110 1457115) (-905 "script-parser.spad" 1456437 1456445 1456907 1456912) (-904 "PARSCURV.spad" 1455871 1455899 1456427 1456432) (-903 "PARSC2.spad" 1455662 1455678 1455861 1455866) (-902 "PARPCURV.spad" 1455124 1455152 1455652 1455657) (-901 "PARPC2.spad" 1454915 1454931 1455114 1455119) (-900 "PARAMAST.spad" 1454043 1454051 1454905 1454910) (-899 "PAN2EXPR.spad" 1453455 1453463 1454033 1454038) (-898 "PALETTE.spad" 1452425 1452433 1453445 1453450) (-897 "PAIR.spad" 1451412 1451425 1452013 1452018) (-896 "PADICRC.spad" 1448653 1448671 1449824 1449917) (-895 "PADICRAT.spad" 1446561 1446573 1446782 1446875) (-894 "PADIC.spad" 1446256 1446268 1446487 1446556) (-893 "PADICCT.spad" 1444805 1444817 1446182 1446251) (-892 "PADEPAC.spad" 1443494 1443513 1444795 1444800) (-891 "PADE.spad" 1442246 1442262 1443484 1443489) (-890 "OWP.spad" 1441486 1441516 1442104 1442171) (-889 "OVERSET.spad" 1441059 1441067 1441476 1441481) (-888 "OVAR.spad" 1440840 1440863 1441049 1441054) (-887 "OUT.spad" 1439926 1439934 1440830 1440835) (-886 "OUTFORM.spad" 1429318 1429326 1439916 1439921) (-885 "OUTBFILE.spad" 1428736 1428744 1429308 1429313) (-884 "OUTBCON.spad" 1427742 1427750 1428726 1428731) (-883 "OUTBCON.spad" 1426746 1426756 1427732 1427737) (-882 "OSI.spad" 1426221 1426229 1426736 1426741) (-881 "OSGROUP.spad" 1426139 1426147 1426211 1426216) (-880 "ORTHPOL.spad" 1424624 1424634 1426056 1426061) (-879 "OREUP.spad" 1424077 1424105 1424304 1424343) (-878 "ORESUP.spad" 1423378 1423402 1423757 1423796) (-877 "OREPCTO.spad" 1421235 1421247 1423298 1423303) (-876 "OREPCAT.spad" 1415382 1415392 1421191 1421230) (-875 "OREPCAT.spad" 1409419 1409431 1415230 1415235) (-874 "ORDTYPE.spad" 1408656 1408664 1409409 1409414) (-873 "ORDTYPE.spad" 1407891 1407901 1408646 1408651) (-872 "ORDSTRCT.spad" 1407664 1407679 1407827 1407832) (-871 "ORDSET.spad" 1407364 1407372 1407654 1407659) (-870 "ORDRING.spad" 1406754 1406762 1407344 1407359) (-869 "ORDRING.spad" 1406152 1406162 1406744 1406749) (-868 "ORDMON.spad" 1406007 1406015 1406142 1406147) (-867 "ORDFUNS.spad" 1405139 1405155 1405997 1406002) (-866 "ORDFIN.spad" 1404959 1404967 1405129 1405134) (-865 "ORDCOMP.spad" 1403424 1403434 1404506 1404535) (-864 "ORDCOMP2.spad" 1402717 1402729 1403414 1403419) (-863 "OPTPROB.spad" 1401355 1401363 1402707 1402712) (-862 "OPTPACK.spad" 1393764 1393772 1401345 1401350) (-861 "OPTCAT.spad" 1391443 1391451 1393754 1393759) (-860 "OPSIG.spad" 1391097 1391105 1391433 1391438) (-859 "OPQUERY.spad" 1390646 1390654 1391087 1391092) (-858 "OP.spad" 1390388 1390398 1390468 1390535) (-857 "OPERCAT.spad" 1389854 1389864 1390378 1390383) (-856 "OPERCAT.spad" 1389318 1389330 1389844 1389849) (-855 "ONECOMP.spad" 1388063 1388073 1388865 1388894) (-854 "ONECOMP2.spad" 1387487 1387499 1388053 1388058) (-853 "OMSERVER.spad" 1386493 1386501 1387477 1387482) (-852 "OMSAGG.spad" 1386281 1386291 1386449 1386488) (-851 "OMPKG.spad" 1384897 1384905 1386271 1386276) (-850 "OM.spad" 1383870 1383878 1384887 1384892) (-849 "OMLO.spad" 1383295 1383307 1383756 1383795) (-848 "OMEXPR.spad" 1383129 1383139 1383285 1383290) (-847 "OMERR.spad" 1382674 1382682 1383119 1383124) (-846 "OMERRK.spad" 1381708 1381716 1382664 1382669) (-845 "OMENC.spad" 1381052 1381060 1381698 1381703) (-844 "OMDEV.spad" 1375361 1375369 1381042 1381047) (-843 "OMCONN.spad" 1374770 1374778 1375351 1375356) (-842 "OINTDOM.spad" 1374533 1374541 1374696 1374765) (-841 "OFMONOID.spad" 1372656 1372666 1374489 1374494) (-840 "ODVAR.spad" 1371917 1371927 1372646 1372651) (-839 "ODR.spad" 1371561 1371587 1371729 1371878) (-838 "ODPOL.spad" 1368850 1368860 1369190 1369317) (-837 "ODP.spad" 1356664 1356684 1357037 1357136) (-836 "ODETOOLS.spad" 1355313 1355332 1356654 1356659) (-835 "ODESYS.spad" 1353007 1353024 1355303 1355308) (-834 "ODERTRIC.spad" 1349016 1349033 1352964 1352969) (-833 "ODERED.spad" 1348415 1348439 1349006 1349011) (-832 "ODERAT.spad" 1346030 1346047 1348405 1348410) (-831 "ODEPRRIC.spad" 1343067 1343089 1346020 1346025) (-830 "ODEPROB.spad" 1342324 1342332 1343057 1343062) (-829 "ODEPRIM.spad" 1339658 1339680 1342314 1342319) (-828 "ODEPAL.spad" 1339044 1339068 1339648 1339653) (-827 "ODEPACK.spad" 1325710 1325718 1339034 1339039) (-826 "ODEINT.spad" 1325145 1325161 1325700 1325705) (-825 "ODEIFTBL.spad" 1322540 1322548 1325135 1325140) (-824 "ODEEF.spad" 1318031 1318047 1322530 1322535) (-823 "ODECONST.spad" 1317568 1317586 1318021 1318026) (-822 "ODECAT.spad" 1316166 1316174 1317558 1317563) (-821 "OCT.spad" 1314302 1314312 1315016 1315055) (-820 "OCTCT2.spad" 1313948 1313969 1314292 1314297) (-819 "OC.spad" 1311744 1311754 1313904 1313943) (-818 "OC.spad" 1309265 1309277 1311427 1311432) (-817 "OCAMON.spad" 1309113 1309121 1309255 1309260) (-816 "OASGP.spad" 1308928 1308936 1309103 1309108) (-815 "OAMONS.spad" 1308450 1308458 1308918 1308923) (-814 "OAMON.spad" 1308311 1308319 1308440 1308445) (-813 "OAGROUP.spad" 1308173 1308181 1308301 1308306) (-812 "NUMTUBE.spad" 1307764 1307780 