aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase2346
1 files changed, 1171 insertions, 1175 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 8097d65b..f40ffcf2 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2291520 . 3521495070)
+(2287954 . 3521929246)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4503 . T) (-4501 . T) (-4500 . T) ((-4508 "*") . T) (-4499 . T) (-4504 . T) (-4498 . T))
+((-4499 . T) (-4497 . T) (-4496 . T) ((-4504 "*") . T) (-4495 . T) (-4500 . T) (-4494 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1801)
+(-32 R -3572)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))))
+((|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4506)))
+((|HasAttribute| |#1| (QUOTE -4502)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4506 . T) (-4507 . T))
+((-4502 . T) (-4503 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an.")))
NIL
NIL
-(-40 -1801 UP UPUP -3264)
+(-40 -3572 UP UPUP -3090)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4499 |has| (-419 |#2|) (-376)) (-4504 |has| (-419 |#2|) (-376)) (-4498 |has| (-419 |#2|) (-376)) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-4089 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-4089 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4089 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4089 (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-363))))) (-4089 (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -658) (QUOTE (-558)))) (-4089 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))))
-(-41 R -1801)
+((-4495 |has| (-419 |#2|) (-376)) (-4500 |has| (-419 |#2|) (-376)) (-4494 |has| (-419 |#2|) (-376)) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-4034 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-4034 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -925) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -927) (QUOTE (-1206)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -658) (QUOTE (-558)))) (-4034 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -925) (QUOTE (-1206))))))
+(-41 R -3572)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -433) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -433) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-319))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4503 |has| |#1| (-569)) (-4501 . T) (-4500 . T))
+((-4499 |has| |#1| (-569)) (-4497 . T) (-4496 . T))
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4506 . T) (-4507 . T))
-((-4089 (-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|))))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-870))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|)))))))
+((-4502 . T) (-4503 . T))
+((-4034 (-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-869)))) (-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130))))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-869))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-4034 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-869))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-869))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-869))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130))) (-4034 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (|%list| (QUOTE -1068) (QUOTE (-558)))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| $ (QUOTE (-1078))) (|HasCategory| $ (|%list| (QUOTE -1067) (QUOTE (-558)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-51)
((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1801)
+(-54 |Base| R -3572)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression.")))
NIL
NIL
@@ -158,77 +158,77 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4506 . T) (-4507 . T))
+((-4502 . T) (-4503 . T))
NIL
(-58 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-61 -1898)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-61 -4047)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-62 -1898)
+(-62 -4047)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-63 -1898)
+(-63 -4047)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-64 -1898)
+(-64 -4047)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-65 -1898)
+(-65 -4047)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -1898)
+(-66 -4047)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -1898)
+(-67 -4047)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -1898)
+(-68 -4047)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -1898)
+(-69 -4047)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -1898)
+(-70 -4047)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -1898)
+(-71 -4047)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -1898)
+(-72 -4047)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -1898)
+(-73 -4047)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -1898)
+(-74 -4047)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -1898)
+(-75 -4047)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -240,51 +240,51 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -1898)
+(-78 -4047)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -1898)
+(-79 -4047)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -1898)
+(-80 -4047)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -1898)
+(-81 -4047)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -1898)
+(-82 -4047)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -1898)
+(-83 -4047)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -1898)
+(-84 -4047)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -1898)
+(-85 -4047)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -1898)
+(-86 -4047)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -1898)
+(-87 -4047)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-88 -1898)
+(-88 -4047)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-89 -1898)
+(-89 -4047)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-376))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4506 . T))
+((-4502 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4506 . T) ((-4508 "*") . T) (-4507 . T) (-4503 . T) (-4501 . T) (-4500 . T) (-4499 . T) (-4504 . T) (-4498 . T) (-4497 . T) (-4496 . T) (-4495 . T) (-4494 . T) (-4502 . T) (-4505 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4493 . T))
+((-4502 . T) ((-4504 "*") . T) (-4503 . T) (-4499 . T) (-4497 . T) (-4496 . T) (-4495 . T) (-4500 . T) (-4494 . T) (-4493 . T) (-4492 . T) (-4491 . T) (-4490 . T) (-4498 . T) (-4501 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4489 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4508 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4504 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4506 . T))
+((-4502 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4507 . T))
+((-4503 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-558) (QUOTE (-938))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1050))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870))) (-4089 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870)))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1182))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (|HasCategory| (-558) (QUOTE (-147)))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-558) (QUOTE (-937))) (|HasCategory| (-558) (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1049))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-869))) (-4034 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-869)))) (|HasCategory| (-558) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1181))) (|HasCategory| (-558) (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1206)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-937)))) (|HasCategory| (-558) (QUOTE (-147)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| (-114) (QUOTE (-1131))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-870))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-114) (QUOTE (-1131))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-114) (QUOTE (-102))))
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| (-114) (QUOTE (-1130))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-869))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| (-114) (QUOTE (-1130))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-114) (QUOTE (-102))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
(-112 S)
((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}.")))
@@ -396,22 +396,22 @@ NIL
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
NIL
NIL
-(-117 -1801 UP)
+(-117 -3572 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-118 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-119 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-118 |#1|) (QUOTE (-938))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-118 |#1|) (QUOTE (-1050))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-870))) (-4089 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-870)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-1182))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-938)))) (|HasCategory| (-118 |#1|) (QUOTE (-147)))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-118 |#1|) (QUOTE (-937))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-118 |#1|) (QUOTE (-1049))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-869))) (-4034 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-869)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-1181))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -526) (QUOTE (-1206)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-937)))) (|HasCategory| (-118 |#1|) (QUOTE (-147)))))
(-120 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)))
+((|HasAttribute| |#1| (QUOTE -4503)))
(-121 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -422,15 +422,15 @@ NIL
NIL
(-123 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-124 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-125)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
(-126 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -438,24 +438,24 @@ NIL
NIL
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4506 . T) (-4507 . T))
+((-4502 . T) (-4503 . T))
NIL
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-129 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-130)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256.")))
NIL
NIL
(-131)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1131))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-4089 (-12 (|HasCategory| (-130) (QUOTE (-1131))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-130) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1131)))) (|HasCategory| (-130) (QUOTE (-870))) (-4089 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1131))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1131))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| (-130) (QUOTE (-869))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-4034 (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| (-130) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| (-130) (QUOTE (-869))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-130) (QUOTE (-869))) (-4034 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-869))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))))
(-132)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
@@ -474,13 +474,13 @@ NIL
NIL
(-136)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4508 "*") . T))
+(((-4504 "*") . T))
NIL
-(-137 |minix| -4398 R)
+(-137 |minix| -3097 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
-(-138 |minix| -4398 S T$)
+(-138 |minix| -3097 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
@@ -502,8 +502,8 @@ NIL
NIL
(-143)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4506 . T) (-4496 . T) (-4507 . T))
-((-4089 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))))
+((-4502 . T) (-4492 . T) (-4503 . T))
+((-4034 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-869))) (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))))
(-144 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
@@ -518,7 +518,7 @@ NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-148 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x.")))
@@ -526,9 +526,9 @@ NIL
NIL
(-149)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4503 . T))
+((-4499 . T))
NIL
-(-150 -1801 UP UPUP)
+(-150 -3572 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -539,14 +539,14 @@ NIL
(-152 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasAttribute| |#1| (QUOTE -4506)))
+((|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasAttribute| |#1| (QUOTE -4502)))
(-153 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-154 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4501 . T) (-4500 . T) (-4503 . T))
+((-4497 . T) (-4496 . T) (-4499 . T))
NIL
(-155)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -568,7 +568,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-160 R -1801)
+(-160 R -3572)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -599,10 +599,10 @@ NIL
(-167 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4502)) (|HasAttribute| |#2| (QUOTE -4505)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569))))
+((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasCategory| |#2| (QUOTE (-1089))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4498)) (|HasAttribute| |#2| (QUOTE -4501)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569))))
(-168 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4499 -4089 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4502 |has| |#1| (-6 -4502)) (-4505 |has| |#1| (-6 -4505)) (-3607 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 -4034 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-937)))) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4498 |has| |#1| (-6 -4498)) (-4501 |has| |#1| (-6 -4501)) (-1498 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-169 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4499 -4089 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-938)))) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4502 |has| |#1| (-6 -4502)) (-4505 |has| |#1| (-6 -4505)) (-3607 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-4089 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-938))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-938))))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasAttribute| |#1| (QUOTE -4502)) (|HasAttribute| |#1| (QUOTE -4505)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-363)))))
+((-4495 -4034 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-937)))) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4498 |has| |#1| (-6 -4498)) (-4501 |has| |#1| (-6 -4501)) (-1498 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-4034 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-376)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-937))))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1089))) (-12 (|HasCategory| |#1| (QUOTE (-1089))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-376)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasAttribute| |#1| (QUOTE -4498)) (|HasAttribute| |#1| (QUOTE -4501)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-172 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
@@ -630,7 +630,7 @@ NIL
NIL
(-175)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-176)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -638,7 +638,7 @@ NIL
NIL
(-177 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4508 "*") . T) (-4499 . T) (-4504 . T) (-4498 . T) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") . T) (-4495 . T) (-4500 . T) (-4494 . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-178)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -655,7 +655,7 @@ NIL
(-181 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-974 |#2|) (|%list| (QUOTE -910) (|devaluate| |#1|))))
+((|HasCategory| (-973 |#2|) (|%list| (QUOTE -909) (|devaluate| |#1|))))
(-182 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -692,7 +692,7 @@ NIL
((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-191 R -1801)
+(-191 R -3572)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -804,28 +804,28 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis.")))
NIL
NIL
-(-219 -1801 UP UPUP R)
+(-219 -3572 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-220 -1801 FP)
+(-220 -3572 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-221)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-558) (QUOTE (-938))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1050))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870))) (-4089 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870)))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1182))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (|HasCategory| (-558) (QUOTE (-147)))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-558) (QUOTE (-937))) (|HasCategory| (-558) (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1049))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-869))) (-4034 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-869)))) (|HasCategory| (-558) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1181))) (|HasCategory| (-558) (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1206)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-937)))) (|HasCategory| (-558) (QUOTE (-147)))))
(-222)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-223 R -1801)
-((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+(-223 R -3572)
+((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-224 R)
-((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
+((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
(-225 R1 R2)
@@ -834,19 +834,19 @@ NIL
NIL
(-226 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-227 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4503 . T))
+((-4499 . T))
NIL
-(-228 R -1801)
+(-228 R -3572)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-229)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3595 . T) (-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4277 . T) (-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-230)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -854,19 +854,19 @@ NIL
NIL
(-231 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4508 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4504 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-232 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-233 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4507 . T))
+((-4503 . T))
NIL
(-234 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-235 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -878,7 +878,7 @@ NIL
NIL
(-237 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
(-238 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -890,33 +890,33 @@ NIL
NIL
(-240)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-4503 . T))
+((-4499 . T))
NIL
(-241 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4506)))
+((|HasAttribute| |#1| (QUOTE -4502)))
(-242 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4507 . T))
+((-4503 . T))
NIL
(-243)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-244 S -4398 R)
+(-244 S -3097 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870))) (|HasAttribute| |#3| (QUOTE -4503)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1131))))
-(-245 -4398 R)
+((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-869))) (|HasAttribute| |#3| (QUOTE -4499)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (QUOTE (-1130))))
+(-245 -3097 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4500 |has| |#2| (-1079)) (-4501 |has| |#2| (-1079)) (-4503 |has| |#2| (-6 -4503)) (-4506 . T))
+((-4496 |has| |#2| (-1078)) (-4497 |has| |#2| (-1078)) (-4499 |has| |#2| (-6 -4499)) (-4502 . T))
NIL
-(-246 -4398 R)
+(-246 -3097 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4500 |has| |#2| (-1079)) (-4501 |has| |#2| (-1079)) (-4503 |has| |#2| (-6 -4503)) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4089 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-240))) (-4089 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079))))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-746)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4089 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4503)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))))
-(-247 -4398 A B)
+((-4496 |has| |#2| (-1078)) (-4497 |has| |#2| (-1078)) (-4499 |has| |#2| (-6 -4499)) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-376))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4034 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-381))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-240))) (-4034 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1078))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-1130))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-869))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4499)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))))
+(-247 -3097 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
@@ -930,7 +930,7 @@ NIL
NIL
(-250)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4499 . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-251 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -938,20 +938,20 @@ NIL
NIL
(-252 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-253 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-254 R)
((|constructor| (NIL "Category of modules that extend differential rings. \\blankline")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
(-255 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4508 "*") |has| |#2| (-175)) (-4499 |has| |#2| (-569)) (-4504 |has| |#2| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(((-4504 "*") |has| |#2| (-175)) (-4495 |has| |#2| (-569)) (-4500 |has| |#2| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-937))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-256)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'.")))
NIL
@@ -966,23 +966,23 @@ NIL
NIL
(-259 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4503 -4089 (-2093 (|has| |#4| (-1079)) (|has| |#4| (-240))) (|has| |#4| (-6 -4503)) (-2093 (|has| |#4| (-1079)) (|has| |#4| (-926 (-1207))))) (-4500 |has| |#4| (-1079)) (-4501 |has| |#4| (-1079)) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-4089 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1079)))) (-4089 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (QUOTE (-815))) (-4089 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-870)))) (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (QUOTE (-381))) (-4089 (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (QUOTE (-1079))))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1079)))) (|HasCategory| |#4| (QUOTE (-240))) (-4089 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079))))) (-4089 (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1131))) (-4089 (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-746)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-870)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1131))))) (-4089 (-12 (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (QUOTE (-1079)))) (-4089 (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079))))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-4089 (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1131)))) (-4089 (|HasAttribute| |#4| (QUOTE -4503)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))))
+((-4499 -4034 (-3038 (|has| |#4| (-1078)) (|has| |#4| (-240))) (|has| |#4| (-6 -4499)) (-3038 (|has| |#4| (-1078)) (|has| |#4| (-925 (-1206))))) (-4496 |has| |#4| (-1078)) (-4497 |has| |#4| (-1078)) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-869))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-376))) (-4034 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1078)))) (-4034 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (QUOTE (-815))) (-4034 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-869)))) (|HasCategory| |#4| (QUOTE (-869))) (|HasCategory| |#4| (QUOTE (-381))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#4| (QUOTE (-240))) (-4034 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1078))))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#4| (QUOTE (-1130))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-869))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-869))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1078)))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-869))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-869))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1078)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1078))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1078)))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasAttribute| |#4| (QUOTE -4499)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1078))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1078)))) (-12 (|HasCategory| |#4| (QUOTE (-1078))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))))
(-260 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4503 -4089 (-2093 (|has| |#3| (-1079)) (|has| |#3| (-240))) (|has| |#3| (-6 -4503)) (-2093 (|has| |#3| (-1079)) (|has| |#3| (-926 (-1207))))) (-4500 |has| |#3| (-1079)) (-4501 |has| |#3| (-1079)) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-4089 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4089 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (-4089 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-381))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-1079))))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-240))) (-4089 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079))))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-746)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4089 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-4089 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-4089 (|HasAttribute| |#3| (QUOTE -4503)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))))
+((-4499 -4034 (-3038 (|has| |#3| (-1078)) (|has| |#3| (-240))) (|has| |#3| (-6 -4499)) (-3038 (|has| |#3| (-1078)) (|has| |#3| (-925 (-1206))))) (-4496 |has| |#3| (-1078)) (-4497 |has| |#3| (-1078)) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-376))) (-4034 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1078)))) (-4034 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (-4034 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-869)))) (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (QUOTE (-381))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-240))) (-4034 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1078))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-1130))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1078)))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-869))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1078)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1078))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1078)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasAttribute| |#3| (QUOTE -4499)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1078))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1078)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))))
(-261 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-240))))
(-262 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
NIL
(-263 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4506 . T) (-4507 . T))
+((-4502 . T) (-4503 . T))
NIL
(-264 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -1023,15 +1023,15 @@ NIL
(-273 S R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))))
+((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))))
(-274 R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
NIL
(-275 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-276 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1076,11 +1076,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-287 R -1801)
+(-287 R -3572)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-288 R -1801)
+(-288 R -3572)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1103,10 +1103,10 @@ NIL
(-293 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))))
+((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1130))))
(-294 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4507 . T))
+((-4503 . T))
NIL
(-295 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1127,18 +1127,18 @@ NIL
(-299 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)))
+((|HasAttribute| |#1| (QUOTE -4503)))
(-300 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-301 S R |Mod| -2774 -4003 |exactQuo|)
+(-301 S R |Mod| -2255 -4015 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-302)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4499 . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-303)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1150,16 +1150,16 @@ NIL
NIL
(-305 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4503 -4089 (|has| |#1| (-1079)) (|has| |#1| (-485))) (-4500 |has| |#1| (-1079)) (-4501 |has| |#1| (-1079)))
-((|HasCategory| |#1| (QUOTE (-376))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746)))) (|HasCategory| |#1| (QUOTE (-485))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-310))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485)))) (-4089 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746)))) (-4089 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-746))))
+((-4499 -4034 (|has| |#1| (-1078)) (|has| |#1| (-485))) (-4496 |has| |#1| (-1078)) (-4497 |has| |#1| (-1078)))
+((|HasCategory| |#1| (QUOTE (-376))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1078)))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1078)))) (-4034 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746)))) (|HasCategory| |#1| (QUOTE (-485))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1141)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-310))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485)))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746)))) (-4034 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-746))))
(-306 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
(-307 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|)))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1130))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))))
(-308)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
@@ -1167,16 +1167,16 @@ NIL
(-309 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1079))))
+((|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1078))))
(-310)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-311 -1801 S)
+(-311 -3572 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-312 E -1801)
+(-312 E -3572)
((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -1206,7 +1206,7 @@ NIL
NIL
(-319)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-320 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1216,7 +1216,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-322 -1801)
+(-322 -3572)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1230,12 +1230,12 @@ NIL
NIL
(-325 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1050))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-870))) (-4089 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-870)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147)))) (-4089 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-938))) (|HasCategory| $ (QUOTE (-147))))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1049))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-869))) (-4034 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-869)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1181))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -526) (QUOTE (-1206)) (|%list| (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-147)))))
(-326 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4503 -4089 (-12 (|has| |#1| (-569)) (-4089 (|has| |#1| (-1079)) (|has| |#1| (-485)))) (|has| |#1| (-1079)) (|has| |#1| (-485))) (-4501 |has| |#1| (-175)) (-4500 |has| |#1| (-175)) ((-4508 "*") |has| |#1| (-569)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-569)) (-4498 |has| |#1| (-569)))
-((-4089 (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (-4089 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-21))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-1079))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-147)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1079))))) (-4089 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-4089 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-21)))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142)))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-25)))) (-4089 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1079)))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (|%list| (QUOTE -1068) (QUOTE (-558)))))
+((-4499 -4034 (-12 (|has| |#1| (-569)) (-4034 (|has| |#1| (-1078)) (|has| |#1| (-485)))) (|has| |#1| (-1078)) (|has| |#1| (-485))) (-4497 |has| |#1| (-175)) (-4496 |has| |#1| (-175)) ((-4504 "*") |has| |#1| (-569)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-569)) (-4494 |has| |#1| (-569)))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (-4034 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-21))) (-4034 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (QUOTE (-1078))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))))) (-4034 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1141)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1078)))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1078)))) (-4034 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1078)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-21)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1141)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-25)))) (-4034 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1078)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1141))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1078))) (|HasCategory| $ (|%list| (QUOTE -1067) (QUOTE (-558)))))
(-327 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1244,7 +1244,7 @@ NIL
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-329 R -1801)
+(-329 R -3572)
((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1254,8 +1254,8 @@ NIL
NIL
(-331 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-376))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))))
(-332 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1266,8 +1266,8 @@ NIL
NIL
(-334 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative.")))