1308163 1308168) (-811 "NUMQUAD.spad" 1295740 1295748 1307754 1307759) (-810 "NUMODE.spad" 1287094 1287102 1295730 1295735) (-809 "NUMINT.spad" 1284660 1284668 1287084 1287089) (-808 "NUMFMT.spad" 1283500 1283508 1284650 1284655) (-807 "NUMERIC.spad" 1275614 1275624 1283305 1283310) (-806 "NTSCAT.spad" 1274122 1274138 1275582 1275609) (-805 "NTPOLFN.spad" 1273673 1273683 1274039 1274044) (-804 "NSUP.spad" 1266626 1266636 1271166 1271319) (-803 "NSUP2.spad" 1266018 1266030 1266616 1266621) (-802 "NSMP.spad" 1262248 1262267 1262556 1262683) (-801 "NREP.spad" 1260626 1260640 1262238 1262243) (-800 "NPCOEF.spad" 1259872 1259892 1260616 1260621) (-799 "NORMRETR.spad" 1259470 1259509 1259862 1259867) (-798 "NORMPK.spad" 1257372 1257391 1259460 1259465) (-797 "NORMMA.spad" 1257060 1257086 1257362 1257367) (-796 "NONE.spad" 1256801 1256809 1257050 1257055) (-795 "NONE1.spad" 1256477 1256487 1256791 1256796) (-794 "NODE1.spad" 1255964 1255980 1256467 1256472) (-793 "NNI.spad" 1254859 1254867 1255938 1255959) (-792 "NLINSOL.spad" 1253485 1253495 1254849 1254854) (-791 "NIPROB.spad" 1252026 1252034 1253475 1253480) (-790 "NFINTBAS.spad" 1249586 1249603 1252016 1252021) (-789 "NETCLT.spad" 1249560 1249571 1249576 1249581) (-788 "NCODIV.spad" 1247776 1247792 1249550 1249555) (-787 "NCNTFRAC.spad" 1247418 1247432 1247766 1247771) (-786 "NCEP.spad" 1245584 1245598 1247408 1247413) (-785 "NASRING.spad" 1245180 1245188 1245574 1245579) (-784 "NASRING.spad" 1244774 1244784 1245170 1245175) (-783 "NARNG.spad" 1244126 1244134 1244764 1244769) (-782 "NARNG.spad" 1243476 1243486 1244116 1244121) (-781 "NAGSP.spad" 1242553 1242561 1243466 1243471) (-780 "NAGS.spad" 1232214 1232222 1242543 1242548) (-779 "NAGF07.spad" 1230645 1230653 1232204 1232209) (-778 "NAGF04.spad" 1225047 1225055 1230635 1230640) (-777 "NAGF02.spad" 1219116 1219124 1225037 1225042) (-776 "NAGF01.spad" 1214877 1214885 1219106 1219111) (-775 "NAGE04.spad" 1208577 1208585 1214867 1214872) (-774 "NAGE02.spad" 1199237 1199245 1208567 1208572) (-773 "NAGE01.spad" 1195239 1195247 1199227 1199232) (-772 "NAGD03.spad" 1193243 1193251 1195229 1195234) (-771 "NAGD02.spad" 1185990 1185998 1193233 1193238) (-770 "NAGD01.spad" 1180283 1180291 1185980 1185985) (-769 "NAGC06.spad" 1176158 1176166 1180273 1180278) (-768 "NAGC05.spad" 1174659 1174667 1176148 1176153) (-767 "NAGC02.spad" 1173926 1173934 1174649 1174654) (-766 "NAALG.spad" 1173467 1173477 1173894 1173921) (-765 "NAALG.spad" 1173028 1173040 1173457 1173462) (-764 "MULTSQFR.spad" 1169986 1170003 1173018 1173023) (-763 "MULTFACT.spad" 1169369 1169386 1169976 1169981) (-762 "MTSCAT.spad" 1167463 1167484 1169267 1169364) (-761 "MTHING.spad" 1167122 1167132 1167453 1167458) (-760 "MSYSCMD.spad" 1166556 1166564 1167112 1167117) (-759 "MSET.spad" 1164478 1164488 1166226 1166265) (-758 "MSETAGG.spad" 1164323 1164333 1164446 1164473) (-757 "MRING.spad" 1161300 1161312 1164031 1164098) (-756 "MRF2.spad" 1160870 1160884 1161290 1161295) (-755 "MRATFAC.spad" 1160416 1160433 1160860 1160865) (-754 "MPRFF.spad" 1158456 1158475 1160406 1160411) (-753 "MPOLY.spad" 1155927 1155942 1156286 1156413) (-752 "MPCPF.spad" 1155191 1155210 1155917 1155922) (-751 "MPC3.spad" 1155008 1155048 1155181 1155186) (-750 "MPC2.spad" 1154653 1154686 1154998 1155003) (-749 "MONOTOOL.spad" 1153004 1153021 1154643 1154648) (-748 "MONOID.spad" 1152323 1152331 1152994 1152999) (-747 "MONOID.spad" 1151640 1151650 1152313 1152318) (-746 "MONOGEN.spad" 1150388 1150401 1151500 1151635) (-745 "MONOGEN.spad" 1149158 1149173 1150272 1150277) (-744 "MONADWU.spad" 1147188 1147196 1149148 1149153) (-743 "MONADWU.spad" 1145216 1145226 1147178 1147183) (-742 "MONAD.spad" 1144376 1144384 1145206 1145211) (-741 "MONAD.spad" 1143534 1143544 1144366 1144371) (-740 "MOEBIUS.spad" 1142270 1142284 1143514 1143529) (-739 "MODULE.spad" 1142140 1142150 1142238 1142265) (-738 "MODULE.spad" 1142030 1142042 1142130 1142135) (-737 "MODRING.spad" 1141365 1141404 1142010 1142025) (-736 "MODOP.spad" 1140030 1140042 1141187 1141254) (-735 "MODMONOM.spad" 1139761 1139779 1140020 1140025) (-734 "MODMON.spad" 1136463 1136479 1137182 1137335) (-733 "MODFIELD.spad" 1135825 1135864 1136365 1136458) (-732 "MMLFORM.spad" 1134685 1134693 1135815 1135820) (-731 "MMAP.spad" 1134427 1134461 1134675 1134680) (-730 "MLO.spad" 1132886 1132896 1134383 1134422) (-729 "MLIFT.spad" 1131498 1131515 1132876 1132881) (-728 "MKUCFUNC.spad" 1131033 1131051 1131488 1131493) (-727 "MKRECORD.spad" 1130637 1130650 1131023 1131028) (-726 "MKFUNC.spad" 1130044 1130054 1130627 1130632) (-725 "MKFLCFN.spad" 1129012 1129022 1130034 1130039) (-724 "MKBCFUNC.spad" 1128507 1128525 1129002 1129007) (-723 "MINT.spad" 1127946 1127954 1128409 1128502) (-722 "MHROWRED.spad" 1126457 1126467 1127936 1127941) (-721 "MFLOAT.spad" 1124977 1124985 1126347 1126452) (-720 "MFINFACT.spad" 1124377 1124399 1124967 1124972) (-719 "MESH.spad" 1122159 1122167 1124367 1124372) (-718 "MDDFACT.spad" 1120370 1120380 1122149 1122154) (-717 "MDAGG.spad" 1119661 1119671 1120350 1120365) (-716 "MCMPLX.spad" 1115092 1115100 1115706 1115907) (-715 "MCDEN.spad" 1114302 1114314 1115082 1115087) (-714 "MCALCFN.spad" 1111424 1111450 1114292 1114297) (-713 "MAYBE.spad" 1110708 1110719 1111414 1111419) (-712 "MATSTOR.spad" 1108016 1108026 1110698 1110703) (-711 "MATRIX.spad" 1106603 1106613 1107087 1107114) (-710 "MATLIN.spad" 1103947 1103971 1106487 1106492) (-709 "MATCAT.spad" 1095469 1095491 1103915 1103942) (-708 "MATCAT.spad" 1086863 1086887 1095311 1095316) (-707 "MATCAT2.spad" 1086145 1086193 1086853 1086858) (-706 "MAPPKG3.spad" 1085060 1085074 1086135 1086140) (-705 "MAPPKG2.spad" 1084398 1084410 1085050 1085055) (-704 "MAPPKG1.spad" 1083226 1083236 1084388 1084393) (-703 "MAPPAST.spad" 1082541 1082549 1083216 1083221) (-702 "MAPHACK3.spad" 1082353 1082367 1082531 1082536) (-701 "MAPHACK2.spad" 1082122 1082134 1082343 1082348) (-700 "MAPHACK1.spad" 1081766 1081776 1082112 1082117) (-699 "MAGMA.spad" 1079556 1079573 1081756 1081761) (-698 "MACROAST.spad" 1079135 1079143 1079546 1079551) (-697 "M3D.spad" 1076738 1076748 1078396 1078401) (-696 "LZSTAGG.spad" 1073976 1073986 1076728 1076733) (-695 "LZSTAGG.spad" 1071212 1071224 1073966 1073971) (-694 "LWORD.spad" 1067917 1067934 1071202 1071207) (-693 "LSTAST.spad" 1067701 1067709 1067907 1067912) (-692 "LSQM.spad" 1065858 1065872 1066252 1066303) (-691 "LSPP.spad" 1065393 1065410 1065848 1065853) (-690 "LSMP.spad" 1064243 1064271 1065383 1065388) (-689 "LSMP1.spad" 1062061 1062075 1064233 1064238) (-688 "LSAGG.spad" 1061730 1061740 1062029 1062056) (-687 "LSAGG.spad" 1061419 1061431 1061720 1061725) (-686 "LPOLY.spad" 1060373 1060392 1061275 1061344) (-685 "LPEFRAC.spad" 1059644 1059654 1060363 1060368) (-684 "LO.spad" 1059045 1059059 1059578 1059605) (-683 "LOGIC.spad" 1058647 1058655 1059035 1059040) (-682 "LOGIC.spad" 1058247 1058257 1058637 1058642) (-681 "LODOOPS.spad" 1057177 1057189 1058237 1058242) (-680 "LODO.spad" 1056561 1056577 1056857 1056896) (-679 "LODOF.spad" 1055607 1055624 1056518 1056523) (-678 "LODOCAT.spad" 1054273 1054283 1055563 1055602) (-677 "LODOCAT.spad" 1052937 1052949 1054229 1054234) (-676 "LODO2.spad" 1052210 1052222 1052617 1052656) (-675 "LODO1.spad" 1051610 1051620 1051890 1051929) (-674 "LODEEF.spad" 1050412 1050430 1051600 1051605) (-673 "LNAGG.spad" 1046559 1046569 1050402 1050407) (-672 "LNAGG.spad" 1042670 1042682 1046515 1046520) (-671 "LMOPS.spad" 1039438 1039455 1042660 1042665) (-670 "LMODULE.spad" 1039206 1039216 1039428 1039433) (-669 "LMDICT.spad" 1038376 1038386 1038640 1038667) (-668 "LLINSET.spad" 1038083 1038093 1038366 1038371) (-667 "LITERAL.spad" 1037989 1038000 1038073 1038078) (-666 "LIST.spad" 1035571 1035581 1036983 1037010) (-665 "LIST3.spad" 1034882 1034896 1035561 1035566) (-664 "LIST2.spad" 1033584 1033596 1034872 1034877) (-663 "LIST2MAP.spad" 1030487 1030499 1033574 1033579) (-662 "LINSET.spad" 1030266 1030276 1030477 1030482) (-661 "LINFORM.spad" 1029729 1029741 1030234 1030261) (-660 "LINEXP.spad" 1028472 1028482 1029719 1029724) (-659 "LINELT.spad" 1027843 1027855 1028355 1028382) (-658 "LINDEP.spad" 1026652 1026664 1027755 1027760) (-657 "LINBASIS.spad" 1026288 1026303 1026642 1026647) (-656 "LIMITRF.spad" 1024216 1024226 1026278 1026283) (-655 "LIMITPS.spad" 1023119 1023132 1024206 1024211) (-654 "LIE.spad" 1021135 1021147 1022409 1022554) (-653 "LIECAT.spad" 1020611 1020621 1021061 1021130) (-652 "LIECAT.spad" 1020115 1020127 1020567 1020572) (-651 "LIB.spad" 1017866 1017874 1018312 1018327) (-650 "LGROBP.spad" 1015219 1015238 1017856 1017861) (-649 "LF.spad" 1014174 1014190 1015209 1015214) (-648 "LFCAT.spad" 1013233 1013241 1014164 1014169) (-647 "LEXTRIPK.spad" 1008736 1008751 1013223 1013228) (-646 "LEXP.spad" 1006739 1006766 1008716 1008731) (-645 "LETAST.spad" 1006438 1006446 1006729 1006734) (-644 "LEADCDET.spad" 1004836 1004853 1006428 1006433) (-643 "LAZM3PK.spad" 1003540 1003562 1004826 1004831) (-642 "LAUPOL.spad" 1002140 1002153 1003040 1003109) (-641 "LAPLACE.spad" 1001723 1001739 1002130 1002135) (-640 "LA.spad" 1001163 1001177 1001645 1001684) (-639 "LALG.spad" 1000939 1000949 1001143 1001158) (-638 "LALG.spad" 1000723 1000735 1000929 1000934) (-637 "KVTFROM.spad" 1000458 1000468 1000713 1000718) (-636 "KTVLOGIC.spad" 999970 999978 1000448 1000453) (-635 "KRCFROM.spad" 999708 999718 999960 999965) (-634 "KOVACIC.spad" 998431 998448 999698 999703) (-633 "KONVERT.spad" 998153 998163 998421 998426) (-632 "KOERCE.spad" 997890 997900 998143 998148) (-631 "KERNEL.spad" 996545 996555 997674 997679) (-630 "KERNEL2.spad" 996248 996260 996535 996540) (-629 "KDAGG.spad" 995357 995379 996228 996243) (-628 "KDAGG.spad" 994474 994498 995347 995352) (-627 "KAFILE.spad" 993328 993344 993563 993590) (-626 "JVMOP.spad" 993233 993241 993318 993323) (-625 "JVMMDACC.spad" 992271 992279 993223 993228) (-624 "JVMFDACC.spad" 991579 991587 992261 992266) (-623 "JVMCSTTG.spad" 990308 990316 991569 991574) (-622 "JVMCFACC.spad" 989738 