-((-4501 . T) (-4500 . T))
-((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| (-558) (QUOTE (-814))))
+((-4497 . T) (-4496 . T))
+((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| (-558) (QUOTE (-814))))
(-335 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1282,19 +1282,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))))
(-338 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-339 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
-(-340 S -1801)
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+(-340 S -3572)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))))
-(-341 -1801)
+(-341 -3572)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-342)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1312,7 +1312,7 @@ NIL
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-346 -1801 UP UPUP R)
+(-346 -3572 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1320,37 +1320,37 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-348 S -1801 UP UPUP R)
+(-348 S -3572 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-349 -1801 UP UPUP R)
+(-349 -3572 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
(-350 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))))
(-351 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-352 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (|%list| (QUOTE -1068) (QUOTE (-558)))))
+((-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1078))) (|HasCategory| $ (|%list| (QUOTE -1067) (QUOTE (-558)))))
(-353 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| (-934 |#1|) (QUOTE (-147))) (|HasCategory| (-934 |#1|) (QUOTE (-381)))) (|HasCategory| (-934 |#1|) (QUOTE (-149))) (|HasCategory| (-934 |#1|) (QUOTE (-381))) (|HasCategory| (-934 |#1|) (QUOTE (-147))))
-(-354 S -1801 UP UPUP)
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| (-933 |#1|) (QUOTE (-147))) (|HasCategory| (-933 |#1|) (QUOTE (-381)))) (|HasCategory| (-933 |#1|) (QUOTE (-149))) (|HasCategory| (-933 |#1|) (QUOTE (-381))) (|HasCategory| (-933 |#1|) (QUOTE (-147))))
+(-354 S -3572 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-376))))
-(-355 -1801 UP UPUP)
+(-355 -3572 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4499 |has| (-419 |#2|) (-376)) (-4504 |has| (-419 |#2|) (-376)) (-4498 |has| (-419 |#2|) (-376)) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 |has| (-419 |#2|) (-376)) (-4500 |has| (-419 |#2|) (-376)) (-4494 |has| (-419 |#2|) (-376)) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-356 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
@@ -1358,16 +1358,16 @@ NIL
NIL
(-357 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| (-934 |#1|) (QUOTE (-147))) (|HasCategory| (-934 |#1|) (QUOTE (-381)))) (|HasCategory| (-934 |#1|) (QUOTE (-149))) (|HasCategory| (-934 |#1|) (QUOTE (-381))) (|HasCategory| (-934 |#1|) (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| (-933 |#1|) (QUOTE (-147))) (|HasCategory| (-933 |#1|) (QUOTE (-381)))) (|HasCategory| (-933 |#1|) (QUOTE (-149))) (|HasCategory| (-933 |#1|) (QUOTE (-381))) (|HasCategory| (-933 |#1|) (QUOTE (-147))))
(-358 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-359 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-360 GF)
((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1382,51 +1382,51 @@ NIL
NIL
(-363)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-364 R UP -1801)
+(-364 R UP -3572)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-365 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| (-934 |#1|) (QUOTE (-147))) (|HasCategory| (-934 |#1|) (QUOTE (-381)))) (|HasCategory| (-934 |#1|) (QUOTE (-149))) (|HasCategory| (-934 |#1|) (QUOTE (-381))) (|HasCategory| (-934 |#1|) (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| (-933 |#1|) (QUOTE (-147))) (|HasCategory| (-933 |#1|) (QUOTE (-381)))) (|HasCategory| (-933 |#1|) (QUOTE (-149))) (|HasCategory| (-933 |#1|) (QUOTE (-381))) (|HasCategory| (-933 |#1|) (QUOTE (-147))))
(-366 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-367 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-368 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-369 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-370 -1801 GF)
+(-370 -3572 GF)
((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-371 -1801 FP FPP)
+(-371 -3572 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
(-372 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-373 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}.")))
NIL
NIL
(-374 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-375 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1434,7 +1434,7 @@ NIL
NIL
(-376)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-377 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
@@ -1450,7 +1450,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-569))))
(-380 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4503 |has| |#1| (-569)) (-4501 . T) (-4500 . T))
+((-4499 |has| |#1| (-569)) (-4497 . T) (-4496 . T))
NIL
(-381)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1462,15 +1462,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-376))))
(-383 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-384 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))))
+((|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1130))))
(-385 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4506 . T))
+((-4502 . T))
NIL
(-386 S A R B)
((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1478,7 +1478,7 @@ NIL
NIL
(-387 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4501 . T) (-4500 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4497 . T) (-4496 . T))
NIL
(-388 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1494,7 +1494,7 @@ NIL
NIL
(-391)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4489 . T) (-4497 . T) (-3595 . T) (-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4485 . T) (-4493 . T) (-4277 . T) (-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-392 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1506,11 +1506,11 @@ NIL
NIL
(-394 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4501 . T) (-4500 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))))
+((-4497 . T) (-4496 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))))
(-395 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
((|HasCategory| |#1| (QUOTE (-175))))
(-396)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1518,7 +1518,7 @@ NIL
NIL
(-397 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
(-398)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
@@ -1531,10 +1531,10 @@ NIL
(-400 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-870))))
+((|HasCategory| |#1| (QUOTE (-869))))
(-401)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-402)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1546,13 +1546,13 @@ NIL
NIL
(-404 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
(-405)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-406 -1801 UP UPUP R)
+(-406 -3572 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1568,11 +1568,11 @@ NIL
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-410 -1898 |returnType| -1415 |symbols|)
+(-410 -4047 |returnType| -1545 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-411 -1801 UP)
+(-411 -3572 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1586,28 +1586,28 @@ NIL
NIL
(-414)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-415 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4489)) (|HasAttribute| |#1| (QUOTE -4497)))
+((|HasAttribute| |#1| (QUOTE -4485)) (|HasAttribute| |#1| (QUOTE -4493)))
(-416)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3595 . T) (-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4277 . T) (-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-417 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1252))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464))))
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1206)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1251))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1251)))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464))))
(-418 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
(-419 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4493 -12 (|has| |#1| (-6 -4504)) (|has| |#1| (-464)) (|has| |#1| (-6 -4493))) (-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-870)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843))))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4493)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((-4489 -12 (|has| |#1| (-6 -4500)) (|has| |#1| (-464)) (|has| |#1| (-6 -4489))) (-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1181))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4489)) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464)))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-420 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
@@ -1618,28 +1618,28 @@ NIL
NIL
(-422 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-423 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))
+((|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))))
(-424 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-425 R -1801 UP A)
+(-425 R -3572 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-426 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-427 R -1801 UP A |ibasis|)
+(-427 R -3572 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (|%list| (QUOTE -1068) (|devaluate| |#2|))))
+((|HasCategory| |#4| (|%list| (QUOTE -1067) (|devaluate| |#2|))))
(-428 AR R AS S)
((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1650,7 +1650,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-430 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4503 |has| |#1| (-569)) (-4501 . T) (-4500 . T))
+((-4499 |has| |#1| (-569)) (-4497 . T) (-4496 . T))
NIL
(-431 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
@@ -1659,10 +1659,10 @@ NIL
(-432 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1142))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))))
+((|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1141))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))))
(-433 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4503 -4089 (|has| |#1| (-1079)) (|has| |#1| (-485))) (-4501 |has| |#1| (-175)) (-4500 |has| |#1| (-175)) ((-4508 "*") |has| |#1| (-569)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-569)) (-4498 |has| |#1| (-569)))
+((-4499 -4034 (|has| |#1| (-1078)) (|has| |#1| (-485))) (-4497 |has| |#1| (-175)) (-4496 |has| |#1| (-175)) ((-4504 "*") |has| |#1| (-569)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-569)) (-4494 |has| |#1| (-569)))
NIL
(-434 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
@@ -1679,36 +1679,36 @@ NIL
(-437 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381))))
+((|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-381))))
(-438 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4506 . T) (-4496 . T) (-4507 . T))
+((-4502 . T) (-4492 . T) (-4503 . T))
NIL
(-439 S A R B)
((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-440 R -1801)
+(-440 R -3572)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-441 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4493 -12 (|has| |#1| (-6 -4493)) (|has| |#2| (-6 -4493))) (-4500 . T) (-4501 . T) (-4503 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4493)) (|HasAttribute| |#2| (QUOTE -4493))))
-(-442 R -1801)
+((-4489 -12 (|has| |#1| (-6 -4489)) (|has| |#2| (-6 -4489))) (-4496 . T) (-4497 . T) (-4499 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4489)) (|HasAttribute| |#2| (QUOTE -4489))))
+(-442 R -3572)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-443 R -1801)
+(-443 R -3572)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-444 R -1801)
+(-444 R -3572)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-445 R -1801)
+(-445 R -3572)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1716,12 +1716,12 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-447 R -1801 UP)
+(-447 R -3572 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-48)))))
+((|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-48)))))
(-448)
-((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
+((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
(-449)
@@ -1748,7 +1748,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-455 R UP -1801)
+(-455 R UP -3572)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1786,16 +1786,16 @@ NIL
NIL
(-464)
((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-465 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4503 |has| (-419 (-974 |#1|)) (-569)) (-4501 . T) (-4500 . T))
-((|HasCategory| (-419 (-974 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-419 (-974 |#1|)) (QUOTE (-569))))
+((-4499 |has| (-419 (-973 |#1|)) (-569)) (-4497 . T) (-4496 . T))
+((|HasCategory| (-419 (-973 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-419 (-973 |#1|)) (QUOTE (-569))))
(-466 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4508 "*") |has| |#2| (-175)) (-4499 |has| |#2| (-569)) (-4504 |has| |#2| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(((-4504 "*") |has| |#2| (-175)) (-4495 |has| |#2| (-569)) (-4500 |has| |#2| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-937))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-467 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional.")))
NIL
@@ -1822,7 +1822,7 @@ NIL
NIL
(-473 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
(-474 E V R P Q)
((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1830,8 +1830,8 @@ NIL
NIL
(-475 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}.")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))))
(-476 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1860,7 +1860,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-483 |lv| -1801 R)
+(-483 |lv| -3572 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1870,23 +1870,23 @@ NIL
NIL
(-485)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-486 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-376))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))))
(-487 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|)))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))))
+((-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130))))
(-488 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))))
(-489)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-490)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1894,29 +1894,29 @@ NIL
NIL
(-491 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|)))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1130))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))))
(-492)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-493 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4508 "*") |has| |#2| (-175)) (-4499 |has| |#2| (-569)) (-4504 |has| |#2| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
-(-494 -4398 S)
+(((-4504 "*") |has| |#2| (-175)) (-4495 |has| |#2| (-569)) (-4500 |has| |#2| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-937))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(-494 -3097 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4500 |has| |#2| (-1079)) (-4501 |has| |#2| (-1079)) (-4503 |has| |#2| (-6 -4503)) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4089 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-240))) (-4089 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079))))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-746)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4089 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4503)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))))
+((-4496 |has| |#2| (-1078)) (-4497 |has| |#2| (-1078)) (-4499 |has| |#2| (-6 -4499)) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-376))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4034 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-381))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-240))) (-4034 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1078))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-1130))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-869))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4499)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))))
(-495)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-496 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-497 -1801 UP UPUP R)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-497 -3572 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1926,12 +1926,12 @@ NIL
NIL
(-499)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-558) (QUOTE (-938))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1050))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870))) (-4089 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870)))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1182))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (|HasCategory| (-558) (QUOTE (-147)))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-558) (QUOTE (-937))) (|HasCategory| (-558) (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1049))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-869))) (-4034 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-869)))) (|HasCategory| (-558) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1181))) (|HasCategory| (-558) (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1206)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-937)))) (|HasCategory| (-558) (QUOTE (-147)))))
(-500 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))))
+((|HasAttribute| |#1| (QUOTE -4502)) (|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))))
(-501 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1952,34 +1952,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-506 -1801 UP |AlExt| |AlPol|)
+(-506 -3572 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-507)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (|%list| (QUOTE -1068) (QUOTE (-558)))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| $ (QUOTE (-1078))) (|HasCategory| $ (|%list| (QUOTE -1067) (QUOTE (-558)))))
(-508 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type.")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-509 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-510 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-511 R UP -1801)
+(-511 R UP -3572)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-512 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| (-114) (QUOTE (-1131))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-870))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-114) (QUOTE (-1131))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-114) (QUOTE (-102))))
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| (-114) (QUOTE (-1130))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-869))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| (-114) (QUOTE (-1130))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-114) (QUOTE (-102))))
(-513 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1992,10 +1992,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
NIL
-(-516 -1801 |Expon| |VarSet| |DPoly|)
+(-516 -3572 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-1207)))))
+((|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-1206)))))
(-517 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -2007,11 +2007,11 @@ NIL
(-519 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))))
(-520 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))))
(-521 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
@@ -2019,15 +2019,15 @@ NIL
(-522 A S)
((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))))
(-523 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))))
(-524 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))))
(-525 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
@@ -2042,36 +2042,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-814))))
(-528 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-529)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-530 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| (-593 |#1|) (QUOTE (-147))) (|HasCategory| (-593 |#1|) (QUOTE (-381)))) (|HasCategory| (-593 |#1|) (QUOTE (-149))) (|HasCategory| (-593 |#1|) (QUOTE (-381))) (|HasCategory| (-593 |#1|) (QUOTE (-147))))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (|HasCategory| (-593 |#1|) (QUOTE (-147))) (|HasCategory| (-593 |#1|) (QUOTE (-381)))) (|HasCategory| (-593 |#1|) (QUOTE (-149))) (|HasCategory| (-593 |#1|) (QUOTE (-381))) (|HasCategory| (-593 |#1|) (QUOTE (-147))))
(-531 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-532 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-533 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4507)))
+((|HasAttribute| |#3| (QUOTE -4503)))
(-534 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4507)))
+((|HasAttribute| |#7| (QUOTE -4503)))
(-535 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4508 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4504 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-536)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2103,8 +2103,8 @@ NIL
(-543 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
-((-12 (|HasCategory| (-791) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131)))))
-(-544 K -1801 |Par|)
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-791) (QUOTE (-1130)))))
+(-544 K -3572 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2128,7 +2128,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-550 K -1801 |Par|)
+(-550 K -3572 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2149,7 +2149,7 @@ NIL
NIL
NIL
(-555 R UP)
-((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
+((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
(-556 S)
@@ -2158,11 +2158,11 @@ NIL
NIL
(-557)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4504 . T) (-4505 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4500 . T) (-4501 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-558)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \\spad{nothing}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4488 . T) (-4494 . T) (-4498 . T) (-4493 . T) (-4504 . T) (-4505 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4484 . T) (-4490 . T) (-4494 . T) (-4489 . T) (-4500 . T) (-4501 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-559)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2182,13 +2182,13 @@ NIL
NIL
(-563 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|)))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))))
-(-564 R -1801)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1130))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))))
+(-564 R -3572)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-565 R0 -1801 UP UPUP R)
+(-565 R0 -3572 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2198,7 +2198,7 @@ NIL
NIL
(-567 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3595 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4277 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-568 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2206,10 +2206,10 @@ NIL
NIL
(-569)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-570 R -1801)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
+(-570 R -3572)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
(-571 I)
@@ -2217,22 +2217,22 @@ NIL
NIL
NIL
(-572)
-((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
+((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-573 R -1801 L)
-((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
+(-573 R -3572 L)
+((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (|%list| (QUOTE -678) (|devaluate| |#2|))))
(-574)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-575 -1801 UP UPUP R)
+(-575 -3572 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-576 -1801 UP)
+(-576 -3572 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
@@ -2240,15 +2240,15 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\tt numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\tt \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-578 R -1801 L)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
+(-578 R -3572 L)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (|%list| (QUOTE -678) (|devaluate| |#2|))))
-(-579 R -1801)
+(-579 R -3572)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-647)))))
-(-580 -1801 UP)
+((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1168)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-647)))))
+(-580 -3572 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2256,27 +2256,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-582 -1801)
+(-582 -3572)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-583 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3595 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4277 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-584)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
-(-585 R -1801)
+(-585 R -3572)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-647))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-569))))
-(-586 -1801 UP)
-((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
+((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-647))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-569))))
+(-586 -3572 UP)
+((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-587 R -1801)
+(-587 R -3572)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2298,25 +2298,25 @@ NIL
NIL
(-592 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-593 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381))))
(-594)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-595 -1801)
+(-595 -3572)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4501 . T) (-4500 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-1207)))))
-(-596 E -1801)
+((-4497 . T) (-4496 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-1206)))))
+(-596 E -3572)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-597 R -1801)
+(-597 R -3572)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
NIL
@@ -2350,19 +2350,19 @@ NIL
NIL
(-605 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-4089 (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886)))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-870))) (-4089 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| (-146) (QUOTE (-869))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-4034 (-12 (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| (-146) (QUOTE (-869))) (|HasCategory| (-146) (QUOTE (-1130)))) (|HasCategory| (-146) (QUOTE (-869))) (-4034 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-869))) (|HasCategory| (-146) (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))))
(-606 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-607 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))))
(-608 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-4508 "*") |has| |#1| (-569)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-569)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
((|HasCategory| |#1| (QUOTE (-569))))
(-609)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
@@ -2376,7 +2376,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-612 R -1801 FG)
+(-612 R -3572 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2386,12 +2386,12 @@ NIL
NIL
(-614 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-615 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-870))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#3| (QUOTE (-1131))))
+((|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-869))) (|HasAttribute| |#1| (QUOTE -4502)) (|HasCategory| |#3| (QUOTE (-1130))))
(-616 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2402,8 +2402,8 @@ NIL
NIL
(-618 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4503 -4089 (-2093 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4501 . T) (-4500 . T))
-((-4089 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))))
+((-4499 -4034 (-3038 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4497 . T) (-4496 . T))
+((-4034 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))))
(-619)
((|constructor| (NIL "This is the datatype for the JVM bytecodes.")))
NIL
@@ -2430,20 +2430,20 @@ NIL
NIL
(-625 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (QUOTE (-1188))) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-869))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-102))))
(-626 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-627 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4507 . T))
+((-4503 . T))
NIL
(-628 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))))
+((|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))))
(-629 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
@@ -2456,7 +2456,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-632 -1801 UP)
+(-632 -3572 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2474,24 +2474,24 @@ NIL
NIL
(-636 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-869))))
+((-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-868))))
(-637 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
(-638 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4503 . T))
+((-4499 . T))
NIL
-(-639 R -1801)
+(-639 R -3572)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
(-640 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4501 . T) (-4500 . T) ((-4508 "*") . T) (-4499 . T) (-4503 . T))
-((|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))))
+((-4497 . T) (-4496 . T) ((-4504 "*") . T) (-4495 . T) (-4499 . T))
+((|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))))
(-641 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional.")))
NIL
@@ -2506,13 +2506,13 @@ NIL
NIL
(-644 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-645 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}.")))
NIL
NIL
-(-646 R -1801)
+(-646 R -3572)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
@@ -2520,32 +2520,32 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-648 |lv| -1801)
+(-648 |lv| -3572)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-649)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2065) (QUOTE (-51))))))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-51) (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1189) (QUOTE (-870))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 (-51))) (QUOTE (-1131))))
+((-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (QUOTE (-1188))) (|%list| (QUOTE |:|) (QUOTE -2294) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1188) (QUOTE (-869))) (-4034 (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 (-51))) (QUOTE (-1130))))
(-650 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4503 -4089 (-2093 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4501 . T) (-4500 . T))
-((-4089 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))))
+((-4499 -4034 (-3038 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4497 . T) (-4496 . T))
+((-4034 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))))
(-651 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-652 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4501 . T) (-4500 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4497 . T) (-4496 . T))
NIL
(-653 R FE)
-((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
+((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
(-654 R)
-((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
+((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
(-655 |vars|)
@@ -2555,18 +2555,18 @@ NIL
(-656 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2083 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376))))
+((-3036 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376))))
(-657 K B)
((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}.")))
-((-4501 . T) (-4500 . T))
-((-12 (|HasCategory| (-655 |#2|) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131)))))
+((-4497 . T) (-4496 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-655 |#2|) (QUOTE (-1130)))))
(-658 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
(-659 K B)
((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}.")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
(-660 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
@@ -2574,8 +2574,8 @@ NIL
NIL
(-661 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-662 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
@@ -2598,8 +2598,8 @@ NIL
NIL
(-667 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-668 R)
((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline")))
NIL
@@ -2611,40 +2611,40 @@ NIL
(-670 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)))
+((|HasAttribute| |#1| (QUOTE -4503)))
(-671 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
(-672 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
((|HasCategory| |#1| (QUOTE (-812))))
-(-673 R -1801 L)
+(-673 R -3572 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-674 A -1972)
+(-674 A -2896)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376))))
+((-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376))))
(-675 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376))))
+((-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376))))
(-676 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376))))
+((-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376))))
(-677 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-678 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-679 -1801 UP)
+(-679 -3572 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
@@ -2666,7 +2666,7 @@ NIL
NIL
(-684 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4501 . T) (-4500 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4497 . T) (-4496 . T))
((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-175))))
(-685 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2674,14 +2674,14 @@ NIL
NIL
(-686 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-687 -1801 |Row| |Col| M)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-687 -3572 |Row| |Col| M)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-688 -1801)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-688 -3572)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
(-689 R E OV P)
@@ -2690,8 +2690,8 @@ NIL
NIL
(-690 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4503 . T) (-4506 . T) (-4500 . T) (-4501 . T))
-((|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4508 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569))) (-4089 (|HasAttribute| |#2| (QUOTE (-4508 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
+((-4499 . T) (-4502 . T) (-4496 . T) (-4497 . T))
+((|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4504 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569))) (-4034 (|HasAttribute| |#2| (QUOTE (-4504 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
(-691)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2711,7 +2711,7 @@ NIL
(-695 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-696)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2751,10 +2751,10 @@ NIL
(-705 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4508 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569))))
+((|HasAttribute| |#2| (QUOTE (-4504 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569))))
(-706 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4506 . T) (-4507 . T))
+((-4502 . T) (-4503 . T))
NIL
(-707 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
@@ -2766,8 +2766,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))))
(-709 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4506 . T) (-4507 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4508 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+((-4502 . T) (-4503 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4504 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
(-710 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2776,7 +2776,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%.")))
NIL
NIL
-(-712 S -1801 FLAF FLAS)
+(-712 S -3572 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2786,27 +2786,27 @@ NIL
NIL
(-714)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4499 . T) (-4504 |has| (-719) (-376)) (-4498 |has| (-719) (-376)) (-3607 . T) (-4505 |has| (-719) (-6 -4505)) (-4502 |has| (-719) (-6 -4502)) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-719) (QUOTE (-149))) (|HasCategory| (-719) (QUOTE (-147))) (|HasCategory| (-719) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-719) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-719) (QUOTE (-381))) (|HasCategory| (-719) (QUOTE (-376))) (-4089 (|HasCategory| (-719) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-239))) (-4089 (-12 (|HasCategory| (-719) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4089 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-363)))) (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (|%list| (QUOTE -298) (QUOTE (-719)) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -321) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-719) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-719) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-719) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (-4089 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-363)))) (|HasCategory| (-719) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-719) (QUOTE (-1050))) (|HasCategory| (-719) (QUOTE (-1233))) (-12 (|HasCategory| (-719) (QUOTE (-1032))) (|HasCategory| (-719) (QUOTE (-1233)))) (-4089 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-376))) (-12 (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (QUOTE (-938))))) (-4089 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-938)))) (-12 (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (QUOTE (-938))))) (|HasCategory| (-719) (QUOTE (-557))) (-12 (|HasCategory| (-719) (QUOTE (-1090))) (|HasCategory| (-719) (QUOTE (-1233)))) (|HasCategory| (-719) (QUOTE (-1090))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938))) (-4089 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-376)))) (-4089 (-12 (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (QUOTE (-239)))) (-4089 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-569)))) (-12 (|HasCategory| (-719) (QUOTE (-239))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-719) (QUOTE (-569))) (|HasAttribute| (-719) (QUOTE -4505)) (|HasAttribute| (-719) (QUOTE -4502)) (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (|%list| (QUOTE -928) (QUOTE (-1207)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-147)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-938)))) (|HasCategory| (-719) (QUOTE (-363)))))
+((-4495 . T) (-4500 |has| (-719) (-376)) (-4494 |has| (-719) (-376)) (-1498 . T) (-4501 |has| (-719) (-6 -4501)) (-4498 |has| (-719) (-6 -4498)) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-719) (QUOTE (-149))) (|HasCategory| (-719) (QUOTE (-147))) (|HasCategory| (-719) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-719) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-719) (QUOTE (-381))) (|HasCategory| (-719) (QUOTE (-376))) (-4034 (|HasCategory| (-719) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-239))) (-4034 (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| (-719) (|%list| (QUOTE -927) (QUOTE (-1206))))) (-4034 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-363)))) (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (|%list| (QUOTE -298) (QUOTE (-719)) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -321) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -526) (QUOTE (-1206)) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-719) (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-719) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-719) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (-4034 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-363)))) (|HasCategory| (-719) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-719) (QUOTE (-1049))) (|HasCategory| (-719) (QUOTE (-1232))) (-12 (|HasCategory| (-719) (QUOTE (-1031))) (|HasCategory| (-719) (QUOTE (-1232)))) (-4034 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-937)))) (-12 (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (QUOTE (-937)))) (|HasCategory| (-719) (QUOTE (-376)))) (-4034 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-937)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-937)))) (-12 (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (QUOTE (-937))))) (|HasCategory| (-719) (QUOTE (-557))) (-12 (|HasCategory| (-719) (QUOTE (-1089))) (|HasCategory| (-719) (QUOTE (-1232)))) (|HasCategory| (-719) (QUOTE (-1089))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-937))) (-4034 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-937)))) (|HasCategory| (-719) (QUOTE (-376)))) (-4034 (-12 (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (QUOTE (-239)))) (-4034 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-937)))) (|HasCategory| (-719) (QUOTE (-569)))) (-12 (|HasCategory| (-719) (QUOTE (-239))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| (-719) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-719) (QUOTE (-569))) (|HasAttribute| (-719) (QUOTE -4501)) (|HasAttribute| (-719) (QUOTE -4498)) (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-937)))) (|HasCategory| (-719) (|%list| (QUOTE -927) (QUOTE (-1206)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-937)))) (|HasCategory| (-719) (QUOTE (-147)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-937)))) (|HasCategory| (-719) (QUOTE (-363)))))
(-715 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4507 . T))
+((-4503 . T))
NIL
(-716 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
(-717)
-((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
+((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-718 OV E -1801 PG)
+(-718 OV E -3572 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-719)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-3595 . T) (-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4277 . T) (-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-720 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2814,7 +2814,7 @@ NIL
NIL
(-721)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4505 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4501 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-722 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2832,7 +2832,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}.")))
NIL
NIL
-(-726 S -1907 I)
+(-726 S -3147 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2842,7 +2842,7 @@ NIL
NIL
(-728 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-729 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2852,25 +2852,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-731 R |Mod| -2774 -4003 |exactQuo|)
+(-731 R |Mod| -2255 -4015 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-732 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4502 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4498 |has| |#1| (-376)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-1111) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-1111) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1181))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-733 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-734 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4501 |has| |#1| (-175)) (-4500 |has| |#1| (-175)) (-4503 . T))
+((-4497 |has| |#1| (-175)) (-4496 |has| |#1| (-175)) (-4499 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))))
-(-735 R |Mod| -2774 -4003 |exactQuo|)
+(-735 R |Mod| -2255 -4015 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4503 . T))
+((-4499 . T))
NIL
(-736 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2878,11 +2878,11 @@ NIL
NIL
(-737 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
-(-738 -1801)
+(-738 -3572)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4503 . T))
+((-4499 . T))
NIL
(-739 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2906,7 +2906,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))))
(-744 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4499 |has| |#1| (-376)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-745 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2916,7 +2916,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-747 -1801 UP)
+(-747 -3572 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2934,8 +2934,8 @@ NIL
NIL
(-751 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4508 "*") |has| |#2| (-175)) (-4499 |has| |#2| (-569)) (-4504 |has| |#2| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-887 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(((-4504 "*") |has| |#2| (-175)) (-4495 |has| |#2| (-569)) (-4500 |has| |#2| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-937))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-886 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-752 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2950,15 +2950,15 @@ NIL
NIL
(-755 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4501 |has| |#1| (-175)) (-4500 |has| |#1| (-175)) (-4503 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-870))))
+((-4497 |has| |#1| (-175)) (-4496 |has| |#1| (-175)) (-4499 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-869))))
(-756 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4506 . T) (-4496 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-4502 . T) (-4492 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
(-757 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4496 . T) (-4507 . T))
+((-4492 . T) (-4503 . T))
NIL
(-758)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2970,7 +2970,7 @@ NIL
NIL
(-760 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4501 . T) (-4500 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4497 . T) (-4496 . T) (-4499 . T))
NIL
(-761 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2986,7 +2986,7 @@ NIL
NIL
(-764 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
(-765)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{\\spad{manpageXXc02}}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -3068,11 +3068,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-785 -1801)
+(-785 -3572)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-786 P -1801)
+(-786 P -3572)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")))
NIL
NIL
@@ -3080,7 +3080,7 @@ NIL
NIL
NIL
NIL
-(-788 UP -1801)
+(-788 UP -3572)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3094,9 +3094,9 @@ NIL
NIL
(-791)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4508 "*") . T))
+(((-4504 "*") . T))
NIL
-(-792 R -1801)
+(-792 R -3572)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3116,7 +3116,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-797 -1801 |ExtF| |SUEx| |ExtP| |n|)
+(-797 -3572 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3130,12 +3130,12 @@ NIL
NIL
(-800 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (-2083 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (-2083 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-2083 (|HasCategory| |#1| (QUOTE (-557))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (-2083 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-2083 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1207)))) (-2083 (|HasCategory| |#1| (|%list| (QUOTE -1021) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1206))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1206))))) (-4034 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1206)))) (-3036 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1206)))) (-3036 (|HasCategory| |#1| (QUOTE (-557)))) (-3036 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1206)))) (-3036 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558))))) (-3036 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1206)))) (-3036 (|HasCategory| |#1| (|%list| (QUOTE -1020) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-801 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4502 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4498 |has| |#1| (-376)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-1111) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-1111) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1181))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-802 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -3146,12 +3146,12 @@ NIL
((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))
(-804 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
(-805 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-175))))
+((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-175))))
(-806)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -3199,10 +3199,10 @@ NIL
(-817 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381))))
+((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1089))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-381))))
(-818 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-819)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
@@ -3210,9 +3210,9 @@ NIL
NIL
(-820 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-4089 (|HasCategory| (-1026 |#1|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4089 (|HasCategory| (-1026 |#1|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1026 |#1|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1026 |#1|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))))
-(-821 -4089 R OS S)
+((-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-4034 (|HasCategory| (-1025 |#1|) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-1025 |#1|) (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1089))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1025 |#1|) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1025 |#1|) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))))
+(-821 -4034 R OS S)
((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
@@ -3220,19 +3220,19 @@ NIL
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-823 R -1801 L)
+(-823 R -3572 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-824 R -1801)
-((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
+(-824 R -3572)
+((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
(-825)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE's.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-826 R -1801)
+(-826 R -3572)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3240,11 +3240,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-828 -1801 UP UPUP R)
+(-828 -3572 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-829 -1801 UP L LQ)
+(-829 -3572 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3252,41 +3252,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-831 -1801 UP L LQ)
+(-831 -3572 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-832 -1801 UP)
-((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.")))
+(-832 -3572 UP)
+((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-833 -1801 L UP A LO)
+(-833 -3572 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-834 -1801 UP)
+(-834 -3572 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-835 -1801 LO)
+(-835 -3572 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-836 -1801 LODO)
+(-836 -3572 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-837 -4398 S |f|)
+(-837 -3097 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4500 |has| |#2| (-1079)) (-4501 |has| |#2| (-1079)) (-4503 |has| |#2| (-6 -4503)) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-376))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4089 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-381))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1079)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-240))) (-4089 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079))))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1131))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-746)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4089 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1131)))) (|HasAttribute| |#2| (QUOTE -4503)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))))
+((-4496 |has| |#2| (-1078)) (-4497 |has| |#2| (-1078)) (-4499 |has| |#2| (-6 -4499)) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-376))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-4034 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-381))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-240))) (-4034 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1078))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-1130))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-869))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4499)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))))
(-838 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-840 (-1206)) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-840 (-1206)) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-840 (-1206)) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-840 (-1206)) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-840 (-1206)) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-839 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4508 "*") |has| |#2| (-376)) (-4499 |has| |#2| (-376)) (-4504 |has| |#2| (-376)) (-4498 |has| |#2| (-376)) (-4503 . T) (-4501 . T) (-4500 . T))
+(((-4504 "*") |has| |#2| (-376)) (-4495 |has| |#2| (-376)) (-4500 |has| |#2| (-376)) (-4494 |has| |#2| (-376)) (-4499 . T) (-4497 . T) (-4496 . T))
((|HasCategory| |#2| (QUOTE (-376))))
(-840 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3295,10 +3295,10 @@ NIL
(-841 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-870))))
+((|HasCategory| |#1| (QUOTE (-869))))
(-842)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
(-843)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath XML encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath XML encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath XML encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3330,7 +3330,7 @@ NIL
NIL
(-850 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-240))))
(-851)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from CD \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the CDs supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
@@ -3338,1907 +3338,1903 @@ NIL
NIL
(-852 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4506 . T) (-4496 . T) (-4507 . T))
-NIL
-(-853)
-((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
+((-4502 . T) (-4492 . T) (-4503 . T))
NIL
-NIL
-(-854 R)
+(-853 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4503 |has| |#1| (-869)))
-((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-4089 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4089 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557))))
-(-855 R S)
+((-4499 |has| |#1| (-868)))
+((|HasCategory| |#1| (QUOTE (-868))) (|HasCategory| |#1| (QUOTE (-21))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-868)))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4034 (|HasCategory| |#1| (QUOTE (-868))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557))))
+(-854 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-856 R)
+(-855 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4501 |has| |#1| (-175)) (-4500 |has| |#1| (-175)) (-4503 . T))
+((-4497 |has| |#1| (-175)) (-4496 |has| |#1| (-175)) (-4499 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))))
-(-857 A S)
+(-856 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-858 S)
+(-857 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-859)
+(-858)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages).")))
NIL
NIL
-(-860)
+(-859)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'.")))
NIL
NIL
-(-861)
+(-860)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-862)
+(-861)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-863)
+(-862)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-864 R)
+(-863 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4503 |has| |#1| (-869)))
-((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-4089 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4089 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557))))
-(-865 R S)
+((-4499 |has| |#1| (-868)))
+((|HasCategory| |#1| (QUOTE (-868))) (|HasCategory| |#1| (QUOTE (-21))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-868)))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4034 (|HasCategory| |#1| (QUOTE (-868))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557))))
+(-864 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-866)
+(-865)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-867 -4398 S)
+(-866 -3097 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-868)
+(-867)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-869)
+(-868)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")))
-((-4503 . T))
+((-4499 . T))
NIL
-(-870)
+(-869)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")))
NIL
NIL
-(-871 T$ |f|)
+(-870 T$ |f|)
((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))))
-(-872 S)
+((|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))))
+(-871 S)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-873)
+(-872)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-874 S R)
+(-873 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))))
-(-875 R)
+(-874 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-876 R C)
+(-875 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569))))
-(-877 R |sigma| -2404)
+(-876 R |sigma| -3739)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376))))
-(-878 |x| R |sigma| -2404)
+((-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376))))
+(-877 |x| R |sigma| -3739)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-376))))
-(-879 R)
+((-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-376))))
+(-878 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))
-(-880)
+(-879)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-881)
+(-880)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-882)
+(-881)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-883 S)
+(-882 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-884)
+(-883)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-885)
+(-884)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-886)
+(-885)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-887 |VariableList|)
+(-886 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-888)
+(-887)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-889 R |vl| |wl| |wtlevel|)
+(-888 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4501 |has| |#1| (-175)) (-4500 |has| |#1| (-175)) (-4503 . T))
+((-4497 |has| |#1| (-175)) (-4496 |has| |#1| (-175)) (-4499 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))))
-(-890 R PS UP)
+(-889 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-891 R |x| |pt|)
+(-890 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-892 |p|)
+(-891 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-893 |p|)
+(-892 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-894 |p|)
+(-893 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-892 |#1|) (QUOTE (-938))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-892 |#1|) (QUOTE (-147))) (|HasCategory| (-892 |#1|) (QUOTE (-149))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-892 |#1|) (QUOTE (-1050))) (|HasCategory| (-892 |#1|) (QUOTE (-842))) (|HasCategory| (-892 |#1|) (QUOTE (-870))) (-4089 (|HasCategory| (-892 |#1|) (QUOTE (-842))) (|HasCategory| (-892 |#1|) (QUOTE (-870)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-892 |#1|) (QUOTE (-1182))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-892 |#1|) (QUOTE (-239))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-892 |#1|) (QUOTE (-240))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| (-892 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -892) (|devaluate| |#1|)) (|%list| (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| (-892 |#1|) (QUOTE (-319))) (|HasCategory| (-892 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-892 |#1|) (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-892 |#1|) (QUOTE (-938)))) (|HasCategory| (-892 |#1|) (QUOTE (-147)))))
-(-895 |p| PADIC)
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-891 |#1|) (QUOTE (-937))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| (-891 |#1|) (QUOTE (-147))) (|HasCategory| (-891 |#1|) (QUOTE (-149))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-891 |#1|) (QUOTE (-1049))) (|HasCategory| (-891 |#1|) (QUOTE (-842))) (|HasCategory| (-891 |#1|) (QUOTE (-869))) (-4034 (|HasCategory| (-891 |#1|) (QUOTE (-842))) (|HasCategory| (-891 |#1|) (QUOTE (-869)))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-891 |#1|) (QUOTE (-1181))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-891 |#1|) (QUOTE (-239))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| (-891 |#1|) (QUOTE (-240))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -526) (QUOTE (-1206)) (|%list| (QUOTE -891) (|devaluate| |#1|)))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -891) (|devaluate| |#1|)))) (|HasCategory| (-891 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -891) (|devaluate| |#1|)) (|%list| (QUOTE -891) (|devaluate| |#1|)))) (|HasCategory| (-891 |#1|) (QUOTE (-319))) (|HasCategory| (-891 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-891 |#1|) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-891 |#1|) (QUOTE (-937)))) (|HasCategory| (-891 |#1|) (QUOTE (-147)))))
+(-894 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-870))) (-4089 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
-(-896 S T$)
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-869))) (-4034 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1181))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(-895 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))))
-(-897)
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))))
+(-896)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value.")))
NIL
NIL
-(-898)
+(-897)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-899)
+(-898)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-900 CF1 CF2)
+(-899 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-901 |ComponentFunction|)
+(-900 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-902 CF1 CF2)
+(-901 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-903 |ComponentFunction|)
+(-902 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-904)
+(-903)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-905 CF1 CF2)
+(-904 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-906 |ComponentFunction|)
+(-905 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-907)
+(-906)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-908 R)
+(-907 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-909 R S L)
+(-908 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-910 S)
+(-909 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-911 |Base| |Subject| |Pat|)
+(-910 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2083 (|HasCategory| |#2| (QUOTE (-1079)))) (-2083 (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (-2083 (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))))
-(-912 R S)
+((-12 (-3036 (|HasCategory| |#2| (QUOTE (-1078)))) (-3036 (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206)))))) (-12 (|HasCategory| |#2| (QUOTE (-1078))) (-3036 (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206)))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206)))))
+(-911 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-913 R A B)
+(-912 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))].")))
NIL
NIL
-(-914 R)
+(-913 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-915 R -1907)
+(-914 R -3147)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-916 R S)
+(-915 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-917 |VarSet|)
+(-916 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-918 UP R)
+(-917 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-919 A T$ S)
+(-918 A T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-920 T$ S)
+(-919 T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-921)
+(-920)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-922 UP -1801)
+(-921 UP -3572)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-923)
+(-922)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **")))
NIL
NIL
-(-924)
+(-923)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-925 R S)
+(-924 R S)
((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
-(-926 S)
+(-925 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-4503 . T))
+((-4499 . T))
NIL
-(-927 A S)
+(-926 A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-928 S)
+(-927 S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-929 S)
+(-928 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-930 S)
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-929 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4503 . T))
-((-4089 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-870))))
-(-931 |n| R)
+((-4499 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-869))))
+(-930 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-932 S)
+(-931 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4503 . T))
+((-4499 . T))
NIL
-(-933 S)
+(-932 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-934 |p|)
+(-933 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381))))
-(-935 R E |VarSet| S)
+(-934 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-936 R S)
+(-935 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-937 S)
+(-936 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-147))))
-(-938)
+(-937)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-939 R0 -1801 UP UPUP R)
+(-938 R0 -3572 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-940 UP UPUP R)
+(-939 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-941 UP UPUP)
+(-940 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-942 R)
+(-941 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-943 R)
+(-942 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-944 E OV R P)
+(-943 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-945)
+(-944)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-946 -1801)
+(-945 -3572)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-947)
+(-946)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4508 "*") . T))
+(((-4504 "*") . T))
NIL
-(-948 R)
+(-947 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-949)
+(-948)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-950 |xx| -1801)
+(-949 |xx| -3572)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-951 -1801 P)
+(-950 -3572 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-952 R |Var| |Expon| GR)
+(-951 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-953)
+(-952)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-954 S)
+(-953 S)
((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-955)
+(-954)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-956)
+(-955)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-957)
+(-956)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-958 R -1801)
+(-957 R -3572)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-959 S A B)
+(-958 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-960 S R -1801)
+(-959 S R -3572)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-961 I)
+(-960 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-962 S E)
+(-961 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-963 S R L)
+(-962 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-964 S E V R P)
+(-963 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -910) (|devaluate| |#1|))))
-(-965 -1907)
+((|HasCategory| |#3| (|%list| (QUOTE -909) (|devaluate| |#1|))))
+(-964 -3147)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-966 R -1801 -1907)
+(-965 R -3572 -3147)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-967 S R Q)
+(-966 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-968 S)
+(-967 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-969 S R P)
+(-968 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-970)
+(-969)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-971 R)
+(-970 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
-(-972 |lv| R)
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+(-971 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-973 |TheField| |ThePols|)
+(-972 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-869))))
-(-974 R)
+((|HasCategory| |#1| (QUOTE (-868))))
+(-973 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-975 R S)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-1206) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-1206) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-1206) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-1206) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1206) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-974 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-976 |x| R)
+(-975 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-977 S R E |VarSet|)
+(-976 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-938))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#4| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))))
-(-978 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-937))) (|HasAttribute| |#2| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#4| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))))
+(-977 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
NIL
-(-979 E V R P -1801)
+(-978 E V R P -3572)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-980 E |Vars| R P S)
+(-979 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-981 E V R P -1801)
+(-980 E V R P -3572)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-464))))
-(-982)
+(-981)
((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'.")))
NIL
NIL
-(-983)
+(-982)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-984 R E)
+(-983 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4504)))
-(-985 R L)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4500)))
+(-984 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-986 S)
+(-985 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
-(-987 A B)
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+(-986 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-988)
+(-987)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx.")))