989746 990298 990303) (-621 "JVMBCODE.spad" 989641 989649 989728 989733) (-620 "JORDAN.spad" 987470 987482 988931 989076) (-619 "JOINAST.spad" 987164 987172 987460 987465) (-618 "IXAGG.spad" 985297 985321 987154 987159) (-617 "IXAGG.spad" 983285 983311 985144 985149) (-616 "IVECTOR.spad" 981902 981917 982057 982084) (-615 "ITUPLE.spad" 981063 981073 981892 981897) (-614 "ITRIGMNP.spad" 979902 979921 981053 981058) (-613 "ITFUN3.spad" 979408 979422 979892 979897) (-612 "ITFUN2.spad" 979152 979164 979398 979403) (-611 "ITFORM.spad" 978507 978515 979142 979147) (-610 "ITAYLOR.spad" 976501 976516 978371 978468) (-609 "ISUPS.spad" 968938 968953 975475 975572) (-608 "ISUMP.spad" 968439 968455 968928 968933) (-607 "ISTRING.spad" 967366 967379 967447 967474) (-606 "ISAST.spad" 967085 967093 967356 967361) (-605 "IRURPK.spad" 965802 965821 967075 967080) (-604 "IRSN.spad" 963774 963782 965792 965797) (-603 "IRRF2F.spad" 962259 962269 963730 963735) (-602 "IRREDFFX.spad" 961860 961871 962249 962254) (-601 "IROOT.spad" 960199 960209 961850 961855) (-600 "IR.spad" 958000 958014 960054 960081) (-599 "IRFORM.spad" 957324 957332 957990 957995) (-598 "IR2.spad" 956352 956368 957314 957319) (-597 "IR2F.spad" 955558 955574 956342 956347) (-596 "IPRNTPK.spad" 955318 955326 955548 955553) (-595 "IPF.spad" 954883 954895 955123 955216) (-594 "IPADIC.spad" 954644 954670 954809 954878) (-593 "IP4ADDR.spad" 954201 954209 954634 954639) (-592 "IOMODE.spad" 953723 953731 954191 954196) (-591 "IOBFILE.spad" 953084 953092 953713 953718) (-590 "IOBCON.spad" 952949 952957 953074 953079) (-589 "INVLAPLA.spad" 952598 952614 952939 952944) (-588 "INTTR.spad" 945980 945997 952588 952593) (-587 "INTTOOLS.spad" 943735 943751 945554 945559) (-586 "INTSLPE.spad" 943055 943063 943725 943730) (-585 "INTRVL.spad" 942621 942631 942969 943050) (-584 "INTRF.spad" 941045 941059 942611 942616) (-583 "INTRET.spad" 940477 940487 941035 941040) (-582 "INTRAT.spad" 939204 939221 940467 940472) (-581 "INTPM.spad" 937589 937605 938847 938852) (-580 "INTPAF.spad" 935453 935471 937521 937526) (-579 "INTPACK.spad" 925827 925835 935443 935448) (-578 "INT.spad" 925275 925283 925681 925822) (-577 "INTHERTR.spad" 924549 924566 925265 925270) (-576 "INTHERAL.spad" 924219 924243 924539 924544) (-575 "INTHEORY.spad" 920658 920666 924209 924214) (-574 "INTG0.spad" 914391 914409 920590 920595) (-573 "INTFTBL.spad" 908420 908428 914381 914386) (-572 "INTFACT.spad" 907479 907489 908410 908415) (-571 "INTEF.spad" 905864 905880 907469 907474) (-570 "INTDOM.spad" 904487 904495 905790 905859) (-569 "INTDOM.spad" 903172 903182 904477 904482) (-568 "INTCAT.spad" 901431 901441 903086 903167) (-567 "INTBIT.spad" 900938 900946 901421 901426) (-566 "INTALG.spad" 900126 900153 900928 900933) (-565 "INTAF.spad" 899626 899642 900116 900121) (-564 "INTABL.spad" 897702 897733 897865 897892) (-563 "INT8.spad" 897582 897590 897692 897697) (-562 "INT64.spad" 897461 897469 897572 897577) (-561 "INT32.spad" 897340 897348 897451 897456) (-560 "INT16.spad" 897219 897227 897330 897335) (-559 "INS.spad" 894722 894730 897121 897214) (-558 "INS.spad" 892311 892321 894712 894717) (-557 "INPSIGN.spad" 891759 891772 892301 892306) (-556 "INPRODPF.spad" 890855 890874 891749 891754) (-555 "INPRODFF.spad" 889943 889967 890845 890850) (-554 "INNMFACT.spad" 888918 888935 889933 889938) (-553 "INMODGCD.spad" 888406 888436 888908 888913) (-552 "INFSP.spad" 886703 886725 888396 888401) (-551 "INFPROD0.spad" 885783 885802 886693 886698) (-550 "INFORM.spad" 882982 882990 885773 885778) (-549 "INFORM1.spad" 882607 882617 882972 882977) (-548 "INFINITY.spad" 882159 882167 882597 882602) (-547 "INETCLTS.spad" 882136 882144 882149 882154) (-546 "INEP.spad" 880674 880696 882126 882131) (-545 "INDE.spad" 880323 880340 880584 880589) (-544 "INCRMAPS.spad" 879744 879754 880313 880318) (-543 "INBFILE.spad" 878816 878824 879734 879739) (-542 "INBFF.spad" 874610 874621 878806 878811) (-541 "INBCON.spad" 872900 872908 874600 874605) (-540 "INBCON.spad" 871188 871198 872890 872895) (-539 "INAST.spad" 870849 870857 871178 871183) (-538 "IMPTAST.spad" 870557 870565 870839 870844) (-537 "IMATRIX.spad" 869385 869411 869897 869924) (-536 "IMATQF.spad" 868479 868523 869341 869346) (-535 "IMATLIN.spad" 867084 867108 868435 868440) (-534 "ILIST.spad" 865589 865604 866114 866141) (-533 "IIARRAY2.spad" 864860 864898 865079 865106) (-532 "IFF.spad" 864270 864286 864541 864634) (-531 "IFAST.spad" 863884 863892 864260 864265) (-530 "IFARRAY.spad" 861224 861239 862914 862941) (-529 "IFAMON.spad" 861086 861103 861180 861185) (-528 "IEVALAB.spad" 860491 860503 861076 861081) (-527 "IEVALAB.spad" 859894 859908 860481 860486) (-526 "IDPO.spad" 859629 859641 859806 859811) (-525 "IDPOAMS.spad" 859307 859319 859541 859546) (-524 "IDPOAM.spad" 858949 858961 859219 859224) (-523 "IDPC.spad" 857678 857690 858939 858944) (-522 "IDPAM.spad" 857345 857357 857590 857595) (-521 "IDPAG.spad" 857014 857026 857257 857262) (-520 "IDENT.spad" 856664 856672 