NIL
NIL
-(-989 -1801)
+(-988 -3572)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-990 I)
+(-989 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-991)
+(-990)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-992 A B)
+(-991 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4503 -12 (|has| |#2| (-485)) (|has| |#1| (-485))))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870)))))
-(-993)
+((-4499 -12 (|has| |#2| (-485)) (|has| |#1| (-485))))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-869))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746))))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-869)))))
+(-992)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-994 T$)
+(-993 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-995 T$)
+(-994 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-996 S T$)
+(-995 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-997)
+(-996)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-998 S)
+(-997 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4506 . T) (-4507 . T))
+((-4502 . T) (-4503 . T))
NIL
-(-999 R |polR|)
+(-998 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-464))))
-(-1000)
+(-999)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1001)
+(-1000)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-1002 S |Coef| |Expon| |Var|)
+(-1001 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-1003 |Coef| |Expon| |Var|)
+(-1002 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1004)
+(-1003)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-1005 S R E |VarSet| P)
+(-1004 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
((|HasCategory| |#2| (QUOTE (-569))))
-(-1006 R E |VarSet| P)
+(-1005 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4506 . T))
+((-4502 . T))
NIL
-(-1007 R E V P)
+(-1006 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-464))))
-(-1008 K)
+(-1007 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-1009 |VarSet| E RC P)
+(-1008 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-1010 R)
+(-1009 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-1011 R1 R2)
+(-1010 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-1012 R)
+(-1011 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-1013 K)
+(-1012 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-1014 R E OV PPR)
+(-1013 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-1015 K R UP -1801)
+(-1014 K R UP -3572)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1016 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
+(-1015 R |Var| |Expon| |Dpoly|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))))
-(-1017 |vl| |nv|)
+(-1016 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-1018 R E V P TS)
+(-1017 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1019)
+(-1018)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-1020 A S)
+(-1019 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1182))))
-(-1021 S)
+((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1181))))
+(-1020 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1022 A B R S)
+(-1021 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-1023 |n| K)
+(-1022 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-1024)
+(-1023)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-1025 S)
+(-1024 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4506 . T) (-4507 . T))
+((-4502 . T) (-4503 . T))
NIL
-(-1026 R)
+(-1025 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4499 |has| |#1| (-302)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376))) (-4089 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-557))))
-(-1027 S R)
+((-4495 |has| |#1| (-302)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376))) (-4034 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1089))) (|HasCategory| |#1| (QUOTE (-557))))
+(-1026 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-302))))
-(-1028 R)
+((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1089))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-302))))
+(-1027 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4499 |has| |#1| (-302)) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 |has| |#1| (-302)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1029 QR R QS S)
+(-1028 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-1030 S)
+(-1029 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-1031 S)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-1030 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1032)
+(-1031)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1033 -1801 UP UPUP |radicnd| |n|)
+(-1032 -3572 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4499 |has| (-419 |#2|) (-376)) (-4504 |has| (-419 |#2|) (-376)) (-4498 |has| (-419 |#2|) (-376)) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-4089 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-4089 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4089 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4089 (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-363))))) (-4089 (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -658) (QUOTE (-558)))) (-4089 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))))
-(-1034 |bb|)
+((-4495 |has| (-419 |#2|) (-376)) (-4500 |has| (-419 |#2|) (-376)) (-4494 |has| (-419 |#2|) (-376)) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-4034 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-4034 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -925) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -927) (QUOTE (-1206)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -658) (QUOTE (-558)))) (-4034 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -925) (QUOTE (-1206))))))
+(-1033 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-558) (QUOTE (-938))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1050))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870))) (-4089 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-870)))) (|HasCategory| (-558) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1182))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1207)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-938)))) (|HasCategory| (-558) (QUOTE (-147)))))
-(-1035)
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-558) (QUOTE (-937))) (|HasCategory| (-558) (|%list| (QUOTE -1067) (QUOTE (-1206)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1049))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-869))) (-4034 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-869)))) (|HasCategory| (-558) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1181))) (|HasCategory| (-558) (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1206)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-937)))) (|HasCategory| (-558) (QUOTE (-147)))))
+(-1034)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1036)
+(-1035)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1037 RP)
+(-1036 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1038 S)
+(-1037 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1039 A S)
+(-1038 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-1131))))
-(-1040 S)
+((|HasAttribute| |#1| (QUOTE -4503)) (|HasCategory| |#2| (QUOTE (-1130))))
+(-1039 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1041 S)
+(-1040 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1042)
+(-1041)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4499 . T) (-4504 . T) (-4498 . T) (-4501 . T) (-4500 . T) ((-4508 "*") . T) (-4503 . T))
+((-4495 . T) (-4500 . T) (-4494 . T) (-4497 . T) (-4496 . T) ((-4504 "*") . T) (-4499 . T))
NIL
-(-1043 R -1801)
+(-1042 R -3572)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1044 R -1801)
+(-1043 R -3572)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1045 -1801 UP)
+(-1044 -3572 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1046 -1801 UP)
+(-1045 -3572 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1047 S)
+(-1046 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1048 F1 UP UPUP R F2)
+(-1047 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-1049)
+(-1048)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1050)
+(-1049)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1051 |Pol|)
+(-1050 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1052 |Pol|)
+(-1051 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1053)
+(-1052)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1054 |TheField|)
+(-1053 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4499 . T) (-4504 . T) (-4498 . T) (-4501 . T) (-4500 . T) ((-4508 "*") . T) (-4503 . T))
-((-4089 (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1068) (QUOTE (-558)))))
-(-1055 -1801 L)
+((-4495 . T) (-4500 . T) (-4494 . T) (-4497 . T) (-4496 . T) ((-4504 "*") . T) (-4499 . T))
+((-4034 (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1067) (QUOTE (-558)))))
+(-1054 -3572 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1056 S)
+(-1055 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1131))))
-(-1057 R E V P)
+((|HasCategory| |#1| (QUOTE (-1130))))
+(-1056 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
-(-1058)
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))))
+(-1057)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1059 R)
+(-1058 R)
((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4508 "*"))))
-(-1060 R)
+((|HasAttribute| |#1| (QUOTE (-4504 "*"))))
+(-1059 R)
((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))))
-(-1061 S)
+(-1060 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1062 S)
+(-1061 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1063 S)
+(-1062 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1064 -1801 |Expon| |VarSet| |FPol| |LFPol|)
+(-1063 -3572 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1065)
+(-1064)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -2065) (QUOTE (-51))))))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-51) (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-870))) (|HasCategory| (-51) (QUOTE (-1131))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-102))))
-(-1066)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (QUOTE (-1206))) (|%list| (QUOTE |:|) (QUOTE -2294) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-869))) (|HasCategory| (-51) (QUOTE (-1130))) (-4034 (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-102))))
+(-1065)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1067 A S)
+(-1066 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1068 S)
+(-1067 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1069 Q R)
+(-1068 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1070 R)
+(-1069 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1071)
+(-1070)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1072 UP)
+(-1071 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1073 R)
+(-1072 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1074 T$)
+(-1073 T$)
((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'.")))
NIL
NIL
-(-1075 T$)
+(-1074 T$)
((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1076 R |ls|)
+(-1075 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| (-800 |#1| (-887 |#2|)) (QUOTE (-1131))) (|HasCategory| (-800 |#1| (-887 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -800) (|devaluate| |#1|) (|%list| (QUOTE -887) (|devaluate| |#2|)))))) (|HasCategory| (-800 |#1| (-887 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-800 |#1| (-887 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-887 |#2|) (QUOTE (-381))) (|HasCategory| (-800 |#1| (-887 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-800 |#1| (-887 |#2|)) (QUOTE (-102))))
-(-1077)
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| (-800 |#1| (-886 |#2|)) (QUOTE (-1130))) (|HasCategory| (-800 |#1| (-886 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -800) (|devaluate| |#1|) (|%list| (QUOTE -886) (|devaluate| |#2|)))))) (|HasCategory| (-800 |#1| (-886 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-800 |#1| (-886 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-886 |#2|) (QUOTE (-381))) (|HasCategory| (-800 |#1| (-886 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-800 |#1| (-886 |#2|)) (QUOTE (-102))))
+(-1076)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1078 S)
+(-1077 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1079)
+(-1078)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4503 . T))
+((-4499 . T))
NIL
-(-1080 |xx| -1801)
+(-1079 |xx| -3572)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1081 S)
+(-1080 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-1082 S |m| |n| R |Row| |Col|)
+(-1081 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
((|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-569))) (|HasCategory| |#4| (QUOTE (-175))))
-(-1083 |m| |n| R |Row| |Col|)
+(-1082 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4506 . T) (-4501 . T) (-4500 . T))
+((-4502 . T) (-4497 . T) (-4496 . T))
NIL
-(-1084 |m| |n| R)
+(-1083 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4506 . T) (-4501 . T) (-4500 . T))
-((|HasCategory| |#3| (QUOTE (-175))) (-4089 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-886)))))
-(-1085 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4502 . T) (-4497 . T) (-4496 . T))
+((|HasCategory| |#3| (QUOTE (-175))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-885)))))
+(-1084 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1086 R)
+(-1085 R)
((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-1087)
+(-1086)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1088 S T$)
+(-1087 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1131))))
-(-1089 S)
+((|HasCategory| |#1| (QUOTE (-1130))))
+(-1088 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1090)
+(-1089)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1091 |TheField| |ThePolDom|)
+(-1090 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1092)
+(-1091)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4494 . T) (-4498 . T) (-4493 . T) (-4504 . T) (-4505 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4490 . T) (-4494 . T) (-4489 . T) (-4500 . T) (-4501 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1093)
+(-1092)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -2065) (QUOTE (-51))))))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-51) (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1131))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-1131))) (|HasCategory| (-1207) (QUOTE (-870))) (|HasCategory| (-51) (QUOTE (-1131))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1207)) (|:| -2065 (-51))) (QUOTE (-102))))
-(-1094 S R E V)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (QUOTE (-1206))) (|%list| (QUOTE |:|) (QUOTE -2294) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1130))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-869))) (|HasCategory| (-51) (QUOTE (-1130))) (-4034 (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1206)) (|:| -2294 (-51))) (QUOTE (-102))))
+(-1093 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1021) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-1207)))))
-(-1095 R E V)
+((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1020) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-1206)))))
+(-1094 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
NIL
-(-1096)
+(-1095)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1097 S |TheField| |ThePols|)
+(-1096 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1098 |TheField| |ThePols|)
+(-1097 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1099 R E V P TS)
+(-1098 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1100 S R E V P)
+(-1099 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1101 R E V P)
+(-1100 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-1102 R E V P TS)
+(-1101 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1103)
+(-1102)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1104)
+(-1103)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1105 |Base| R -1801)
+(-1104 |Base| R -3572)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1106 |f|)
+(-1105 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1107 |Base| R -1801)
+(-1106 |Base| R -3572)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-1108 R |ls|)
+(-1107 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1109 R UP M)
+(-1108 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4499 |has| |#1| (-376)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207))))))
-(-1110 UP SAE UPA)
+((-4495 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206))))))
+(-1109 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1111 UP SAE UPA)
+(-1110 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1112)
+(-1111)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1113)
+(-1112)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1114 S)
+(-1113 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1115)
+(-1114)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1116 R)
+(-1115 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1117 R)
+(-1116 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-1118 (-1207)) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-1118 S)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-1117 (-1206)) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-1117 (-1206)) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-1117 (-1206)) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-1117 (-1206)) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1117 (-1206)) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-1117 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1119 S)
+(-1118 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1131))))
-(-1120 R S)
+((|HasCategory| |#1| (QUOTE (-868))) (|HasCategory| |#1| (QUOTE (-1130))))
+(-1119 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-869))))
-(-1121)
+((|HasCategory| |#1| (QUOTE (-868))))
+(-1120)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1122 S)
+(-1121 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1119 |#1|) (QUOTE (-1131))))
-(-1123 R S)
+((|HasCategory| (-1118 |#1|) (QUOTE (-1130))))
+(-1122 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1124 S)
+(-1123 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1125 S L)
+(-1124 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1126)
+(-1125)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1127 S)
+(-1126 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4506 . T) (-4496 . T) (-4507 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
-(-1128 A S)
+((-4502 . T) (-4492 . T) (-4503 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+(-1127 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1129 S)
+(-1128 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4496 . T))
+((-4492 . T))
NIL
-(-1130 S)
+(-1129 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1131)
+(-1130)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1132 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+(-1131 |m| |n|)
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1133)
+(-1132)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1134 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1133 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers.")))
NIL
NIL
-(-1135 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1134 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1136 R FS)
+(-1135 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1137 R E V P TS)
+(-1136 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1138 R E V P TS)
+(-1137 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1139 R E V P)
+(-1138 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-1140)
+(-1139)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1141 S)
+(-1140 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1142)
+(-1141)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1143 |dimtot| |dim1| S)
+(-1142 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4500 |has| |#3| (-1079)) (-4501 |has| |#3| (-1079)) (-4503 |has| |#3| (-6 -4503)) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1131)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#3| (QUOTE (-376))) (-4089 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4089 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (-4089 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-381))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-1079))))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1131)))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1131)))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1079)))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-240))) (-4089 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079))))) (-4089 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1131))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-746)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1131))))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-870))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-4089 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1131)))) (|HasAttribute| |#3| (QUOTE -4503)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (|%list| (QUOTE -926) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1131))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))))
-(-1144 R |x|)
+((-4496 |has| |#3| (-1078)) (-4497 |has| |#3| (-1078)) (-4499 |has| |#3| (-6 -4499)) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1078)))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#3| (QUOTE (-376))) (-4034 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1078)))) (-4034 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (-4034 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-869)))) (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (QUOTE (-381))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))) (-4034 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-4034 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-240))) (-4034 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1078))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1206))))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-1130))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1078)))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-869))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-869))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1078)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1078)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#3| (QUOTE -4499)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1078)))) (-12 (|HasCategory| |#3| (QUOTE (-1078))) (|HasCategory| |#3| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))))
+(-1143 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-464))))
-(-1145)
+(-1144)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'.")))
NIL
NIL
-(-1146)
+(-1145)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}")))
NIL
NIL
-(-1147 R -1801)
-((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1146 R -3572)
+((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1148 R)
-((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
+(-1147 R)
+((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1149)
+(-1148)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1150)
+(-1149)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4494 . T) (-4498 . T) (-4493 . T) (-4504 . T) (-4505 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4490 . T) (-4494 . T) (-4489 . T) (-4500 . T) (-4501 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1151 S)
+(-1150 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4506 . T) (-4507 . T))
+((-4502 . T) (-4503 . T))
NIL
-(-1152 S |ndim| R |Row| |Col|)
+(-1151 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4508 "*"))) (|HasCategory| |#3| (QUOTE (-175))))
-(-1153 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4504 "*"))) (|HasCategory| |#3| (QUOTE (-175))))
+(-1152 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
-((-4506 . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4502 . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1154 R |Row| |Col| M)
+(-1153 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1155 R |VarSet|)
+(-1154 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-1156 |Coef| |Var| SMP)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-1155 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))))
-(-1157 R E V P)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))))
+(-1156 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-1158 UP -1801)
+(-1157 UP -3572)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1159 R)
+(-1158 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1160 R)
+(-1159 R)
((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1161 R)
+(-1160 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1162 S A)
+(-1161 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-870))))
-(-1163 R)
+((|HasCategory| |#1| (QUOTE (-869))))
+(-1162 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1164 R)
+(-1163 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1165)
+(-1164)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1166)
+(-1165)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1167)
+(-1166)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement.")))
NIL
NIL
-(-1168)
+(-1167)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1169)
+(-1168)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1170 V C)
+(-1169 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1171 V C)
+(-1170 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-1170 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1131)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1131))) (-4089 (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1131)))) (-4089 (|HasCategory| (-1170 |#1| |#2|) (|%list| (QUOTE -630) (QUOTE (-886)))) (-12 (|HasCategory| (-1170 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1131))))) (|HasCategory| (-1170 |#1| |#2|) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102))))
-(-1172 |ndim| R)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-1169 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1169 |#1| |#2|) (QUOTE (-1130)))) (|HasCategory| (-1169 |#1| |#2|) (QUOTE (-1130))) (-4034 (|HasCategory| (-1169 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1169 |#1| |#2|) (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| (-1169 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1169 |#1| |#2|) (QUOTE (-1130)))) (|HasCategory| (-1169 |#1| |#2|) (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| (-1169 |#1| |#2|) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-1169 |#1| |#2|) (QUOTE (-102))))
+(-1171 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4503 . T) (-4495 |has| |#2| (-6 (-4508 "*"))) (-4506 . T) (-4500 . T) (-4501 . T))
-((|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4508 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-376))) (-4089 (|HasAttribute| |#2| (QUOTE (-4508 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
-(-1173 S)
+((-4499 . T) (-4491 |has| |#2| (-6 (-4504 "*"))) (-4502 . T) (-4496 . T) (-4497 . T))
+((|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4504 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-376))) (-4034 (|HasAttribute| |#2| (QUOTE (-4504 "*"))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
+(-1172 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1174)
+(-1173)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-1175 R E V P TS)
+(-1174 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1176 R E V P)
+(-1175 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
-(-1177)
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))))
+(-1176)
((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:")))
NIL
NIL
-(-1178 S)
+(-1177 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-1179 A S)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-1178 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1180 S)
+(-1179 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1181 |Key| |Ent| |dent|)
+(-1180 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|)))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))))
-(-1182)
+((-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130))))
+(-1181)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}'s are never \\spad{nothing}.}")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1183)
+(-1182)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1184 |Coef|)
+(-1183 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1185 S)
+(-1184 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4507 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-1186 S)
+((-4503 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-1185 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1187 A B)
+(-1186 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1188 A B C)
+(-1187 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1189)
+(-1188)
((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-4089 (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886)))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-146) (QUOTE (-870))) (-4089 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1131))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))))
-(-1190 |Entry|)
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| (-146) (QUOTE (-869))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-4034 (-12 (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| (-146) (QUOTE (-869))) (|HasCategory| (-146) (QUOTE (-1130)))) (|HasCategory| (-146) (QUOTE (-869))) (-4034 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-869))) (|HasCategory| (-146) (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1130))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))))
+(-1189 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#1|)))))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-1131))) (|HasCategory| (-1189) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 (-1189)) (|:| -2065 |#1|)) (QUOTE (-102))))
-(-1191 A)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (QUOTE (-1188))) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 (-1188)) (|:| -2294 |#1|)) (QUOTE (-102))))
+(-1190 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))
-(-1192 |Coef|)
+(-1191 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1193 |Coef|)
+(-1192 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1194 R UP)
+(-1193 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-319))))
-(-1195 |n| R)
+(-1194 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1196 S1 S2)
+(-1195 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t")))
NIL
NIL
-(-1197)
+(-1196)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1198 |Coef| |var| |cen|)
+(-1197 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4508 "*") -4089 (-2093 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-2093 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4499 -4089 (-2093 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-569)) (-2093 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-938)))) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1142))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-376)))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-1199 R -1801)
+(((-4504 "*") -4034 (-3038 (|has| |#1| (-376)) (|has| (-1204 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3038 (|has| |#1| (-376)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4495 -4034 (-3038 (|has| |#1| (-376)) (|has| (-1204 |#1| |#2| |#3|) (-842))) (|has| |#1| (-569)) (-3038 (|has| |#1| (-376)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1206)) (|%list| (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1181)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1141))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1049)))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-842)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-869))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1206)) (|%list| (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-1198 R -3572)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1200 R)
+(-1199 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1201 R)
+(-1200 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4502 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-1202 R S)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4498 |has| |#1| (-376)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-1111) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-1111) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1181))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4500)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-1201 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1203 E OV R P)
+(-1202 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1204 |Coef| |var| |cen|)
+(-1203 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))))
-(-1205 |Coef| |var| |cen|)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-376))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+(-1204 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|)))) (|HasCategory| (-791) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasCategory| |#1| (QUOTE (-376))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))))
-(-1206)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|)))) (|HasCategory| (-791) (QUOTE (-1141))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasCategory| |#1| (QUOTE (-376))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+(-1205)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1207)
+(-1206)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1208 R)
+(-1207 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1209 R)
+(-1208 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-6 -4504)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-1001) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasAttribute| |#1| (QUOTE -4504)))
-(-1210)
-((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-6 -4500)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-4034 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-1000) (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4500)))
+(-1209)
+((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1211)
+(-1210)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1212)
+(-1211)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1213 N)
+(-1212 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1214 N)
+(-1213 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")))
NIL
NIL
-(-1215)
+(-1214)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1216 R)
+(-1215 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1217)
+(-1216)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1218 S)
+(-1217 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1219 |Key| |Entry|)
+(-1218 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4506 . T) (-4507 . T))
-((-12 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4312) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2065) (|devaluate| |#2|)))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1131)))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1131))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886))))) (-4089 (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| (-2 (|:| -4312 |#1|) (|:| -2065 |#2|)) (QUOTE (-102))))
-(-1220 S)
+((-4502 . T) (-4503 . T))
+((-12 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4367) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2294) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#2| (QUOTE (-1130))) (-4034 (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885))))) (-4034 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4367 |#1|) (|:| -2294 |#2|)) (QUOTE (-102))))
+(-1219 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1221 S)
+(-1220 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1222 R)
+(-1221 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1223 S |Key| |Entry|)
+(-1222 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1224 |Key| |Entry|)
+(-1223 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4507 . T))
+((-4503 . T))
NIL
-(-1225 |Key| |Entry|)
+(-1224 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1226)
+(-1225)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1227)
+(-1226)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1228 S)
+(-1227 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1229)
+(-1228)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1230 R)
+(-1229 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1231)
+(-1230)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1232 S)
+(-1231 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1233)
+(-1232)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1234 S)
+(-1233 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1131))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1131)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-1235 S)
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-1234 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1236)
+(-1235)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1237 R -1801)
+(-1236 R -3572)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1238 R |Row| |Col| M)
+(-1237 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1239 R -1801)
+(-1238 R -3572)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -910) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (|devaluate| |#1|)))))
-(-1240 |Coef|)
+((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -909) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -909) (|devaluate| |#1|)))))
+(-1239 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))))
-(-1241 S R E V P)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))))
+(-1240 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-381))))
-(-1242 R E V P)
+(-1241 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-1243 |Curve|)
+(-1242 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1244)
+(-1243)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1245 S)
+(-1244 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))))
-(-1246 -1801)
+((|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))))
+(-1245 -3572)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1247)
+(-1246)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1248)
+(-1247)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1249 S)
+(-1248 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-870))))
-(-1250)
+((|HasCategory| |#1| (QUOTE (-869))))
+(-1249)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1251 S)
+(-1250 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1252)
+(-1251)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1253)
+(-1252)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1254)
+(-1253)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1255)
+(-1254)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1256)
+(-1255)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1257 |Coef| |var| |cen|)
+(-1256 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4508 "*") -4089 (-2093 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-2093 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-938)))) (-4499 -4089 (-2093 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-569)) (-2093 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-938)))) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1142))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-376)))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1207)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-1258 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-4504 "*") -4034 (-3038 (|has| |#1| (-376)) (|has| (-1286 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-3038 (|has| |#1| (-376)) (|has| (-1286 |#1| |#2| |#3|) (-937)))) (-4495 -4034 (-3038 (|has| |#1| (-376)) (|has| (-1286 |#1| |#2| |#3|) (-842))) (|has| |#1| (-569)) (-3038 (|has| |#1| (-376)) (|has| (-1286 |#1| |#2| |#3|) (-937)))) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1206)) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-1181)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1141))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-1049)))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-842)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-869))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1206)) (|%list| (QUOTE -1286) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -1067) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-869)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-937)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1286 |#1| |#2| |#3|) (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-1257 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1259 |Coef|)
+(-1258 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1260 S |Coef| UTS)
+(-1259 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-376))))
-(-1261 |Coef| UTS)
+(-1260 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1262 |Coef| UTS)
+(-1261 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
-((-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-4089 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1142))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1050)))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870))))) (-4089 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-938))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))))
-(-1263 ZP)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1181)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-4034 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-4034 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240))))) (-4034 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (|HasCategory| (-558) (QUOTE (-1141))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1049)))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-869))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-869)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1181)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1181)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1206)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-869)))) (|HasCategory| |#2| (QUOTE (-937))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-4034 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))))
+(-1262 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1264 S)
+(-1263 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1131))))
-(-1265 R S)
+((|HasCategory| |#1| (QUOTE (-868))) (|HasCategory| |#1| (QUOTE (-1130))))
+(-1264 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-869))))
-(-1266 |x| R)
+((|HasCategory| |#1| (QUOTE (-868))))
+(-1265 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4508 "*") |has| |#2| (-175)) (-4499 |has| |#2| (-569)) (-4502 |has| |#2| (-376)) (-4504 |has| |#2| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -910) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -910) (QUOTE (-558))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -914) (QUOTE (-558)))))) (-12 (|HasCategory| (-1112) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (QUOTE (-558)))) (-4089 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4089 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%list| (QUOTE -928) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (-4089 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-938)))) (|HasCategory| |#2| (QUOTE (-147)))))
-(-1267 |x| R |y| S)
+(((-4504 "*") |has| |#2| (-175)) (-4495 |has| |#2| (-569)) (-4498 |has| |#2| (-376)) (-4500 |has| |#2| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-391)))) (|HasCategory| (-1111) (|%list| (QUOTE -909) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -909) (QUOTE (-558)))) (|HasCategory| (-1111) (|%list| (QUOTE -909) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391))))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558))))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (|%list| (QUOTE -913) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1111) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (QUOTE (-558)))) (-4034 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (-4034 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-4034 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1181))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1206)))) (|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4500)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(-1266 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1268 R Q UP)
+(-1267 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1269 R UP)
+(-1268 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1270 R UP)
+(-1269 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1271 R U)
+(-1270 R U)
((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all.")))
NIL
NIL
-(-1272 S R)
+(-1271 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1182))))
-(-1273 R)
+((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1181))))
+(-1272 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4502 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4501 . T) (-4500 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4498 |has| |#1| (-376)) (-4500 |has| |#1| (-6 -4500)) (-4497 . T) (-4496 . T) (-4499 . T))
NIL
-(-1274 R PR S PS)
+(-1273 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1275 S |Coef| |Expon|)
+(-1274 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1142))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#2|) (QUOTE (-1207))))))
-(-1276 |Coef| |Expon|)
+((|HasCategory| |#2| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1141))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#2|) (QUOTE (-1206))))))
+(-1275 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1277 RC P)
-((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
+(-1276 RC P)
+((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1278 |Coef| |var| |cen|)
+(-1277 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))))
-(-1279 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-376))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+(-1278 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1280 |Coef|)
+(-1279 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1281 S |Coef| ULS)
+(-1280 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1282 |Coef| ULS)
+(-1281 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1283 |Coef| ULS)
+(-1282 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4504 |has| |#1| (-376)) (-4498 |has| |#1| (-376)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-376))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4089 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))
-(-1284 R FE |var| |cen|)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4500 |has| |#1| (-376)) (-4494 |has| |#1| (-376)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1141))) (|HasCategory| |#1| (QUOTE (-376))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-4034 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))
+(-1283 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4508 "*") |has| (-1278 |#2| |#3| |#4|) (-175)) (-4499 |has| (-1278 |#2| |#3| |#4|) (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-175))) (-4089 (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1068) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1068) (QUOTE (-558)))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-569))))
-(-1285 A S)
+(((-4504 "*") |has| (-1277 |#2| |#3| |#4|) (-175)) (-4495 |has| (-1277 |#2| |#3| |#4|) (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| (-1277 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-175))) (-4034 (|HasCategory| (-1277 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (|%list| (QUOTE -1067) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1277 |#2| |#3| |#4|) (|%list| (QUOTE -1067) (QUOTE (-558)))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1277 |#2| |#3| |#4|) (QUOTE (-569))))
+(-1284 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4507)))
-(-1286 S)
+((|HasAttribute| |#1| (QUOTE -4503)))
+(-1285 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1287 |Coef| |var| |cen|)
+(-1286 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
-((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4089 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -926) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|)))) (|HasCategory| (-791) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasSignature| |#1| (|%list| (QUOTE -3451) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasCategory| |#1| (QUOTE (-376))) (-4089 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-988))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#1|)))))))
-(-1288 |Coef1| |Coef2| UTS1 UTS2)
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
+((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-4034 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -925) (QUOTE (-1206)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|)))) (|HasCategory| (-791) (QUOTE (-1141))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasSignature| |#1| (|%list| (QUOTE -4453) (|%list| (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasCategory| |#1| (QUOTE (-376))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#1|)))))))
+(-1287 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1289 S |Coef|)
+(-1288 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-988))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (|%list| (QUOTE -4086) (|%list| (|%list| (QUOTE -661) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -1779) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))))
-(-1290 |Coef|)
+((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasSignature| |#2| (|%list| (QUOTE -3561) (|%list| (|%list| (QUOTE -661) (QUOTE (-1206))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -4319) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1206))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))))
+(-1289 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4508 "*") |has| |#1| (-175)) (-4499 |has| |#1| (-569)) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") |has| |#1| (-175)) (-4495 |has| |#1| (-569)) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1291 |Coef| UTS)
+(-1290 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1292 -1801 UP L UTS)
+(-1291 -3572 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-569))))
-(-1293)
+(-1292)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1294 |sym|)
+(-1293 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1295 S R)
+(-1294 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1296 R)
+((|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1295 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4507 . T) (-4506 . T))
+((-4503 . T) (-4502 . T))
NIL
-(-1297 R)
+(-1296 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4507 . T) (-4506 . T))
-((-4089 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4089 (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4089 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-870))) (-4089 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| (-558) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
-(-1298 A B)
+((-4503 . T) (-4502 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-4034 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-869))) (-4034 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-558) (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1078))) (-12 (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-1078)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))))
+(-1297 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1299)
+(-1298)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1300)
+(-1299)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1301)
+(-1300)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1302)
+(-1301)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1303)
+(-1302)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1304 A S)
+(-1303 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1305 S)
+(-1304 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4501 . T) (-4500 . T))
+((-4497 . T) (-4496 . T))
NIL
-(-1306 R)
+(-1305 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1307 K R UP -1801)
+(-1306 K R UP -3572)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1308)
+(-1307)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1309)
+(-1308)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1310 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1309 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4501 |has| |#1| (-175)) (-4500 |has| |#1| (-175)) (-4503 . T))
+((-4497 |has| |#1| (-175)) (-4496 |has| |#1| (-175)) (-4499 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))))
-(-1311 R E V P)
+(-1310 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}.")))
-((-4507 . T) (-4506 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-886)))) (|HasCategory| |#4| (QUOTE (-102))))
-(-1312 R)
+((-4503 . T) (-4502 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))))
+(-1311 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)")))
-((-4500 . T) (-4501 . T) (-4503 . T))
+((-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1313 |vl| R)
+(-1312 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4503 . T) (-4499 |has| |#2| (-6 -4499)) (-4501 . T) (-4500 . T))
-((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4499)))
-(-1314 R |VarSet| XPOLY)
+((-4499 . T) (-4495 |has| |#2| (-6 -4495)) (-4497 . T) (-4496 . T))
+((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4495)))
+(-1313 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1315 S -1801)
+(-1314 S -3572)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))))
-(-1316 -1801)
+(-1315 -3572)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4498 . T) (-4504 . T) (-4499 . T) ((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+((-4494 . T) (-4500 . T) (-4495 . T) ((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
-(-1317 |vl| R)
+(-1316 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4499 |has| |#2| (-6 -4499)) (-4501 . T) (-4500 . T) (-4503 . T))
+((-4495 |has| |#2| (-6 -4495)) (-4497 . T) (-4496 . T) (-4499 . T))
NIL
-(-1318 |VarSet| R)
+(-1317 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4499 |has| |#2| (-6 -4499)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -737) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4499)))
-(-1319 R)
+((-4495 |has| |#2| (-6 -4495)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -737) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4495)))
+(-1318 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4499 |has| |#1| (-6 -4499)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4499)))
-(-1320 |vl| R)
+((-4495 |has| |#1| (-6 -4495)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4495)))
+(-1319 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4499 |has| |#2| (-6 -4499)) (-4501 . T) (-4500 . T) (-4503 . T))
+((-4495 |has| |#2| (-6 -4495)) (-4497 . T) (-4496 . T) (-4499 . T))
NIL
-(-1321 R E)
+(-1320 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4503 . T) (-4504 |has| |#1| (-6 -4504)) (-4499 |has| |#1| (-6 -4499)) (-4501 . T) (-4500 . T))
-((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4503)) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4499)))
-(-1322 |VarSet| R)
+((-4499 . T) (-4500 |has| |#1| (-6 -4500)) (-4495 |has| |#1| (-6 -4495)) (-4497 . T) (-4496 . T))
+((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4499)) (|HasAttribute| |#1| (QUOTE -4500)) (|HasAttribute| |#1| (QUOTE -4495)))
+(-1321 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4499 |has| |#2| (-6 -4499)) (-4501 . T) (-4500 . T) (-4503 . T))
-((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4499)))
-(-1323)
+((-4495 |has| |#2| (-6 -4495)) (-4497 . T) (-4496 . T) (-4499 . T))
+((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4495)))
+(-1322)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1324 A)
+(-1323 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1325 R |ls| |ls2|)
+(-1324 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1326 R)
+(-1325 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1327 |p|)
+(-1326 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4508 "*") . T) (-4500 . T) (-4501 . T) (-4503 . T))
+(((-4504 "*") . T) (-4496 . T) (-4497 . T) (-4499 . T))
NIL
NIL
NIL
@@ -5256,4 +5252,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2291500 2291505 2291510 2291515) (-2 NIL 2291480 2291485 2291490 2291495) (-1 NIL 2291460 2291465 2291470 2291475) (0 NIL 2291440 2291445 2291450 2291455) (-1327 "ZMOD.spad" 2291249 2291262 2291378 2291435) (-1326 "ZLINDEP.spad" 2290347 2290358 2291239 2291244) (-1325 "ZDSOLVE.spad" 2280307 2280329 2290337 2290342) (-1324 "YSTREAM.spad" 2279802 2279813 2280297 2280302) (-1323 "YDIAGRAM.spad" 2279436 2279445 2279792 2279797) (-1322 "XRPOLY.spad" 2278656 2278676 2279292 2279361) (-1321 "XPR.spad" 2276451 2276464 2278374 2278473) (-1320 "XPOLYC.spad" 2275770 2275786 2276377 2276446) (-1319 "XPOLY.spad" 2275325 2275336 2275626 2275695) (-1318 "XPBWPOLY.spad" 2273764 2273784 2275099 2275168) (-1317 "XFALG.spad" 2270812 2270828 2273690 2273759) (-1316 "XF.spad" 2269275 2269290 2270714 2270807) (-1315 "XF.spad" 2267718 2267735 2269159 2269164) (-1314 "XEXPPKG.spad" 2266977 2267003 2267708 2267713) (-1313 "XDPOLY.spad" 2266591 2266607 2266833 2266902) (-1312 "XALG.spad" 2266259 2266270 2266547 2266586) (-1311 "WUTSET.spad" 2262229 2262246 2265860 2265887) (-1310 "WP.spad" 2261436 2261480 2262087 2262154) (-1309 "WHILEAST.spad" 2261234 2261243 2261426 2261431) (-1308 "WHEREAST.spad" 2260905 2260914 2261224 2261229) (-1307 "WFFINTBS.spad" 2258568 2258590 2260895 2260900) (-1306 "WEIER.spad" 2256790 2256801 2258558 2258563) (-1305 "VSPACE.spad" 2256463 2256474 2256758 2256785) (-1304 "VSPACE.spad" 2256156 2256169 2256453 2256458) (-1303 "VOID.spad" 2255833 2255842 2256146 2256151) (-1302 "VIEWDEF.spad" 2251034 2251043 2255823 2255828) (-1301 "VIEW3D.spad" 2234995 2235004 2251024 2251029) (-1300 "VIEW2D.spad" 2222894 2222903 2234985 2234990) (-1299 "VIEW.spad" 2220614 2220623 2222884 2222889) (-1298 "VECTOR2.spad" 2219253 2219266 2220604 2220609) (-1297 "VECTOR.spad" 2217753 2217764 2218004 2218031) (-1296 "VECTCAT.spad" 2215665 2215676 2217721 2217748) (-1295 "VECTCAT.spad" 2213384 2213397 2215442 2215447) (-1294 "VARIABLE.spad" 2213164 2213179 2213374 2213379) (-1293 "UTYPE.spad" 2212808 2212817 2213154 2213159) (-1292 "UTSODETL.spad" 2212103 2212127 2212764 2212769) (-1291 "UTSODE.spad" 2210319 2210339 2212093 2212098) (-1290 "UTSCAT.spad" 2207798 2207814 2210217 2210314) (-1289 "UTSCAT.spad" 2204897 2204915 2207318 2207323) (-1288 "UTS2.spad" 2204492 2204527 2204887 2204892) (-1287 "UTS.spad" 2199370 2199398 2202890 2202987) (-1286 "URAGG.spad" 2194091 2194102 2199360 2199365) (-1285 "URAGG.spad" 2188776 2188789 2194047 2194052) (-1284 "UPXSSING.spad" 2186394 2186420 2187830 2187963) (-1283 "UPXSCONS.spad" 2184072 2184092 2184445 2184594) (-1282 "UPXSCCA.spad" 2182643 2182663 2183918 2184067) (-1281 "UPXSCCA.spad" 2181356 2181378 2182633 2182638) (-1280 "UPXSCAT.spad" 2179945 2179961 2181202 2181351) (-1279 "UPXS2.spad" 2179488 2179541 2179935 2179940) (-1278 "UPXS.spad" 2176703 2176731 2177539 2177688) (-1277 "UPSQFREE.spad" 2175117 2175131 2176693 2176698) (-1276 "UPSCAT.spad" 2172912 2172936 2175015 2175112) (-1275 "UPSCAT.spad" 2170392 2170418 2172497 2172502) (-1274 "UPOLYC2.spad" 2169863 2169882 2170382 2170387) (-1273 "UPOLYC.spad" 2164943 2164954 2169705 2169858) (-1272 "UPOLYC.spad" 2159909 2159922 2164673 2164678) (-1271 "UPMP.spad" 2158841 2158854 2159899 2159904) (-1270 "UPDIVP.spad" 2158406 2158420 2158831 2158836) (-1269 "UPDECOMP.spad" 2156667 2156681 2158396 2158401) (-1268 "UPCDEN.spad" 2155884 2155900 2156657 2156662) (-1267 "UP2.spad" 2155248 2155269 2155874 2155879) (-1266 "UP.spad" 2152276 2152291 2152663 2152816) (-1265 "UNISEG2.spad" 2151773 2151786 2152232 2152237) (-1264 "UNISEG.spad" 2151126 2151137 2151692 2151697) (-1263 "UNIFACT.spad" 2150229 2150241 2151116 2151121) (-1262 "ULSCONS.spad" 2141141 2141161 2141511 2141660) (-1261 "ULSCCAT.spad" 2138878 2138898 2140987 2141136) (-1260 "ULSCCAT.spad" 2136723 2136745 2138834 2138839) (-1259 "ULSCAT.spad" 2134963 2134979 2136569 2136718) (-1258 "ULS2.spad" 2134477 2134530 2134953 2134958) (-1257 "ULS.spad" 2124048 2124076 2124993 2125422) (-1256 "UINT8.spad" 2123925 2123934 2124038 2124043) (-1255 "UINT64.spad" 2123801 2123810 2123915 2123920) (-1254 "UINT32.spad" 2123677 2123686 2123791 2123796) (-1253 "UINT16.spad" 2123553 2123562 2123667 2123672) (-1252 "UFD.spad" 2122618 2122627 2123479 2123548) (-1251 "UFD.spad" 2121745 2121756 2122608 2122613) (-1250 "UDVO.spad" 2120626 2120635 2121735 2121740) (-1249 "UDPO.spad" 2118207 2118218 2120582 2120587) (-1248 "TYPEAST.spad" 2118126 2118135 2118197 2118202) (-1247 "TYPE.spad" 2118058 2118067 2118116 2118121) (-1246 "TWOFACT.spad" 2116710 