857004 857009) (-519 "IDECOMP.spad" 853903 853921 856654 856659) (-518 "IDEAL.spad" 848852 848891 853838 853843) (-517 "ICDEN.spad" 848041 848057 848842 848847) (-516 "ICARD.spad" 847232 847240 848031 848036) (-515 "IBPTOOLS.spad" 845839 845856 847222 847227) (-514 "IBITS.spad" 845004 845017 845437 845464) (-513 "IBATOOL.spad" 841981 842000 844994 844999) (-512 "IBACHIN.spad" 840488 840503 841971 841976) (-511 "IARRAY2.spad" 839359 839385 839978 840005) (-510 "IARRAY1.spad" 838251 838266 838389 838416) (-509 "IAN.spad" 836474 836482 838067 838160) (-508 "IALGFACT.spad" 836077 836110 836464 836469) (-507 "HYPCAT.spad" 835501 835509 836067 836072) (-506 "HYPCAT.spad" 834923 834933 835491 835496) (-505 "HOSTNAME.spad" 834731 834739 834913 834918) (-504 "HOMOTOP.spad" 834474 834484 834721 834726) (-503 "HOAGG.spad" 831756 831766 834464 834469) (-502 "HOAGG.spad" 828777 828789 831487 831492) (-501 "HEXADEC.spad" 826782 826790 827147 827240) (-500 "HEUGCD.spad" 825817 825828 826772 826777) (-499 "HELLFDIV.spad" 825407 825431 825807 825812) (-498 "HEAP.spad" 824682 824692 824897 824924) (-497 "HEADAST.spad" 824215 824223 824672 824677) (-496 "HDP.spad" 812025 812041 812402 812501) (-495 "HDMP.spad" 809239 809254 809855 809982) (-494 "HB.spad" 807490 807498 809229 809234) (-493 "HASHTBL.spad" 805518 805549 805729 805756) (-492 "HASAST.spad" 805234 805242 805508 805513) (-491 "HACKPI.spad" 804725 804733 805136 805229) (-490 "GTSET.spad" 803628 803644 804335 804362) (-489 "GSTBL.spad" 801705 801740 801879 801894) (-488 "GSERIES.spad" 799018 799045 799837 799986) (-487 "GROUP.spad" 798291 798299 798998 799013) (-486 "GROUP.spad" 797572 797582 798281 798286) (-485 "GROEBSOL.spad" 796066 796087 797562 797567) (-484 "GRMOD.spad" 794637 794649 796056 796061) (-483 "GRMOD.spad" 793206 793220 794627 794632) (-482 "GRIMAGE.spad" 786095 786103 793196 793201) (-481 "GRDEF.spad" 784474 784482 786085 786090) (-480 "GRAY.spad" 782937 782945 784464 784469) (-479 "GRALG.spad" 782014 782026 782927 782932) (-478 "GRALG.spad" 781089 781103 782004 782009) (-477 "GPOLSET.spad" 780507 780530 780735 780762) (-476 "GOSPER.spad" 779776 779794 780497 780502) (-475 "GMODPOL.spad" 778924 778951 779744 779771) (-474 "GHENSEL.spad" 778007 778021 778914 778919) (-473 "GENUPS.spad" 774300 774313 777997 778002) (-472 "GENUFACT.spad" 773877 773887 774290 774295) (-471 "GENPGCD.spad" 773463 773480 773867 773872) (-470 "GENMFACT.spad" 772915 772934 773453 773458) (-469 "GENEEZ.spad" 770866 770879 772905 772910) (-468 "GDMP.spad" 767922 767939 768696 768823) (-467 "GCNAALG.spad" 761845 761872 767716 767783) (-466 "GCDDOM.spad" 761021 761029 761771 761840) (-465 "GCDDOM.spad" 760259 760269 761011 761016) (-464 "GB.spad" 757785 757823 760215 760220) (-463 "GBINTERN.spad" 753805 753843 757775 757780) (-462 "GBF.spad" 749572 749610 753795 753800) (-461 "GBEUCLID.spad" 747454 747492 749562 749567) (-460 "GAUSSFAC.spad" 746767 746775 747444 747449) (-459 "GALUTIL.spad" 745093 745103 746723 746728) (-458 "GALPOLYU.spad" 743547 743560 745083 745088) (-457 "GALFACTU.spad" 741720 741739 743537 743542) (-456 "GALFACT.spad" 731909 731920 741710 741715) (-455 "FVFUN.spad" 728932 728940 731899 731904) (-454 "FVC.spad" 727984 727992 728922 728927) (-453 "FUNDESC.spad" 727662 727670 727974 727979) (-452 "FUNCTION.spad" 727511 727523 727652 727657) (-451 "FT.spad" 725808 725816 727501 727506) (-450 "FTEM.spad" 724973 724981 725798 725803) (-449 "FSUPFACT.spad" 723873 723892 724909 724914) (-448 "FST.spad" 721959 721967 723863 723868) (-447 "FSRED.spad" 721439 721455 721949 721954) (-446 "FSPRMELT.spad" 720321 720337 721396 721401) (-445 "FSPECF.spad" 718412 718428 720311 720316) (-444 "FS.spad" 712680 712690 718187 718407) (-443 "FS.spad" 706726 706738 712235 712240) (-442 "FSINT.spad" 706386 706402 706716 706721) (-441 "FSERIES.spad" 705577 705589 706206 706305) (-440 "FSCINT.spad" 704894 704910 705567 705572) (-439 "FSAGG.spad" 704011 704021 704850 704889) (-438 "FSAGG.spad" 703090 703102 703931 703936) (-437 "FSAGG2.spad" 701833 701849 703080 703085) (-436 "FS2UPS.spad" 696324 696358 701823 701828) (-435 "FS2.spad" 695971 695987 696314 696319) (-434 "FS2EXPXP.spad" 695096 695119 695961 695966) (-433 "FRUTIL.spad" 694050 694060 695086 695091) (-432 "FR.spad" 687673 687683 692981 693050) (-431 "FRNAALG.spad" 682942 682952 687615 687668) (-430 "FRNAALG.spad" 678223 678235 682898 682903) (-429 "FRNAAF2.spad" 677679 677697 678213 678218) (-428 "FRMOD.spad" 677089 677119 677610 677615) (-427 "FRIDEAL.spad" 676314 676335 677069 677084) (-426 "FRIDEAL2.spad" 675918 675950 676304 676309) (-425 "FRETRCT.spad" 675429 675439 675908 675913) (-424 "FRETRCT.spad" 674806 674818 675287 675292) (-423 "FRAMALG.spad" 673154 673167 674762 674801) (-422 "FRAMALG.spad" 671534 671549 673144 673149) (-421 "FRAC.spad" 668540 668550 668943 669116) (-420 "FRAC2.spad" 668145 668157 668530 668535) (-419 "FR2.spad" 667481 667493 668135 668140) (-418 "FPS.spad" 664296 664304 667371 667476) (-417 "FPS.spad" 661139 661149 664216 664221) (-416 "FPC.spad" 660185 660193 661041 661134) (-415 "FPC.spad" 659317 659327 660175 660180) (-414 "FPATMAB.spad" 659079 659089 659307 659312) (-413 "FPARFRAC.spad" 657929 657946 659069 659074) (-412 "FORTRAN.spad" 656435 656478 657919 657924) (-411 "FORT.spad" 655384 655392 656425 656430) (-410 "FORTFN.spad" 652554 652562 655374 655379) (-409 "FORTCAT.spad" 652238 652246 652544 652549) (-408 "FORMULA.spad" 649712 649720 652228 652233) (-407 "FORMULA1.spad" 649191 649201 649702 649707) (-406 "FORDER.spad" 648882 648906 649181 649186) (-405 "FOP.spad" 648083 648091 648872 648877) (-404 "FNLA.spad" 647507 647529 648051 648078) (-403 "FNCAT.spad" 646102 646110 647497 647502) (-402 "FNAME.spad" 645994 646002 646092 646097) (-401 "FMTC.spad" 645792 645800 645920 645989) (-400 "FMONOID.spad" 645457 645467 645748 645753) (-399 "FMONCAT.spad" 642610 642620 645447 645452) (-398 "FM.spad" 642225 642237 642464 642491) (-397 "FMFUN.spad" 639255 639263 642215 642220) (-396 "FMC.spad" 638307 638315 639245 639250) (-395 "FMCAT.spad" 635975 635993 638275 638302) (-394 "FM1.spad" 635332 635344 635909 635936) (-393 "FLOATRP.spad" 633067 633081 635322 635327) (-392 "FLOAT.spad" 626381 626389 632933 633062) (-391 "FLOATCP.spad" 623812 623826 626371 626376) (-390 "FLINEXP.spad" 623534 623544 623802 623807) (-389 "FLINEXP.spad" 623200 623212 623470 623475) (-388 "FLASORT.spad" 622526 622538 623190 623195) (-387 "FLALG.spad" 620172 620191 622452 622521) (-386 "FLAGG.spad" 617214 617224 620152 620167) (-385 "FLAGG.spad" 614157 614169 617097 617102) (-384 "FLAGG2.spad" 612882 612898 614147 614152) (-383 "FINRALG.spad" 610943 610956 612838 612877) (-382 "FINRALG.spad" 608930 608945 610827 610832) (-381 "FINITE.spad" 608082 608090 608920 608925) (-380 "FINAALG.spad" 597203 597213 608024 608077) (-379 "FINAALG.spad" 586336 586348 597159 597164) (-378 "FILE.spad" 585919 585929 586326 586331) (-377 "FILECAT.spad" 584445 584462 585909 585914) (-376 "FIELD.spad" 583851 583859 584347 584440) (-375 "FIELD.spad" 583343 583353 583841 583846) (-374 "FGROUP.spad" 581990 582000 583323 583338) (-373 "FGLMICPK.spad" 580777 580792 581980 581985) (-372 "FFX.spad" 580152 580167 580493 580586) (-371 "FFSLPE.spad" 579655 579676 580142 580147) (-370 "FFPOLY.spad" 570917 570928 579645 579650) (-369 "FFPOLY2.spad" 569977 569994 570907 570912) (-368 "FFP.spad" 569374 569394 569693 569786) (-367 "FF.spad" 568822 568838 569055 569148) (-366 "FFNBX.spad" 567334 567354 568538 568631) (-365 "FFNBP.spad" 565847 565864 567050 567143) (-364 "FFNB.spad" 564312 564333 565528 565621) (-363 "FFINTBAS.spad" 561826 561845 564302 564307) (-362 "FFIELDC.spad" 559403 559411 561728 561821) (-361 "FFIELDC.spad" 557066 557076 559393 559398) (-360 "FFHOM.spad" 555814 555831 557056 557061) (-359 "FFF.spad" 553249 553260 555804 555809) (-358 "FFCGX.spad" 552096 552116 552965 553058) (-357 "FFCGP.spad" 550985 551005 551812 551905) (-356 "FFCG.spad" 549777 549798 550666 550759) (-355 "FFCAT.spad" 542950 542972 549616 549772) (-354 "FFCAT.spad" 536202 536226 542870 542875) (-353 "FFCAT2.spad" 535949 535989 536192 536197) (-352 "FEXPR.spad" 527666 527712 535705 535744) (-351 "FEVALAB.spad" 527374 527384 527656 527661) (-350 "FEVALAB.spad" 526867 526879 527151 527156) (-349 "FDIV.spad" 526309 526333 526857 526862) (-348 "FDIVCAT.spad" 524373 524397 526299 526304) (-347 "FDIVCAT.spad" 522435 522461 524363 524368) (-346 "FDIV2.spad" 522091 522131 522425 522430) (-345 "FCTRDATA.spad" 521099 521107 522081 522086) (-344 "FCPAK1.spad" 519666 519674 521089 521094) (-343 "FCOMP.spad" 519045 519055 519656 519661) (-342 "FC.spad" 509052 509060 519035 519040) (-341 "FAXF.spad" 502023 502037 508954 509047) (-340 "FAXF.spad" 495046 495062 501979 501984) (-339 "FARRAY.spad" 493043 493053 494076 494103) (-338 "FAMR.spad" 491179 491191 492941 493038) (-337 "FAMR.spad" 489299 489313 491063 491068) (-336 "FAMONOID.spad" 488967 488977 489253 489258) (-335 "FAMONC.spad" 487263 487275 488957 488962) (-334 "FAGROUP.spad" 486887 486897 487159 487186) (-333 "FACUTIL.spad" 485091 485108 486877 486882) (-332 "FACTFUNC.spad" 484285 484295 485081 485086) (-331 "EXPUPXS.spad" 481118 481141 482417 482566) (-330 "EXPRTUBE.spad" 478406 478414 481108 481113) (-329 "EXPRODE.spad" 475566 475582 478396 478401) (-328 "EXPR.spad" 470741 470751 471455 471750) (-327 "EXPR2UPS.spad" 466863 466876 470731 470736) (-326 "EXPR2.spad" 466568 466580 466853 466858) (-325 "EXPEXPAN.spad" 463369 463394 464001 464094) (-324 "EXIT.spad" 463040 463048 463359 463364) (-323 "EXITAST.spad" 462776 462784 463030 463035) (-322 "EVALCYC.spad" 462236 462250 462766 462771) (-321 "EVALAB.spad" 461808 461818 462226 462231) (-320 "EVALAB.spad" 461378 461390 461798 461803) (-319 "EUCDOM.spad" 458952 458960 461304 461373) (-318 "EUCDOM.spad" 456588 456598 458942 458947) (-317 "ESTOOLS.spad" 448434 448442 456578 456583) (-316 "ESTOOLS2.spad" 448037 448051 448424 448429) (-315 "ESTOOLS1.spad" 447722 447733 