2116725 2118048 2118053) (-1245 "TUPLE.spad" 2116201 2116212 2116606 2116611) (-1244 "TUBETOOL.spad" 2113068 2113077 2116191 2116196) (-1243 "TUBE.spad" 2111715 2111732 2113058 2113063) (-1242 "TSETCAT.spad" 2099786 2099803 2111683 2111710) (-1241 "TSETCAT.spad" 2087843 2087862 2099742 2099747) (-1240 "TS.spad" 2086436 2086452 2087402 2087499) (-1239 "TRMANIP.spad" 2080800 2080817 2086124 2086129) (-1238 "TRIMAT.spad" 2079763 2079788 2080790 2080795) (-1237 "TRIGMNIP.spad" 2078290 2078307 2079753 2079758) (-1236 "TRIGCAT.spad" 2077802 2077811 2078280 2078285) (-1235 "TRIGCAT.spad" 2077312 2077323 2077792 2077797) (-1234 "TREE.spad" 2075758 2075769 2076790 2076817) (-1233 "TRANFUN.spad" 2075597 2075606 2075748 2075753) (-1232 "TRANFUN.spad" 2075434 2075445 2075587 2075592) (-1231 "TOPSP.spad" 2075108 2075117 2075424 2075429) (-1230 "TOOLSIGN.spad" 2074771 2074782 2075098 2075103) (-1229 "TEXTFILE.spad" 2073332 2073341 2074761 2074766) (-1228 "TEX1.spad" 2072888 2072899 2073322 2073327) (-1227 "TEX.spad" 2070082 2070091 2072878 2072883) (-1226 "TEMUTL.spad" 2069637 2069646 2070072 2070077) (-1225 "TBCMPPK.spad" 2067738 2067761 2069627 2069632) (-1224 "TBAGG.spad" 2066796 2066819 2067718 2067733) (-1223 "TBAGG.spad" 2065862 2065887 2066786 2066791) (-1222 "TANEXP.spad" 2065270 2065281 2065852 2065857) (-1221 "TALGOP.spad" 2064994 2065005 2065260 2065265) (-1220 "TABLEAU.spad" 2064475 2064486 2064984 2064989) (-1219 "TABLE.spad" 2062408 2062431 2062678 2062705) (-1218 "TABLBUMP.spad" 2059187 2059198 2062398 2062403) (-1217 "SYSTEM.spad" 2058415 2058424 2059177 2059182) (-1216 "SYSSOLP.spad" 2055898 2055909 2058405 2058410) (-1215 "SYSPTR.spad" 2055797 2055806 2055888 2055893) (-1214 "SYSNNI.spad" 2055020 2055031 2055787 2055792) (-1213 "SYSINT.spad" 2054424 2054435 2055010 2055015) (-1212 "SYNTAX.spad" 2050758 2050767 2054414 2054419) (-1211 "SYMTAB.spad" 2048826 2048835 2050748 2050753) (-1210 "SYMS.spad" 2044849 2044858 2048816 2048821) (-1209 "SYMPOLY.spad" 2043828 2043839 2043910 2044037) (-1208 "SYMFUNC.spad" 2043329 2043340 2043818 2043823) (-1207 "SYMBOL.spad" 2040824 2040833 2043319 2043324) (-1206 "SWITCH.spad" 2037595 2037604 2040814 2040819) (-1205 "SUTS.spad" 2034574 2034602 2035993 2036090) (-1204 "SUPXS.spad" 2031776 2031804 2032625 2032774) (-1203 "SUPFRACF.spad" 2030881 2030899 2031766 2031771) (-1202 "SUP2.spad" 2030273 2030286 2030871 2030876) (-1201 "SUP.spad" 2026915 2026926 2027688 2027841) (-1200 "SUMRF.spad" 2025889 2025900 2026905 2026910) (-1199 "SUMFS.spad" 2025518 2025535 2025879 2025884) (-1198 "SULS.spad" 2015076 2015104 2016034 2016463) (-1197 "SUCHTAST.spad" 2014845 2014854 2015066 2015071) (-1196 "SUCH.spad" 2014535 2014550 2014835 2014840) (-1195 "SUBSPACE.spad" 2006666 2006681 2014525 2014530) (-1194 "SUBRESP.spad" 2005836 2005850 2006622 2006627) (-1193 "STTFNC.spad" 2002304 2002320 2005826 2005831) (-1192 "STTF.spad" 1998403 1998419 2002294 2002299) (-1191 "STTAYLOR.spad" 1991048 1991059 1998278 1998283) (-1190 "STRTBL.spad" 1989063 1989080 1989212 1989239) (-1189 "STRING.spad" 1987829 1987838 1988050 1988077) (-1188 "STREAM3.spad" 1987402 1987417 1987819 1987824) (-1187 "STREAM2.spad" 1986530 1986543 1987392 1987397) (-1186 "STREAM1.spad" 1986236 1986247 1986520 1986525) (-1185 "STREAM.spad" 1983022 1983033 1985629 1985644) (-1184 "STINPROD.spad" 1981958 1981974 1983012 1983017) (-1183 "STEPAST.spad" 1981192 1981201 1981948 1981953) (-1182 "STEP.spad" 1980401 1980410 1981182 1981187) (-1181 "STBL.spad" 1978449 1978477 1978616 1978631) (-1180 "STAGG.spad" 1977148 1977159 1978439 1978444) (-1179 "STAGG.spad" 1975845 1975858 1977138 1977143) (-1178 "STACK.spad" 1975073 1975084 1975323 1975350) (-1177 "SRING.spad" 1974833 1974842 1975063 1975068) (-1176 "SREGSET.spad" 1972532 1972549 1974434 1974461) (-1175 "SRDCMPK.spad" 1971109 1971129 1972522 1972527) (-1174 "SRAGG.spad" 1966292 1966301 1971077 1971104) (-1173 "SRAGG.spad" 1961495 1961506 1966282 1966287) (-1172 "SQMATRIX.spad" 1958990 1959008 1959906 1959993) (-1171 "SPLTREE.spad" 1953456 1953469 1958252 1958279) (-1170 "SPLNODE.spad" 1950076 1950089 1953446 1953451) (-1169 "SPFCAT.spad" 1948885 1948894 1950066 1950071) (-1168 "SPECOUT.spad" 1947437 1947446 1948875 1948880) (-1167 "SPADXPT.spad" 1939528 1939537 1947427 1947432) (-1166 "spad-parser.spad" 1938993 1939002 1939518 1939523) (-1165 "SPADAST.spad" 1938694 1938703 1938983 1938988) (-1164 "SPACEC.spad" 1922909 1922920 1938684 1938689) (-1163 "SPACE3.spad" 1922685 1922696 1922899 1922904) (-1162 "SORTPAK.spad" 1922234 1922247 1922641 1922646) (-1161 "SOLVETRA.spad" 1919997 1920008 1922224 1922229) (-1160 "SOLVESER.spad" 1918453 1918464 1919987 1919992) (-1159 "SOLVERAD.spad" 1914479 1914490 1918443 1918448) (-1158 "SOLVEFOR.spad" 1912941 1912959 1914469 1914474) (-1157 "SNTSCAT.spad" 1912541 1912558 1912909 1912936) (-1156 "SMTS.spad" 1910823 1910849 1912100 1912197) (-1155 "SMP.spad" 1908226 1908246 1908616 1908743) (-1154 "SMITH.spad" 1907071 1907096 1908216 1908221) (-1153 "SMATCAT.spad" 1905189 1905219 1907015 1907066) (-1152 "SMATCAT.spad" 1903239 1903271 1905067 1905072) (-1151 "SKAGG.spad" 1902208 1902219 1903207 1903234) (-1150 "SINT.spad" 1901148 1901157 1902074 1902203) (-1149 "SIMPAN.spad" 1900876 1900885 1901138 1901143) (-1148 "SIGNRF.spad" 1899994 1900005 1900866 1900871) (-1147 "SIGNEF.spad" 1899273 1899290 1899984 1899989) (-1146 "SIGAST.spad" 1898690 1898699 1899263 1899268) (-1145 "SIG.spad" 1898052 1898061 1898680 1898685) (-1144 "SHP.spad" 1895996 1896011 1898008 1898013) (-1143 "SHDP.spad" 1883351 1883378 1883868 1883967) (-1142 "SGROUP.spad" 1882959 1882968 1883341 1883346) (-1141 "SGROUP.spad" 1882565 1882576 1882949 1882954) (-1140 "SGCF.spad" 1875704 1875713 1882555 1882560) (-1139 "SFRTCAT.spad" 1874650 1874667 1875672 1875699) (-1138 "SFRGCD.spad" 1873713 1873733 1874640 1874645) (-1137 "SFQCMPK.spad" 1868526 1868546 1873703 1873708) (-1136 "SFORT.spad" 1867965 1867979 1868516 1868521) (-1135 "SEXOF.spad" 1867808 1867848 1867955 1867960) (-1134 "SEXCAT.spad" 1865636 1865676 1867798 1867803) (-1133 "SEX.spad" 1865528 1865537 1865626 1865631) (-1132 "SETMN.spad" 1863986 1864003 1865518 1865523) (-1131 "SETCAT.spad" 1863471 1863480 1863976 1863981) (-1130 "SETCAT.spad" 1862954 1862965 1863461 1863466) (-1129 "SETAGG.spad" 1859503 1859514 1862934 1862949) (-1128 "SETAGG.spad" 1856060 1856073 1859493 1859498) (-1127 "SET.spad" 1854333 1854344 1855430 1855469) (-1126 "SEQAST.spad" 1854036 1854045 1854323 1854328) (-1125 "SEGXCAT.spad" 1853192 1853205 1854026 1854031) (-1124 "SEGCAT.spad" 1852117 1852128 1853182 1853187) (-1123 "SEGBIND2.spad" 1851815 1851828 1852107 1852112) (-1122 "SEGBIND.spad" 1851573 1851584 1851762 1851767) (-1121 "SEGAST.spad" 1851303 1851312 1851563 1851568) (-1120 "SEG2.spad" 1850738 1850751 1851259 1851264) (-1119 "SEG.spad" 1850551 1850562 1850657 1850662) (-1118 "SDVAR.spad" 1849827 1849838 1850541 1850546) (-1117 "SDPOL.spad" 1847082 1847093 1847373 1847500) (-1116 "SCPKG.spad" 1845171 1845182 1847072 1847077) (-1115 "SCOPE.spad" 1844348 1844357 1845161 1845166) (-1114 "SCACHE.spad" 1843044 1843055 1844338 1844343) (-1113 "SASTCAT.spad" 1842953 1842962 1843034 1843039) (-1112 "SAOS.spad" 1842825 1842834 1842943 1842948) (-1111 "SAERFFC.spad" 1842538 1842558 1842815 1842820) (-1110 "SAEFACT.spad" 1842239 1842259 1842528 1842533) (-1109 "SAE.spad" 1839673 1839689 1840284 1840419) (-1108 "RURPK.spad" 1837332 1837348 1839663 1839668) (-1107 "RULESET.spad" 1836785 1836809 1837322 1837327) (-1106 "RULECOLD.spad" 1836637 1836650 1836775 1836780) (-1105 "RULE.spad" 1834885 1834909 1836627 1836632) (-1104 "RTVALUE.spad" 1834620 1834629 1834875 1834880) (-1103 "RSTRCAST.spad" 1834337 1834346 1834610 1834615) (-1102 "RSETGCD.spad" 1830779 1830799 1834327 1834332) (-1101 "RSETCAT.spad" 1820747 1820764 1830747 1830774) (-1100 "RSETCAT.spad" 1810735 1810754 1820737 1820742) (-1099 "RSDCMPK.spad" 1809235 1809255 1810725 1810730) (-1098 "RRCC.spad" 1807619 1807649 1809225 1809230) (-1097 "RRCC.spad" 1806001 1806033 1807609 1807614) (-1096 "RPTAST.spad" 1805703 1805712 1805991 1805996) (-1095 "RPOLCAT.spad" 1785207 1785222 1805571 1805698) (-1094 "RPOLCAT.spad" 1764406 1764423 1784772 1784777) (-1093 "ROUTINE.spad" 1759807 1759816 1762555 1762582) (-1092 "ROMAN.spad" 1759135 1759144 1759673 1759802) (-1091 "ROIRC.spad" 1758215 1758247 1759125 1759130) (-1090 "RNS.spad" 1757191 1757200 1758117 1758210) (-1089 "RNS.spad" 1756253 1756264 1757181 1757186) (-1088 "RNGBIND.spad" 1755413 1755427 1756208 1756213) (-1087 "RNG.spad" 1755148 1755157 1755403 1755408) (-1086 "RMODULE.spad" 1754929 1754940 1755138 1755143) (-1085 "RMCAT2.spad" 1754349 1754406 1754919 1754924) (-1084 "RMATRIX.spad" 1753119 1753138 1753462 1753501) (-1083 "RMATCAT.spad" 1748698 1748729 1753075 1753114) (-1082 "RMATCAT.spad" 1744167 1744200 1748546 1748551) (-1081 "RLINSET.spad" 1743871 1743882 1744157 1744162) (-1080 "RINTERP.spad" 1743759 1743779 1743861 1743866) (-1079 "RING.spad" 1743229 1743238 1743739 1743754) (-1078 "RING.spad" 1742707 1742718 1743219 1743224) (-1077 "RIDIST.spad" 1742099 1742108 1742697 1742702) (-1076 "RGCHAIN.spad" 1740620 1740636 1741514 1741541) (-1075 "RGBCSPC.spad" 1740409 1740421 1740610 1740615) (-1074 "RGBCMDL.spad" 1739971 1739983 1740399 1740404) (-1073 "RFFACTOR.spad" 1739433 1739444 1739961 1739966) (-1072 "RFFACT.spad" 1739168 1739180 1739423 1739428) (-1071 "RFDIST.spad" 1738164 1738173 1739158 1739163) (-1070 "RF.spad" 1735838 1735849 1738154 1738159) (-1069 "RETSOL.spad" 1735257 1735270 1735828 1735833) (-1068 "RETRACT.spad" 1734685 1734696 1735247 1735252) (-1067 "RETRACT.spad" 1734111 1734124 1734675 1734680) (-1066 "RETAST.spad" 1733923 1733932 1734101 1734106) (-1065 "RESULT.spad" 1731485 1731494 1732072 1732099) (-1064 "RESRING.spad" 1730832 1730879 1731423 1731480) (-1063 "RESLATC.spad" 1730156 1730167 1730822 1730827) (-1062 "REPSQ.spad" 1729887 1729898 1730146 1730151) (-1061 "REPDB.spad" 1729594 1729605 1729877 1729882) (-1060 "REP2.spad" 1719308 1719319 1729436 1729441) (-1059 "REP1.spad" 1713528 1713539 1719258 1719263) (-1058 "REP.spad" 1711082 1711091 1713518 1713523) (-1057 "REGSET.spad" 1708874 1708891 1710683 1710710) (-1056 "REF.spad" 1708209 1708220 1708829 1708834) (-1055 "REDORDER.spad" 1707415 1707432 1708199 1708204) (-1054 "RECLOS.spad" 1706174 1706194 1706878 1706971) (-1053 "REALSOLV.spad" 1705314 1705323 1706164 1706169) (-1052 "REAL0Q.spad" 1702612 1702627 1705304 1705309) (-1051 "REAL0.spad" 1699456 1699471 1702602 1702607) (-1050 "REAL.spad" 1699328 1699337 1699446 1699451) (-1049 "RDUCEAST.spad" 1699049 1699058 1699318 1699323) (-1048 "RDIV.spad" 1698704 1698729 1699039 1699044) (-1047 "RDIST.spad" 1698271 1698282 1698694 1698699) (-1046 "RDETRS.spad" 1697135 1697153 1698261 1698266) (-1045 "RDETR.spad" 1695274 1695292 1697125 1697130) (-1044 "RDEEFS.spad" 1694373 1694390 1695264 1695269) (-1043 "RDEEF.spad" 1693383 1693400 1694363 1694368) (-1042 "RCFIELD.spad" 1690601 1690610 1693285 1693378) (-1041 "RCFIELD.spad" 1687905 1687916 1690591 1690596) (-1040 "RCAGG.spad" 1685841 1685852 1687895 1687900) (-1039 "RCAGG.spad" 1683704 1683717 1685760 1685765) (-1038 "RATRET.spad" 1683064 1683075 1683694 1683699) (-1037 "RATFACT.spad" 1682756 1682768 1683054 1683059) (-1036 "RANDSRC.spad" 1682075 1682084 1682746 1682751) (-1035 "RADUTIL.spad" 1681831 1681840 1682065 1682070) (-1034 "RADIX.spad" 1678610 1678624 1680156 1680249) (-1033 "RADFF.spad" 1676313 1676350 1676432 1676588) (-1032 "RADCAT.spad" 1675908 1675917 1676303 1676308) (-1031 "RADCAT.spad" 1675501 1675512 1675898 1675903) (-1030 "QUEUE.spad" 1674720 1674731 1674979 1675006) (-1029 "QUATCT2.spad" 1674340 1674359 1674710 1674715) (-1028 "QUATCAT.spad" 1672510 1672521 1674270 1674335) (-1027 "QUATCAT.spad" 1670428 1670441 1672190 1672195) (-1026 "QUAT.spad" 1668880 1668891 1669223 1669288) (-1025 "QUAGG.spad" 1667713 1667724 1668848 1668875) (-1024 "QQUTAST.spad" 1667481 1667490 1667703 1667708) (-1023 "QFORM.spad" 1667099 1667114 1667471 1667476) (-1022 "QFCAT2.spad" 1666791 1666808 1667089 1667094) (-1021 "QFCAT.spad" 1665493 1665504 1666693 1666786) (-1020 "QFCAT.spad" 1663777 1663790 1664979 1664984) (-1019 "QEQUAT.spad" 1663335 1663344 1663767 1663772) (-1018 "QCMPACK.spad" 1658249 1658269 1663325 1663330) (-1017 "QALGSET2.spad" 1656244 1656263 1658239 1658244) (-1016 "QALGSET.spad" 1652346 1652379 1656158 1656163) (-1015 "PWFFINTB.spad" 1649761 1649783 1652336 1652341) (-1014 "PUSHVAR.spad" 1649099 1649119 1649751 1649756) (-1013 "PTRANFN.spad" 1645234 1645245 1649089 1649094) (-1012 "PTPACK.spad" 1642321 1642332 1645224 1645229) (-1011 "PTFUNC2.spad" 1642143 1642158 1642311 1642316) (-1010 "PTCAT.spad" 1641397 1641408 1642111 1642138) (-1009 "PSQFR.spad" 1640711 1640736 1641387 1641392) (-1008 "PSEUDLIN.spad" 1639596 1639607 1640701 1640706) (-1007 "PSETPK.spad" 1626300 1626317 1639474 1639479) (-1006 "PSETCAT.spad" 1620699 1620723 1626280 1626295) (-1005 "PSETCAT.spad" 1615072 1615098 1620655 1620660) (-1004 "PSCURVE.spad" 1614070 1614079 1615062 1615067) (-1003 "PSCAT.spad" 1612852 1612882 1613968 1614065) (-1002 "PSCAT.spad" 1611724 1611756 1612842 1612847) (-1001 "PRTITION.spad" 1610421 1610430 1611714 1611719) (-1000 "PRTDAST.spad" 1610139 1610148 1610411 1610416) (-999 "PRS.spad" 1599757 1599774 1610095 1610100) (-998 "PRQAGG.spad" 1599192 1599202 1599725 1599752) (-997 "PROPLOG.spad" 1598796 1598804 1599182 1599187) (-996 "PROPFUN2.spad" 1598419 1598432 1598786 1598791) (-995 "PROPFUN1.spad" 1597825 1597836 1598409 1598414) (-994 "PROPFRML.spad" 1596393 1596404 1597815 1597820) (-993 "PROPERTY.spad" 1595889 1595897 1596383 1596388) (-992 "PRODUCT.spad" 1593571 1593583 1593855 1593910) (-991 "PRINT.spad" 1593323 1593331 1593561 1593566) (-990 "PRIMES.spad" 1591584 1591594 1593313 1593318) (-989 "PRIMELT.spad" 1589705 1589719 1591574 1591579) (-988 "PRIMCAT.spad" 1589348 1589356 1589695 1589700) (-987 "PRIMARR2.spad" 1588115 1588127 1589338 1589343) (-986 "PRIMARR.spad" 1586954 1586964 1587124 1587151) (-985 "PREASSOC.spad" 1586336 1586348 1586944 1586949) (-984 "PR.spad" 1584701 1584713 1585400 1585527) (-983 "PPCURVE.spad" 1583838 1583846 1584691 1584696) (-982 "PORTNUM.spad" 1583629 1583637 1583828 1583833) (-981 "POLYROOT.spad" 1582478 1582500 1583585 1583590) (-980 "POLYLIFT.spad" 1581743 1581766 1582468 1582473) (-979 "POLYCATQ.spad" 1579869 1579891 1581733 1581738) (-978 "POLYCAT.spad" 1573371 1573392 1579737 1579864) (-977 "POLYCAT.spad" 1566169 1566192 1572537 1572542) (-976 "POLY2UP.spad" 1565621 1565635 1566159 1566164) (-975 "POLY2.spad" 1565218 1565230 1565611 1565616) (-974 "POLY.spad" 1562481 1562491 1562996 1563123) (-973 "POLUTIL.spad" 1561446 1561475 1562437 1562442) (-972 "POLTOPOL.spad" 1560194 1560209 1561436 1561441) (-971 "POINT.spad" 1558858 1558868 1558945 1558972) (-970 "PNTHEORY.spad" 1555560 1555568 1558848 1558853) (-969 "PMTOOLS.spad" 1554335 1554349 1555550 1555555) (-968 "PMSYM.spad" 1553884 1553894 1554325 1554330) (-967 "PMQFCAT.spad" 1553475 1553489 1553874 1553879) (-966 "PMPREDFS.spad" 1552937 1552959 1553465 1553470) (-965 "PMPRED.spad" 1552424 1552438 1552927 1552932) (-964 "PMPLCAT.spad" 1551501 1551519 1552353 1552358) (-963 "PMLSAGG.spad" 1551086 1551100 1551491 1551496) (-962 "PMKERNEL.spad" 1550665 1550677 1551076 1551081) (-961 "PMINS.spad" 1550245 1550255 1550655 1550660) (-960 "PMFS.spad" 1549822 1549840 1550235 1550240) (-959 "PMDOWN.spad" 1549112 1549126 1549812 1549817) (-958 "PMASSFS.spad" 1548087 1548103 1549102 1549107) (-957 "PMASS.spad" 1547105 1547113 1548077 1548082) (-956 "PLOTTOOL.spad" 1546885 1546893 1547095 1547100) (-955 "PLOT3D.spad" 1543349 1543357 1546875 1546880) (-954 "PLOT1.spad" 1542522 1542532 1543339 1543344) (-953 "PLOT.spad" 1537445 1537453 1542512 1542517) (-952 "PLEQN.spad" 1524847 1524874 1537435 1537440) (-951 "PINTERPA.spad" 1524631 1524647 1524837 1524842) (-950 "PINTERP.spad" 1524253 1524272 1524621 1524626) (-949 "PID.spad" 1523227 1523235 1524179 1524248) (-948 "PICOERCE.spad" 1522884 1522894 1523217 1523222) (-947 "PI.spad" 1522501 1522509 1522858 1522879) (-946 "PGROEB.spad" 1521110 1521124 1522491 1522496) (-945 "PGE.spad" 1512783 1512791 1521100 1521105) (-944 "PGCD.spad" 1511737 1511754 1512773 1512778) (-943 "PFRPAC.spad" 1510886 1510896 1511727 1511732) (-942 "PFR.spad" 1507589 1507599 1510788 1510881) (-941 "PFOTOOLS.spad" 1506847 1506863 1507579 1507584) (-940 "PFOQ.spad" 1506217 1506235 1506837 1506842) (-939 "PFO.spad" 1505636 1505663 1506207 1506212) (-938 "PFECAT.spad" 1503346 1503354 1505562 1505631) (-937 "PFECAT.spad" 1501084 1501094 1503302 1503307) (-936 "PFBRU.spad" 1498972 1498984 1501074 1501079) (-935 "PFBR.spad" 1496532 1496555 1498962 1498967) (-934 "PF.spad" 1496106 1496118 1496337 1496430) (-933 "PERMGRP.spad" 1490876 1490886 1496096 1496101) (-932 "PERMCAT.spad" 1489537 1489547 1490856 1490871) (-931 "PERMAN.spad" 1488093 1488107 1489527 1489532) (-930 "PERM.spad" 1483900 1483910 1487923 1487938) (-929 "PENDTREE.spad" 1483120 1483130 1483400 1483405) (-928 "PDSPC.spad" 1481933 1481943 1483110 1483115) (-927 "PDSPC.spad" 1480744 1480756 1481923 1481928) (-926 "PDRING.spad" 1480586 1480596 1480724 1480739) (-925 "PDMOD.spad" 1480402 1480414 1480554 1480581) (-924 "PDEPROB.spad" 1479417 1479425 1480392 1480397) (-923 "PDEPACK.spad" 1473553 1473561 1479407 1479412) (-922 "PDECOMP.spad" 1473023 1473040 1473543 1473548) (-921 "PDECAT.spad" 1471379 1471387 1473013 1473018) (-920 "PDDOM.spad" 1470817 1470830 1471369 1471374) (-919 "PDDOM.spad" 1470253 1470268 1470807 1470812) (-918 "PCOMP.spad" 1470106 1470119 1470243 1470248) (-917 "PBWLB.spad" 1468702 1468719 1470096 1470101) (-916 "PATTERN2.spad" 1468440 1468452 1468692 1468697) (-915 "PATTERN1.spad" 1466784 1466800 1468430 1468435) (-914 "PATTERN.spad" 1461355 1461365 1466774 1466779) (-913 "PATRES2.spad" 1461027 1461041 1461345 1461350) (-912 "PATRES.spad" 1458610 1458622 1461017 1461022) (-911 "PATMATCH.spad" 1456798 1456829 1458309 1458314) (-910 "PATMAB.spad" 1456227 1456237 1456788 1456793) (-909 "PATLRES.spad" 1455313 1455327 1456217 1456222) (-908 "PATAB.spad" 1455077 1455087 1455303 1455308) (-907 "PARTPERM.spad" 1453133 1453141 1455067 1455072) (-906 "PARSURF.spad" 1452567 1452595 1453123 1453128) (-905 "PARSU2.spad" 1452364 1452380 1452557 1452562) (-904 "script-parser.spad" 1451884 1451892 1452354 1452359) (-903 "PARSCURV.spad" 1451318 1451346 1451874 1451879) (-902 "PARSC2.spad" 1451109 1451125 1451308 1451313) (-901 "PARPCURV.spad" 1450571 1450599 1451099 1451104) (-900 "PARPC2.spad" 1450362 1450378 1450561 1450566) (-899 "PARAMAST.spad" 1449490 1449498 1450352 1450357) (-898 "PAN2EXPR.spad" 1448902 1448910 1449480 1449485) (-897 "PALETTE.spad" 1447888 1447896 1448892 1448897) (-896 "PAIR.spad" 1446895 1446908 1447464 1447469) (-895 "PADICRC.spad" 1444099 1444117 1445262 1445355) (-894 "PADICRAT.spad" 1441958 1441970 1442171 1442264) (-893 "PADICCT.spad" 1440507 1440519 1441884 1441953) (-892 "PADIC.spad" 1440210 1440222 1440433 1440502) (-891 "PADEPAC.spad" 1438899 1438918 1440200 1440205) (-890 "PADE.spad" 1437651 1437667 1438889 1438894) (-889 "OWP.spad" 1436899 1436929 1437509 1437576) (-888 "OVERSET.spad" 1436472 1436480 1436889 1436894) (-887 "OVAR.spad" 1436253 1436276 1436462 1436467) (-886 "OUTFORM.spad" 1425661 1425669 1436243 1436248) (-885 "OUTBFILE.spad" 1425095 1425103 1425651 1425656) (-884 "OUTBCON.spad" 1424165 1424173 1425085 1425090) (-883 "OUTBCON.spad" 1423233 1423243 1424155 1424160) (-882 "OUT.spad" 1422351 1422359 1423223 1423228) (-881 "OSI.spad" 1421826 1421834 1422341 1422346) (-880 "OSGROUP.spad" 1421744 1421752 1421816 1421821) (-879 "ORTHPOL.spad" 1420223 1420233 1421655 1421660) (-878 "OREUP.spad" 1419667 1419695 1419894 1419933) (-877 "ORESUP.spad" 1418959 1418983 1419338 1419377) (-876 "OREPCTO.spad" 1416848 1416860 1418879 1418884) (-875 "OREPCAT.spad" 1411035 1411045 1416804 1416843) (-874 "OREPCAT.spad" 1405112 1405124 1410883 1410888) (-873 "ORDTYPE.spad" 1404349 1404357 1405102 1405107) (-872 "ORDTYPE.spad" 1403584 1403594 1404339 1404344) (-871 "ORDSTRCT.spad" 1403354 1403369 1403517 1403522) (-870 "ORDSET.spad" 1403054 1403062 1403344 1403349) (-869 "ORDRING.spad" 1402871 1402879 1403034 1403049) (-868 "ORDMON.spad" 1402726 1402734 1402861 1402866) (-867 "ORDFUNS.spad" 1401858 1401874 1402716 1402721) (-866 "ORDFIN.spad" 1401678 1401686 1401848 1401853) (-865 "ORDCOMP2.spad" 1400971 1400983 1401668 1401673) (-864 "ORDCOMP.spad" 1399424 1399434 1400506 1400535) (-863 "OPTPROB.spad" 1398062 1398070 1399414 1399419) (-862 "OPTPACK.spad" 1390471 1390479 1398052 1398057) (-861 "OPTCAT.spad" 1388150 1388158 1390461 1390466) (-860 "OPSIG.spad" 1387812 1387820 1388140 1388145) (-859 "OPQUERY.spad" 1387393 1387401 1387802 1387807) (-858 "OPERCAT.spad" 1386859 1386869 1387383 1387388) (-857 "OPERCAT.spad" 1386323 1386335 1386849 1386854) (-856 "OP.spad" 1386065 1386075 1386145 1386212) (-855 "ONECOMP2.spad" 1385489 1385501 1386055 1386060) (-854 "ONECOMP.spad" 1384222 1384232 1385024 1385053) (-853 "OMSERVER.spad" 1383228 1383236 1384212 1384217) (-852 "OMSAGG.spad" 1383016 1383026 1383184 1383223) (-851 "OMPKG.spad" 1381648 1381656 1383006 1383011) (-850 "OMLO.spad" 1381081 1381093 1381534 1381573) (-849 "OMEXPR.spad" 1380915 1380925 1381071 1381076) (-848 "OMERRK.spad" 1379965 1379973 1380905 1380910) (-847 "OMERR.spad" 1379510 1379518 1379955 1379960) (-846 "OMENC.spad" 1378862 1378870 1379500 1379505) (-845 "OMDEV.spad" 1373195 1373203 1378852 1378857) (-844 "OMCONN.spad" 1372604 1372612 1373185 1373190) (-843 "OM.spad" 1371601 1371609 1372594 1372599) (-842 "OINTDOM.spad" 1371364 1371372 1371527 1371596) (-841 "OFMONOID.spad" 1369503 1369513 1371320 1371325) (-840 "ODVAR.spad" 1368764 1368774 1369493 1369498) (-839 "ODR.spad" 1368408 1368434 1368576 1368725) (-838 "ODPOL.spad" 1365619 1365629 1365959 1366086) (-837 "ODP.spad" 1353118 1353138 1353491 1353590) (-836 "ODETOOLS.spad" 1351767 1351786 1353108 1353113) (-835 "ODESYS.spad" 1349461 1349478 1351757 1351762) (-834 "ODERTRIC.spad" 1345494 1345511 1349418 1349423) (-833 "ODERED.spad" 1344893 1344917 1345484 1345489) (-832 "ODERAT.spad" 1342524 1342541 1344883 1344888) (-831 "ODEPRRIC.spad" 1339617 1339639 1342514 1342519) (-830 "ODEPROB.spad" 1338874 1338882 1339607 1339612) (-829 "ODEPRIM.spad" 1336272 1336294 1338864 1338869) (-828 "ODEPAL.spad" 1335658 1335682 1336262 1336267) (-827 "ODEPACK.spad" 1322388 1322396 1335648 1335653) (-826 "ODEINT.spad" 1321823 1321839 1322378 1322383) (-825 "ODEIFTBL.spad" 1319226 1319234 1321813 1321818) (-824 "ODEEF.spad" 1314717 1314733 1319216 1319221) (-823 "ODECONST.spad" 1314262 1314280 1314707 1314712) (-822 "ODECAT.spad" 1312860 1312868 1314252 1314257) (-821 "OCTCT2.spad" 1312498 1312519 1312850 1312855) (-820 "OCT.spad" 1310586 1310596 1311300 1311339) (-819 "OCAMON.spad" 1310434 1310442 1310576 1310581) (-818 "OC.spad" 1308230 1308240 1310390 1310429) (-817 "OC.spad" 1305748 1305760 1307910 1307915) (-816 "OASGP.spad" 1305563 1305571 1305738 1305743) (-815 "OAMONS.spad" 1305085 1305093 1305553 1305558) (-814 "OAMON.spad" 1304843 1304851 1305075 1305080) (-813 "OAMON.spad" 1304599 1304609 1304833 1304838) (-812 "OAGROUP.spad" 1304137 1304145 1304589 1304594) (-811 "OAGROUP.spad" 1303673 1303683 1304127 1304132) (-810 "NUMTUBE.spad" 1303264 1303280 1303663 1303668) (-809 "NUMQUAD.spad" 1291240 1291248 1303254 1303259) (-808 "NUMODE.spad" 1282592 1282600 1291230 1291235) (-807 "NUMINT.spad" 1280158 1280166 1282582 1282587) (-806 "NUMFMT.spad" 1278998 1279006 1280148 1280153) (-805 "NUMERIC.spad" 1271112 1271122 1278803 1278808) (-804 "NTSCAT.spad" 1269620 1269636 1271080 1271107) (-803 "NTPOLFN.spad" 1269165 1269175 1269531 1269536) (-802 "NSUP2.spad" 1268557 1268569 1269155 1269160) (-801 "NSUP.spad" 1261552 1261562 1265972 1266125) (-800 "NSMP.spad" 1257651 1257670 1257943 1258070) (-799 "NREP.spad" 1256053 1256067 1257641 1257646) (-798 "NPCOEF.spad" 1255299 1255319 1256043 1256048) (-797 "NORMRETR.spad" 1254897 1254936 1255289 1255294) (-796 "NORMPK.spad" 1252839 1252858 1254887 1254892) (-795 "NORMMA.spad" 1252527 1252553 1252829 1252834) (-794 "NONE1.spad" 1252203 1252213 1252517 1252522) (-793 "NONE.spad" 1251944 1251952 1252193 1252198) (-792 "NODE1.spad" 1251431 1251447 1251934 1251939) (-791 "NNI.spad" 1250326 1250334 1251405 1251426) (-790 "NLINSOL.spad" 1248952 1248962 1250316 1250321) (-789 "NIPROB.spad" 1247493 1247501 1248942 1248947) (-788 "NFINTBAS.spad" 1245053 1245070 1247483 1247488) (-787 "NETCLT.spad" 1245027 1245038 1245043 1245048) (-786 "NCODIV.spad" 1243251 1243267 1245017 1245022) (-785 "NCNTFRAC.spad" 1242893 1242907 1243241 1243246) (-784 "NCEP.spad" 1241059 1241073 1242883 1242888) (-783 "NASRING.spad" 1240663 1240671 1241049 1241054) (-782 "NASRING.spad" 1240265 1240275 1240653 1240658) (-781 "NARNG.spad" 1239665 1239673 1240255 1240260) (-780 "NARNG.spad" 1239063 1239073 1239655 1239660) (-779 "NAGSP.spad" 1238140 1238148 1239053 1239058) (-778 "NAGS.spad" 1227857 1227865 1238130 1238135) (-777 "NAGF07.spad" 1226288 1226296 1227847 1227852) (-776 "NAGF04.spad" 1220690 1220698 1226278 1226283) (-775 "NAGF02.spad" 1214783 1214791 1220680 1220685) (-774 "NAGF01.spad" 1210552 1210560 1214773 1214778) (-773 "NAGE04.spad" 1204260 1204268 1210542 1210547) (-772 "NAGE02.spad" 1194912 1194920 1204250 1204255) (-771 "NAGE01.spad" 1190906 1190914 1194902 1194907) (-770 "NAGD03.spad" 1188902 1188910 1190896 1190901) (-769 "NAGD02.spad" 1181633 1181641 1188892 1188897) (-768 "NAGD01.spad" 1175918 1175926 1181623 1181628) (-767 "NAGC06.spad" 1171785 1171793 1175908 1175913) (-766 "NAGC05.spad" 1170278 1170286 1171775 1171780) (-765 "NAGC02.spad" 1169553 1169561 1170268 1170273) (-764 "NAALG.spad" 1169118 1169128 1169521 1169548) (-763 "NAALG.spad" 1168703 1168715 1169108 1169113) (-762 "MULTSQFR.spad" 1165661 1165678 1168693 1168698) (-761 "MULTFACT.spad" 1165044 1165061 1165651 1165656) (-760 "MTSCAT.spad" 1163138 1163159 1164942 1165039) (-759 "MTHING.spad" 1162797 1162807 1163128 1163133) (-758 "MSYSCMD.spad" 1162231 1162239 1162787 1162792) (-757 "MSETAGG.spad" 1162076 1162086 1162199 1162226) (-756 "MSET.spad" 1159989 1159999 1161737 1161776) (-755 "MRING.spad" 1156966 1156978 1159697 1159764) (-754 "MRF2.spad" 1156528 1156542 1156956 1156961) (-753 "MRATFAC.spad" 1156074 1156091 1156518 1156523) (-752 "MPRFF.spad" 1154114 1154133 1156064 1156069) (-751 "MPOLY.spad" 1151513 1151528 1151872 1151999) (-750 "MPCPF.spad" 1150777 1150796 1151503 1151508) (-749 "MPC3.spad" 1150594 1150634 1150767 1150772) (-748 "MPC2.spad" 1150247 1150280 1150584 1150589) (-747 "MONOTOOL.spad" 1148598 1148615 1150237 1150242) (-746 "MONOID.spad" 1147917 1147925 1148588 1148593) (-745 "MONOID.spad" 1147234 1147244 1147907 1147912) (-744 "MONOGEN.spad" 1145982 1145995 1147094 1147229) (-743 "MONOGEN.spad" 1144752 1144767 1145866 1145871) (-742 "MONADWU.spad" 1142830 1142838 1144742 1144747) (-741 "MONADWU.spad" 1140906 1140916 1142820 1142825) (-740 "MONAD.spad" 1140066 1140074 1140896 1140901) (-739 "MONAD.spad" 1139224 1139234 1140056 1140061) (-738 "MOEBIUS.spad" 1137960 1137974 1139204 1139219) (-737 "MODULE.spad" 1137830 1137840 1137928 1137955) (-736 "MODULE.spad" 1137720 1137732 1137820 1137825) (-735 "MODRING.spad" 1137055 1137094 1137700 1137715) (-734 "MODOP.spad" 1135712 1135724 1136877 1136944) (-733 "MODMONOM.spad" 1135443 1135461 1135702 1135707) (-732 "MODMON.spad" 1132067 1132083 1132786 1132939) (-731 "MODFIELD.spad" 1131429 1131468 1131969 1132062) (-730 "MMLFORM.spad" 1130289 1130297 1131419 1131424) (-729 "MMAP.spad" 1130031 1130065 1130279 1130284) (-728 "MLO.spad" 1128490 1128500 1129987 1130026) (-727 "MLIFT.spad" 1127102 1127119 1128480 1128485) (-726 "MKUCFUNC.spad" 1126637 1126655 1127092 1127097) (-725 "MKRECORD.spad" 1126225 1126238 1126627 1126632) (-724 "MKFUNC.spad" 1125632 1125642 1126215 1126220) (-723 "MKFLCFN.spad" 1124600 1124610 1125622 1125627) (-722 "MKBCFUNC.spad" 1124095 1124113 1124590 1124595) (-721 "MINT.spad" 1123534 1123542 1123997 1124090) (-720 "MHROWRED.spad" 1122045 1122055 1123524 1123529) (-719 "MFLOAT.spad" 1120565 1120573 1121935 1122040) (-718 "MFINFACT.spad" 1119965 1119987 1120555 1120560) (-717 "MESH.spad" 1117755 1117763 1119955 1119960) (-716 "MDDFACT.spad" 1115974 1115984 1117745 1117750) (-715 "MDAGG.spad" 1115265 1115275 1115954 1115969) (-714 "MCMPLX.spad" 1110630 1110638 1111244 1111445) (-713 "MCDEN.spad" 1109840 1109852 1110620 1110625) (-712 "MCALCFN.spad" 1106938 1106964 1109830 1109835) (-711 "MAYBE.spad" 1106238 1106249 1106928 1106933) (-710 "MATSTOR.spad" 1103554 1103564 1106228 1106233) (-709 "MATRIX.spad" 1102120 1102130 1102604 1102631) (-708 "MATLIN.spad" 1099488 1099512 1102004 1102009) (-707 "MATCAT2.spad" 1098770 1098818 1099478 1099483) (-706 "MATCAT.spad" 1090332 1090354 1098738 1098765) (-705 "MATCAT.spad" 1081766 1081790 1090174 1090179) (-704 "MAPPKG3.spad" 1080681 1080695 1081756 1081761) (-703 "MAPPKG2.spad" 1080019 1080031 1080671 1080676) (-702 "MAPPKG1.spad" 1078847 1078857 1080009 1080014) (-701 "MAPPAST.spad" 1078186 1078194 1078837 1078842) (-700 "MAPHACK3.spad" 1077998 1078012 1078176 1078181) (-699 "MAPHACK2.spad" 1077767 1077779 1077988 1077993) (-698 "MAPHACK1.spad" 1077411 1077421 1077757 1077762) (-697 "MAGMA.spad" 1075217 1075234 1077401 1077406) (-696 "MACROAST.spad" 1074812 1074820 1075207 1075212) (-695 "M3D.spad" 1072397 1072407 1074055 1074060) (-694 "LZSTAGG.spad" 1069651 1069661 1072387 1072392) (-693 "LZSTAGG.spad" 1066903 1066915 1069641 1069646) (-692 "LWORD.spad" 1063648 1063665 1066893 1066898) (-691 "LSTAST.spad" 1063432 1063440 1063638 1063643) (-690 "LSQM.spad" 1061544 1061558 1061938 1061989) (-689 "LSPP.spad" 1061079 1061096 1061534 1061539) (-688 "LSMP1.spad" 1058905 1058919 1061069 1061074) (-687 "LSMP.spad" 1057755 1057783 1058895 1058900) (-686 "LSAGG.spad" 1057424 1057434 1057723 1057750) (-685 "LSAGG.spad" 1057113 1057125 1057414 1057419) (-684 "LPOLY.spad" 1056075 1056094 1056969 1057038) (-683 "LPEFRAC.spad" 1055346 1055356 1056065 1056070) (-682 "LOGIC.spad" 1054948 1054956 1055336 1055341) (-681 "LOGIC.spad" 1054548 1054558 1054938 1054943) (-680 "LODOOPS.spad" 1053478 1053490 1054538 1054543) (-679 "LODOF.spad" 1052524 1052541 1053435 1053440) (-678 "LODOCAT.spad" 1051190 1051200 1052480 1052519) (-677 "LODOCAT.spad" 1049854 1049866 1051146 1051151) (-676 "LODO2.spad" 1049118 1049130 1049525 1049564) (-675 "LODO1.spad" 1048509 1048519 1048789 1048828) (-674 "LODO.spad" 1047884 1047900 1048180 1048219) (-673 "LODEEF.spad" 1046686 1046704 1047874 1047879) (-672 "LO.spad" 1046087 1046101 1046620 1046647) (-671 "LNAGG.spad" 1042274 1042284 1046077 1046082) (-670 "LNAGG.spad" 1038425 1038437 1042230 1042235) (-669 "LMOPS.spad" 1035193 1035210 1038415 1038420) (-668 "LMODULE.spad" 1034977 1034987 1035183 1035188) (-667 "LMDICT.spad" 1034148 1034158 1034396 1034423) (-666 "LLINSET.spad" 1033855 1033865 1034138 1034143) (-665 "LITERAL.spad" 1033761 1033772 1033845 1033850) (-664 "LIST3.spad" 1033072 1033086 1033751 1033756) (-663 "LIST2MAP.spad" 1029999 1030011 1033062 1033067) (-662 "LIST2.spad" 1028701 1028713 1029989 1029994) (-661 "LIST.spad" 1026262 1026272 1027674 1027701) (-660 "LINSET.spad" 1026041 1026051 1026252 1026257) (-659 "LINFORM.spad" 1025504 1025516 1026009 1026036) (-658 "LINEXP.spad" 1024247 1024257 1025494 1025499) (-657 "LINELT.spad" 1023618 1023630 1024130 1024157) (-656 "LINDEP.spad" 1022467 1022479 1023530 1023535) (-655 "LINBASIS.spad" 1022103 1022118 1022457 1022462) (-654 "LIMITRF.spad" 1020031 1020041 1022093 1022098) (-653 "LIMITPS.spad" 1018934 1018947 1020021 1020026) (-652 "LIECAT.spad" 1018418 1018428 1018860 1018929) (-651 "LIECAT.spad" 1017930 1017942 1018374 1018379) (-650 "LIE.spad" 1015925 1015937 1017199 1017344) (-649 "LIB.spad" 1013640 1013648 1014086 1014101) (-648 "LGROBP.spad" 1010993 1011012 1013630 1013635) (-647 "LFCAT.spad" 1010052 1010060 1010983 1010988) (-646 "LF.spad" 1009007 1009023 1010042 1010047) (-645 "LEXTRIPK.spad" 1004630 1004645 1008997 1009002) (-644 "LEXP.spad" 1002649 1002676 1004610 1004625) (-643 "LETAST.spad" 1002348 1002356 1002639 1002644) (-642 "LEADCDET.spad" 1000754 1000771 1002338 1002343) (-641 "LAZM3PK.spad" 999498 999520 1000744 1000749) (-640 "LAUPOL.spad" 998083 998096 998983 999052) (-639 "LAPLACE.spad" 997666 997682 998073 998078) (-638 "LALG.spad" 997442 997452 997646 997661) (-637 "LALG.spad" 997226 997238 997432 997437) (-636 "LA.spad" 996666 996680 997148 