448027 448032) (-314 "ES.spad" 440537 440545 447712 447717) (-313 "ES.spad" 433258 433268 440435 440440) (-312 "ESCONT.spad" 430051 430059 433248 433253) (-311 "ESCONT1.spad" 429800 429812 430041 430046) (-310 "ES2.spad" 429305 429321 429790 429795) (-309 "ES1.spad" 428875 428891 429295 429300) (-308 "ERROR.spad" 426202 426210 428865 428870) (-307 "EQTBL.spad" 424232 424254 424441 424468) (-306 "EQ.spad" 419037 419047 421824 421936) (-305 "EQ2.spad" 418755 418767 419027 419032) (-304 "EP.spad" 415081 415091 418745 418750) (-303 "ENV.spad" 413759 413767 415071 415076) (-302 "ENTIRER.spad" 413427 413435 413703 413754) (-301 "EMR.spad" 412715 412756 413353 413422) (-300 "ELTAGG.spad" 410969 410988 412705 412710) (-299 "ELTAGG.spad" 409187 409208 410925 410930) (-298 "ELTAB.spad" 408662 408675 409177 409182) (-297 "ELFUTS.spad" 408049 408068 408652 408657) (-296 "ELEMFUN.spad" 407738 407746 408039 408044) (-295 "ELEMFUN.spad" 407425 407435 407728 407733) (-294 "ELAGG.spad" 405396 405406 407405 407420) (-293 "ELAGG.spad" 403304 403316 405315 405320) (-292 "ELABOR.spad" 402650 402658 403294 403299) (-291 "ELABEXPR.spad" 401582 401590 402640 402645) (-290 "EFUPXS.spad" 398358 398388 401538 401543) (-289 "EFULS.spad" 395194 395217 398314 398319) (-288 "EFSTRUC.spad" 393209 393225 395184 395189) (-287 "EF.spad" 387985 388001 393199 393204) (-286 "EAB.spad" 386261 386269 387975 387980) (-285 "E04UCFA.spad" 385797 385805 386251 386256) (-284 "E04NAFA.spad" 385374 385382 385787 385792) (-283 "E04MBFA.spad" 384954 384962 385364 385369) (-282 "E04JAFA.spad" 384490 384498 384944 384949) (-281 "E04GCFA.spad" 384026 384034 384480 384485) (-280 "E04FDFA.spad" 383562 383570 384016 384021) (-279 "E04DGFA.spad" 383098 383106 383552 383557) (-278 "E04AGNT.spad" 378948 378956 383088 383093) (-277 "DVARCAT.spad" 375838 375848 378938 378943) (-276 "DVARCAT.spad" 372726 372738 375828 375833) (-275 "DSMP.spad" 370100 370114 370405 370532) (-274 "DSEXT.spad" 369402 369412 370090 370095) (-273 "DSEXT.spad" 368611 368623 369301 369306) (-272 "DROPT.spad" 362570 362578 368601 368606) (-271 "DROPT1.spad" 362235 362245 362560 362565) (-270 "DROPT0.spad" 357092 357100 362225 362230) (-269 "DRAWPT.spad" 355265 355273 357082 357087) (-268 "DRAW.spad" 348141 348154 355255 355260) (-267 "DRAWHACK.spad" 347449 347459 348131 348136) (-266 "DRAWCX.spad" 344919 344927 347439 347444) (-265 "DRAWCURV.spad" 344466 344481 344909 344914) (-264 "DRAWCFUN.spad" 333998 334006 344456 344461) (-263 "DQAGG.spad" 332176 332186 333966 333993) (-262 "DPOLCAT.spad" 327525 327541 332044 332171) (-261 "DPOLCAT.spad" 322960 322978 327481 327486) (-260 "DPMO.spad" 314720 314736 314858 315071) (-259 "DPMM.spad" 306493 306511 306618 306831) (-258 "DOMTMPLT.spad" 306264 306272 306483 306488) (-257 "DOMCTOR.spad" 306019 306027 306254 306259) (-256 "DOMAIN.spad" 305106 305114 306009 306014) (-255 "DMP.spad" 302366 302381 302936 303063) (-254 "DMEXT.spad" 302233 302243 302334 302361) (-253 "DLP.spad" 301585 301595 302223 302228) (-252 "DLIST.spad" 300011 300021 300615 300642) (-251 "DLAGG.spad" 298428 298438 300001 300006) (-250 "DIVRING.spad" 297970 297978 298372 298423) (-249 "DIVRING.spad" 297556 297566 297960 297965) (-248 "DISPLAY.spad" 295746 295754 297546 297551) (-247 "DIRPROD.spad" 283293 283309 283933 284032) (-246 "DIRPROD2.spad" 282111 282129 283283 283288) (-245 "DIRPCAT.spad" 281304 281320 282007 282106) (-244 "DIRPCAT.spad" 280124 280142 280829 280834) (-243 "DIOSP.spad" 278949 278957 280114 280119) (-242 "DIOPS.spad" 277945 277955 278929 278944) (-241 "DIOPS.spad" 276915 276927 277901 277906) (-240 "DIFRING.spad" 276753 276761 276895 276910) (-239 "DIFFSPC.spad" 276332 276340 276743 276748) (-238 "DIFFSPC.spad" 275909 275919 276322 276327) (-237 "DIFFMOD.spad" 275398 275408 275877 275904) (-236 "DIFFDOM.spad" 274563 274574 275388 275393) (-235 "DIFFDOM.spad" 273726 273739 274553 274558) (-234 "DIFEXT.spad" 273545 273555 273706 273721) (-233 "DIAGG.spad" 273175 273185 273525 273540) (-232 "DIAGG.spad" 272813 272825 273165 273170) (-231 "DHMATRIX.spad" 271008 271018 272153 272180) (-230 "DFSFUN.spad" 264648 264656 270998 271003) (-229 "DFLOAT.spad" 261379 261387 264538 264643) (-228 "DFINTTLS.spad" 259610 259626 261369 261374) (-227 "DERHAM.spad" 257524 257556 259590 259605) (-226 "DEQUEUE.spad" 256731 256741 257014 257041) (-225 "DEGRED.spad" 256348 256362 256721 256726) (-224 "DEFINTRF.spad" 253885 253895 256338 256343) (-223 "DEFINTEF.spad" 252395 252411 253875 253880) (-222 "DEFAST.spad" 251763 251771 252385 252390) (-221 "DECIMAL.spad" 249772 249780 250133 250226) (-220 "DDFACT.spad" 247585 247602 249762 249767) (-219 "DBLRESP.spad" 247185 247209 247575 247580) (-218 "DBASIS.spad" 246811 246826 247175 247180) (-217 "DBASE.spad" 245475 245485 246801 246806) (-216 "DATAARY.spad" 244937 244950 245465 245470) (-215 "D03FAFA.spad" 244765 244773 244927 244932) (-214 "D03EEFA.spad" 244585 244593 244755 244760) (-213 "D03AGNT.spad" 243671 243679 244575 244580) (-212 "D02EJFA.spad" 243133 243141 243661 243666) (-211 "D02CJFA.spad" 242611 242619 243123 243128) (-210 "D02BHFA.spad" 242101 242109 242601 242606) (-209 "D02BBFA.spad" 241591 241599 242091 242096) (-208 "D02AGNT.spad" 236405 236413 241581 241586) (-207 "D01WGTS.spad" 234724 234732 236395 236400) (-206 "D01TRNS.spad" 234701 234709 234714 234719) (-205 "D01GBFA.spad" 234223 234231 234691 234696) (-204 "D01FCFA.spad" 233745 233753 234213 234218) (-203 "D01ASFA.spad" 233213 233221 233735 233740) (-202 "D01AQFA.spad" 232659 232667 233203 233208) (-201 "D01APFA.spad" 232083 232091 232649 232654) (-200 "D01ANFA.spad" 231577 231585 232073 232078) (-199 "D01AMFA.spad" 231087 231095 231567 231572) (-198 "D01ALFA.spad" 230627 230635 231077 231082) (-197 "D01AKFA.spad" 230153 230161 230617 230622) (-196 "D01AJFA.spad" 229676 229684 230143 230148) (-195 "D01AGNT.spad" 225743 225751 229666 229671) (-194 "CYCLOTOM.spad" 225249 225257 225733 225738) (-193 "CYCLES.spad" 222041 222049 225239 225244) (-192 "CVMP.spad" 221458 221468 222031 222036) (-191 "CTRIGMNP.spad" 219958 219974 221448 221453) (-190 "CTOR.spad" 219649 219657 219948 219953) (-189 "CTORKIND.spad" 219252 219260 219639 219644) (-188 "CTORCAT.spad" 218501 218509 219242 219247) (-187 "CTORCAT.spad" 217748 217758 218491 218496) (-186 "CTORCALL.spad" 217337 217347 217738 217743) (-185 "CSTTOOLS.spad" 216582 216595 217327 217332) (-184 "CRFP.spad" 210306 210319 216572 216577) (-183 "CRCEAST.spad" 210026 210034 210296 210301) (-182 "CRAPACK.spad" 209077 209087 210016 210021) (-181 "CPMATCH.spad" 208581 208596 209002 209007) (-180 "CPIMA.spad" 208286 208305 208571 208576) (-179 "COORDSYS.spad" 203295 203305 208276 208281) (-178 "CONTOUR.spad" 202706 202714 203285 203290) (-177 "CONTFRAC.spad" 198456 198466 202608 202701) (-176 "CONDUIT.spad" 198214 198222 198446 198451) (-175 "COMRING.spad" 197888 197896 198152 198209) (-174 "COMPPROP.spad" 197406 197414 197878 197883) (-173 "COMPLPAT.spad" 197173 197188 197396 197401) (-172 "COMPLEX.spad" 192550 192560 192794 193055) (-171 "COMPLEX2.spad" 192265 192277 192540 192545) (-170 "COMPILER.spad" 191814 191822 192255 192260) (-169 "COMPFACT.spad" 191416 191430 191804 191809) (-168 "COMPCAT.spad" 189488 189498 191150 191411) (-167 "COMPCAT.spad" 187288 187300 188952 188957) (-166 "COMMUPC.spad" 187036 187054 187278 187283) (-165 "COMMONOP.spad" 186569 186577 187026 187031) (-164 "COMM.spad" 186380 186388 186559 186564) (-163 "COMMAAST.spad" 186143 186151 186370 186375) (-162 "COMBOPC.spad" 185058 185066 186133 186138) (-161 "COMBINAT.spad" 183825 183835 185048 185053) (-160 "COMBF.spad" 181207 181223 183815 183820) (-159 "COLOR.spad" 180044 180052 181197 181202) (-158 "COLONAST.spad" 179710 179718 180034 180039) (-157 "CMPLXRT.spad" 179421 179438 179700 179705) (-156 "CLLCTAST.spad" 179083 179091 179411 179416) (-155 "CLIP.spad" 175191 175199 179073 179078) (-154 "CLIF.spad" 173846 173862 175147 175186) (-153 "CLAGG.spad" 170351 170361 173836 173841) (-152 "CLAGG.spad" 166727 166739 170214 170219) (-151 "CINTSLPE.spad" 166058 166071 166717 166722) (-150 "CHVAR.spad" 164196 164218 166048 166053) (-149 "CHARZ.spad" 164111 164119 164176 164191) (-148 "CHARPOL.spad" 163621 163631 164101 164106) (-147 "CHARNZ.spad" 163374 163382 163601 163616) (-146 "CHAR.spad" 160742 160750 163364 163369) (-145 "CFCAT.spad" 160070 160078 160732 160737) (-144 "CDEN.spad" 159266 159280 160060 160065) (-143 "CCLASS.spad" 157377 157385 158639 158678) (-142 "CATEGORY.spad" 156419 156427 157367 157372) (-141 "CATCTOR.spad" 156310 156318 156409 156414) (-140 "CATAST.spad" 155928 155936 156300 156305) (-139 "CASEAST.spad" 155642 155650 155918 155923) (-138 "CARTEN.spad" 151009 151033 155632 155637) (-137 "CARTEN2.spad" 150399 150426 150999 151004) (-136 "CARD.spad" 147694 147702 150373 150394) (-135 "CAPSLAST.spad" 147468 147476 147684 147689) (-134 "CACHSET.spad" 147092 147100 147458 147463) (-133 "CABMON.spad" 146647 146655 147082 147087) (-132 "BYTEORD.spad" 146322 146330 146637 146642) (-131 "BYTE.spad" 145749 145757 146312 146317) (-130 "BYTEBUF.spad" 143447 143455 144757 144784) (-129 "BTREE.spad" 142403 142413 142937 142964) (-128 "BTOURN.spad" 141291 141301 141893 141920) (-127 "BTCAT.spad" 140683 140693 141259 141286) (-126 "BTCAT.spad" 140095 140107 140673 140678) (-125 "BTAGG.spad" 139561 139569 140063 140090) (-124 "BTAGG.spad" 139047 139057 139551 139556) (-123 "BSTREE.spad" 137671 137681 138537 138564) (-122 "BRILL.spad" 135868 135879 137661 137666) (-121 "BRAGG.spad" 134808 134818 135858 135863) (-120 "BRAGG.spad" 133712 133724 134764 134769) (-119 "BPADICRT.spad" 131586 131598 131841 131934) (-118 "BPADIC.spad" 131250 131262 131512 131581) (-117 "BOUNDZRO.spad" 130906 130923 131240 131245) (-116 "BOP.spad" 126088 126096 130896 130901) (-115 "BOP1.spad" 123554 123564 126078 126083) (-114 "BOOLE.spad" 123204 123212 123544 123549) (-113 "BOOLE.spad" 122852 122862 123194 123199) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file