997187) (-635 "KVTFROM.spad" 996409 996419 996656 996661) (-634 "KTVLOGIC.spad" 995953 995961 996399 996404) (-633 "KRCFROM.spad" 995699 995709 995943 995948) (-632 "KOVACIC.spad" 994430 994447 995689 995694) (-631 "KONVERT.spad" 994152 994162 994420 994425) (-630 "KOERCE.spad" 993889 993899 994142 994147) (-629 "KERNEL2.spad" 993592 993604 993879 993884) (-628 "KERNEL.spad" 992232 992242 993361 993366) (-627 "KDAGG.spad" 991341 991363 992212 992227) (-626 "KDAGG.spad" 990458 990482 991331 991336) (-625 "KAFILE.spad" 989288 989304 989523 989550) (-624 "JVMOP.spad" 989201 989209 989278 989283) (-623 "JVMMDACC.spad" 988255 988263 989191 989196) (-622 "JVMFDACC.spad" 987571 987579 988245 988250) (-621 "JVMCSTTG.spad" 986300 986308 987561 987566) (-620 "JVMCFACC.spad" 985746 985754 986290 986295) (-619 "JVMBCODE.spad" 985657 985665 985736 985741) (-618 "JORDAN.spad" 983465 983477 984926 985071) (-617 "JOINAST.spad" 983167 983175 983455 983460) (-616 "IXAGG.spad" 981300 981324 983157 983162) (-615 "IXAGG.spad" 979288 979314 981147 981152) (-614 "IVECTOR.spad" 977884 977899 978039 978066) (-613 "ITUPLE.spad" 977060 977070 977874 977879) (-612 "ITRIGMNP.spad" 975907 975926 977050 977055) (-611 "ITFUN3.spad" 975413 975427 975897 975902) (-610 "ITFUN2.spad" 975157 975169 975403 975408) (-609 "ITFORM.spad" 974512 974520 975147 975152) (-608 "ITAYLOR.spad" 972506 972521 974376 974473) (-607 "ISUPS.spad" 964904 964919 971441 971538) (-606 "ISUMP.spad" 964405 964421 964894 964899) (-605 "ISTRING.spad" 963311 963324 963392 963419) (-604 "ISAST.spad" 963030 963038 963301 963306) (-603 "IRURPK.spad" 961747 961766 963020 963025) (-602 "IRSN.spad" 959751 959759 961737 961742) (-601 "IRRF2F.spad" 958244 958254 959707 959712) (-600 "IRREDFFX.spad" 957845 957856 958234 958239) (-599 "IROOT.spad" 956184 956194 957835 957840) (-598 "IRFORM.spad" 955508 955516 956174 956179) (-597 "IR2F.spad" 954722 954738 955498 955503) (-596 "IR2.spad" 953750 953766 954712 954717) (-595 "IR.spad" 951553 951567 953599 953626) (-594 "IPRNTPK.spad" 951313 951321 951543 951548) (-593 "IPF.spad" 950878 950890 951118 951211) (-592 "IPADIC.spad" 950647 950673 950804 950873) (-591 "IP4ADDR.spad" 950204 950212 950637 950642) (-590 "IOMODE.spad" 949726 949734 950194 950199) (-589 "IOBFILE.spad" 949111 949119 949716 949721) (-588 "IOBCON.spad" 948976 948984 949101 949106) (-587 "INVLAPLA.spad" 948625 948641 948966 948971) (-586 "INTTR.spad" 942007 942024 948615 948620) (-585 "INTTOOLS.spad" 939750 939766 941569 941574) (-584 "INTSLPE.spad" 939078 939086 939740 939745) (-583 "INTRVL.spad" 938644 938654 938992 939073) (-582 "INTRF.spad" 937076 937090 938634 938639) (-581 "INTRET.spad" 936508 936518 937066 937071) (-580 "INTRAT.spad" 935243 935260 936498 936503) (-579 "INTPM.spad" 933610 933626 934868 934873) (-578 "INTPAF.spad" 931479 931497 933539 933544) (-577 "INTPACK.spad" 922045 922053 931469 931474) (-576 "INTHERTR.spad" 921319 921336 922035 922040) (-575 "INTHERAL.spad" 920989 921013 921309 921314) (-574 "INTHEORY.spad" 917428 917436 920979 920984) (-573 "INTG0.spad" 911174 911192 917357 917362) (-572 "INTFTBL.spad" 905203 905211 911164 911169) (-571 "INTFACT.spad" 904270 904280 905193 905198) (-570 "INTEF.spad" 902679 902695 904260 904265) (-569 "INTDOM.spad" 901302 901310 902605 902674) (-568 "INTDOM.spad" 899987 899997 901292 901297) (-567 "INTCAT.spad" 898254 898264 899901 899982) (-566 "INTBIT.spad" 897761 897769 898244 898249) (-565 "INTALG.spad" 896949 896976 897751 897756) (-564 "INTAF.spad" 896449 896465 896939 896944) (-563 "INTABL.spad" 894489 894520 894652 894679) (-562 "INT8.spad" 894369 894377 894479 894484) (-561 "INT64.spad" 894248 894256 894359 894364) (-560 "INT32.spad" 894127 894135 894238 894243) (-559 "INT16.spad" 894006 894014 894117 894122) (-558 "INT.spad" 893449 893457 893860 894001) (-557 "INS.spad" 890952 890960 893351 893444) (-556 "INS.spad" 888541 888551 890942 890947) (-555 "INPSIGN.spad" 887989 888002 888531 888536) (-554 "INPRODPF.spad" 887085 887104 887979 887984) (-553 "INPRODFF.spad" 886173 886197 887075 887080) (-552 "INNMFACT.spad" 885148 885165 886163 886168) (-551 "INMODGCD.spad" 884652 884682 885138 885143) (-550 "INFSP.spad" 882949 882971 884642 884647) (-549 "INFPROD0.spad" 882029 882048 882939 882944) (-548 "INFORM1.spad" 881654 881664 882019 882024) (-547 "INFORM.spad" 878861 878869 881644 881649) (-546 "INFINITY.spad" 878413 878421 878851 878856) (-545 "INETCLTS.spad" 878390 878398 878403 878408) (-544 "INEP.spad" 876936 876958 878380 878385) (-543 "INDE.spad" 876585 876602 876846 876851) (-542 "INCRMAPS.spad" 876022 876032 876575 876580) (-541 "INBFILE.spad" 875118 875126 876012 876017) (-540 "INBFF.spad" 870968 870979 875108 875113) (-539 "INBCON.spad" 869234 869242 870958 870963) (-538 "INBCON.spad" 867498 867508 869224 869229) (-537 "INAST.spad" 867159 867167 867488 867493) (-536 "IMPTAST.spad" 866867 866875 867149 867154) (-535 "IMATRIX.spad" 865683 865709 866195 866222) (-534 "IMATQF.spad" 864777 864821 865639 865644) (-533 "IMATLIN.spad" 863398 863422 864733 864738) (-532 "ILIST.spad" 861882 861897 862407 862434) (-531 "IIARRAY2.spad" 861157 861195 861360 861387) (-530 "IFF.spad" 860567 860583 860838 860931) (-529 "IFAST.spad" 860181 860189 860557 860562) (-528 "IFARRAY.spad" 857492 857507 859190 859217) (-527 "IFAMON.spad" 857354 857371 857448 857453) (-526 "IEVALAB.spad" 856767 856779 857344 857349) (-525 "IEVALAB.spad" 856178 856192 856757 856762) (-524 "IDPOAMS.spad" 855856 855868 856090 856095) (-523 "IDPOAM.spad" 855498 855510 855768 855773) (-522 "IDPO.spad" 855233 855245 855410 855415) (-521 "IDPC.spad" 853962 853974 855223 855228) (-520 "IDPAM.spad" 853629 853641 853874 853879) (-519 "IDPAG.spad" 853298 853310 853541 853546) (-518 "IDENT.spad" 852948 852956 853288 853293) (-517 "IDECOMP.spad" 850187 850205 852938 852943) (-516 "IDEAL.spad" 845133 845172 850119 850124) (-515 "ICDEN.spad" 844346 844362 845123 845128) (-514 "ICARD.spad" 843537 843545 844336 844341) (-513 "IBPTOOLS.spad" 842144 842161 843527 843532) (-512 "IBITS.spad" 841300 841313 841733 841760) (-511 "IBATOOL.spad" 838285 838304 841290 841295) (-510 "IBACHIN.spad" 836792 836807 838275 838280) (-509 "IARRAY2.spad" 835659 835685 836270 836297) (-508 "IARRAY1.spad" 834522 834537 834668 834695) (-507 "IAN.spad" 832742 832750 834335 834428) (-506 "IALGFACT.spad" 832353 832386 832732 832737) (-505 "HYPCAT.spad" 831777 831785 832343 832348) (-504 "HYPCAT.spad" 831199 831209 831767 831772) (-503 "HOSTNAME.spad" 831015 831023 831189 831194) (-502 "HOMOTOP.spad" 830758 830768 831005 831010) (-501 "HOAGG.spad" 828040 828050 830748 830753) (-500 "HOAGG.spad" 825055 825067 827765 827770) (-499 "HEXADEC.spad" 823015 823023 823380 823473) (-498 "HEUGCD.spad" 822106 822117 823005 823010) (-497 "HELLFDIV.spad" 821712 821736 822096 822101) (-496 "HEAP.spad" 820975 820985 821190 821217) (-495 "HEADAST.spad" 820516 820524 820965 820970) (-494 "HDP.spad" 808011 808027 808388 808487) (-493 "HDMP.spad" 805153 805168 805769 805896) (-492 "HB.spad" 803428 803436 805143 805148) (-491 "HASHTBL.spad" 801420 801451 801631 801658) (-490 "HASAST.spad" 801136 801144 801410 801415) (-489 "HACKPI.spad" 800627 800635 801038 801131) (-488 "GTSET.spad" 799521 799537 800228 800255) (-487 "GSTBL.spad" 797562 797597 797736 797751) (-486 "GSERIES.spad" 794794 794821 795613 795762) (-485 "GROUP.spad" 794067 794075 794774 794789) (-484 "GROUP.spad" 793348 793358 794057 794062) (-483 "GROEBSOL.spad" 791842 791863 793338 793343) (-482 "GRMOD.spad" 790421 790433 791832 791837) (-481 "GRMOD.spad" 788998 789012 790411 790416) (-480 "GRIMAGE.spad" 781911 781919 788988 788993) (-479 "GRDEF.spad" 780290 780298 781901 781906) (-478 "GRAY.spad" 778761 778769 780280 780285) (-477 "GRALG.spad" 777854 777866 778751 778756) (-476 "GRALG.spad" 776945 776959 777844 777849) (-475 "GPOLSET.spad" 776370 776393 776582 776609) (-474 "GOSPER.spad" 775647 775665 776360 776365) (-473 "GMODPOL.spad" 774795 774822 775615 775642) (-472 "GHENSEL.spad" 773878 773892 774785 774790) (-471 "GENUPS.spad" 770171 770184 773868 773873) (-470 "GENUFACT.spad" 769748 769758 770161 770166) (-469 "GENPGCD.spad" 769350 769367 769738 769743) (-468 "GENMFACT.spad" 768802 768821 769340 769345) (-467 "GENEEZ.spad" 766761 766774 768792 768797) (-466 "GDMP.spad" 763745 763762 764519 764646) (-465 "GCNAALG.spad" 757668 757695 763539 763606) (-464 "GCDDOM.spad" 756860 756868 757594 757663) (-463 "GCDDOM.spad" 756114 756124 756850 756855) (-462 "GBINTERN.spad" 752134 752172 756104 756109) (-461 "GBF.spad" 747917 747955 752124 752129) (-460 "GBEUCLID.spad" 745799 745837 747907 747912) (-459 "GB.spad" 743325 743363 745755 745760) (-458 "GAUSSFAC.spad" 742638 742646 743315 743320) (-457 "GALUTIL.spad" 740964 740974 742594 742599) (-456 "GALPOLYU.spad" 739418 739431 740954 740959) (-455 "GALFACTU.spad" 737631 737650 739408 739413) (-454 "GALFACT.spad" 727844 727855 737621 737626) (-453 "FVFUN.spad" 724867 724875 727834 727839) (-452 "FVC.spad" 723919 723927 724857 724862) (-451 "FUNDESC.spad" 723597 723605 723909 723914) (-450 "FUNCTION.spad" 723446 723458 723587 723592) (-449 "FTEM.spad" 722611 722619 723436 723441) (-448 "FT.spad" 720908 720916 722601 722606) (-447 "FSUPFACT.spad" 719805 719824 720841 720846) (-446 "FST.spad" 717891 717899 719795 719800) (-445 "FSRED.spad" 717371 717387 717881 717886) (-444 "FSPRMELT.spad" 716237 716253 717328 717333) (-443 "FSPECF.spad" 714328 714344 716227 716232) (-442 "FSINT.spad" 713988 714004 714318 714323) (-441 "FSERIES.spad" 713179 713191 713808 713907) (-440 "FSCINT.spad" 712496 712512 713169 713174) (-439 "FSAGG2.spad" 711231 711247 712486 712491) (-438 "FSAGG.spad" 710348 710358 711187 711226) (-437 "FSAGG.spad" 709427 709439 710268 710273) (-436 "FS2UPS.spad" 703942 703976 709417 709422) (-435 "FS2EXPXP.spad" 703083 703106 703932 703937) (-434 "FS2.spad" 702738 702754 703073 703078) (-433 "FS.spad" 697006 697016 702513 702733) (-432 "FS.spad" 691046 691058 696555 696560) (-431 "FRUTIL.spad" 690000 690010 691036 691041) (-430 "FRNAALG.spad" 685277 685287 689942 689995) (-429 "FRNAALG.spad" 680566 680578 685233 685238) (-428 "FRNAAF2.spad" 680014 680032 680556 680561) (-427 "FRMOD.spad" 679421 679451 679942 679947) (-426 "FRIDEAL2.spad" 679025 679057 679411 679416) (-425 "FRIDEAL.spad" 678250 678271 679005 679020) (-424 "FRETRCT.spad" 677769 677779 678240 678245) (-423 "FRETRCT.spad" 677145 677157 677618 677623) (-422 "FRAMALG.spad" 675525 675538 677101 677140) (-421 "FRAMALG.spad" 673937 673952 675515 675520) (-420 "FRAC2.spad" 673542 673554 673927 673932) (-419 "FRAC.spad" 670501 670511 670888 671061) (-418 "FR2.spad" 669837 669849 670491 670496) (-417 "FR.spad" 663432 663442 668732 668801) (-416 "FPS.spad" 660271 660279 663322 663427) (-415 "FPS.spad" 657138 657148 660191 660196) (-414 "FPC.spad" 656184 656192 657040 657133) (-413 "FPC.spad" 655316 655326 656174 656179) (-412 "FPATMAB.spad" 655078 655088 655306 655311) (-411 "FPARFRAC.spad" 653920 653937 655068 655073) (-410 "FORTRAN.spad" 652426 652469 653910 653915) (-409 "FORTFN.spad" 649596 649604 652416 652421) (-408 "FORTCAT.spad" 649280 649288 649586 649591) (-407 "FORT.spad" 648229 648237 649270 649275) (-406 "FORDER.spad" 647920 647944 648219 648224) (-405 "FOP.spad" 647121 647129 647910 647915) (-404 "FNLA.spad" 646545 646567 647089 647116) (-403 "FNCAT.spad" 645140 645148 646535 646540) (-402 "FNAME.spad" 645032 645040 645130 645135) (-401 "FMTC.spad" 644830 644838 644958 645027) (-400 "FMONOID.spad" 644511 644521 644786 644791) (-399 "FMONCAT.spad" 641680 641690 644501 644506) (-398 "FMFUN.spad" 638710 638718 641670 641675) (-397 "FMCAT.spad" 636386 636404 638678 638705) (-396 "FMC.spad" 635438 635446 636376 636381) (-395 "FM1.spad" 634803 634815 635372 635399) (-394 "FM.spad" 634418 634430 634657 634684) (-393 "FLOATRP.spad" 632161 632175 634408 634413) (-392 "FLOATCP.spad" 629600 629614 632151 632156) (-391 "FLOAT.spad" 622914 622922 629466 629595) (-390 "FLINEXP.spad" 622636 622646 622904 622909) (-389 "FLINEXP.spad" 622299 622311 622569 622574) (-388 "FLASORT.spad" 621625 621637 622289 622294) (-387 "FLALG.spad" 619295 619314 621551 621620) (-386 "FLAGG2.spad" 618012 618028 619285 619290) (-385 "FLAGG.spad" 615078 615088 617992 618007) (-384 "FLAGG.spad" 612045 612057 614961 614966) (-383 "FINRALG.spad" 610130 610143 612001 612040) (-382 "FINRALG.spad" 608141 608156 610014 610019) (-381 "FINITE.spad" 607293 607301 608131 608136) (-380 "FINAALG.spad" 596478 596488 607235 607288) (-379 "FINAALG.spad" 585675 585687 596434 596439) (-378 "FILECAT.spad" 584209 584226 585665 585670) (-377 "FILE.spad" 583792 583802 584199 584204) (-376 "FIELD.spad" 583198 583206 583694 583787) (-375 "FIELD.spad" 582690 582700 583188 583193) (-374 "FGROUP.spad" 581353 581363 582670 582685) (-373 "FGLMICPK.spad" 580148 580163 581343 581348) (-372 "FFX.spad" 579531 579546 579864 579957) (-371 "FFSLPE.spad" 579042 579063 579521 579526) (-370 "FFPOLY2.spad" 578102 578119 579032 579037) (-369 "FFPOLY.spad" 569444 569455 578092 578097) (-368 "FFP.spad" 568849 568869 569160 569253) (-367 "FFNBX.spad" 567369 567389 568565 568658) (-366 "FFNBP.spad" 565890 565907 567085 567178) (-365 "FFNB.spad" 564355 564376 565571 565664) (-364 "FFINTBAS.spad" 561869 561888 564345 564350) (-363 "FFIELDC.spad" 559454 559462 561771 561864) (-362 "FFIELDC.spad" 557125 557135 559444 559449) (-361 "FFHOM.spad" 555897 555914 557115 557120) (-360 "FFF.spad" 553340 553351 555887 555892) (-359 "FFCGX.spad" 552195 552215 553056 553149) (-358 "FFCGP.spad" 551092 551112 551911 552004) (-357 "FFCG.spad" 549884 549905 550773 550866) (-356 "FFCAT2.spad" 549631 549671 549874 549879) (-355 "FFCAT.spad" 542796 542818 549470 549626) (-354 "FFCAT.spad" 536040 536064 542716 542721) (-353 "FF.spad" 535488 535504 535721 535814) (-352 "FEXPR.spad" 527188 527234 535235 535274) (-351 "FEVALAB.spad" 526896 526906 527178 527183) (-350 "FEVALAB.spad" 526380 526392 526664 526669) (-349 "FDIVCAT.spad" 524476 524500 526370 526375) (-348 "FDIVCAT.spad" 522570 522596 524466 524471) (-347 "FDIV2.spad" 522226 522266 522560 522565) (-346 "FDIV.spad" 521684 521708 522216 522221) (-345 "FCTRDATA.spad" 520692 520700 521674 521679) (-344 "FCPAK1.spad" 519227 519235 520682 520687) (-343 "FCOMP.spad" 518606 518616 519217 519222) (-342 "FC.spad" 508613 508621 518596 518601) (-341 "FAXF.spad" 501648 501662 508515 508608) (-340 "FAXF.spad" 494735 494751 501604 501609) (-339 "FARRAY.spad" 492711 492721 493744 493771) (-338 "FAMR.spad" 490855 490867 492609 492706) (-337 "FAMR.spad" 488983 488997 490739 490744) (-336 "FAMONOID.spad" 488667 488677 488937 488942) (-335 "FAMONC.spad" 486987 486999 488657 488662) (-334 "FAGROUP.spad" 486627 486637 486883 486910) (-333 "FACUTIL.spad" 484839 484856 486617 486622) (-332 "FACTFUNC.spad" 484041 484051 484829 484834) (-331 "EXPUPXS.spad" 480793 480816 482092 482241) (-330 "EXPRTUBE.spad" 478081 478089 480783 480788) (-329 "EXPRODE.spad" 475249 475265 478071 478076) (-328 "EXPR2UPS.spad" 471371 471384 475239 475244) (-327 "EXPR2.spad" 471076 471088 471361 471366) (-326 "EXPR.spad" 466161 466171 466875 467170) (-325 "EXPEXPAN.spad" 462905 462930 463537 463630) (-324 "EXITAST.spad" 462641 462649 462895 462900) (-323 "EXIT.spad" 462312 462320 462631 462636) (-322 "EVALCYC.spad" 461772 461786 462302 462307) (-321 "EVALAB.spad" 461352 461362 461762 461767) (-320 "EVALAB.spad" 460930 460942 461342 461347) (-319 "EUCDOM.spad" 458520 458528 460856 460925) (-318 "EUCDOM.spad" 456172 456182 458510 458515) (-317 "ESTOOLS2.spad" 455767 455781 456162 456167) (-316 "ESTOOLS1.spad" 455444 455455 455757 455762) (-315 "ESTOOLS.spad" 447322 447330 455434 455439) (-314 "ESCONT1.spad" 447063 447075 447312 447317) (-313 "ESCONT.spad" 443856 443864 447053 447058) (-312 "ES2.spad" 443369 443385 443846 443851) (-311 "ES1.spad" 442939 442955 443359 443364) (-310 "ES.spad" 435810 435818 442929 442934) (-309 "ES.spad" 428584 428594 435705 435710) (-308 "ERROR.spad" 425911 425919 428574 428579) (-307 "EQTBL.spad" 423905 423927 424114 424141) (-306 "EQ2.spad" 423623 423635 423895 423900) (-305 "EQ.spad" 418399 418409 421194 421306) (-304 "EP.spad" 414725 414735 418389 418394) (-303 "ENV.spad" 413403 413411 414715 414720) (-302 "ENTIRER.spad" 413071 413079 413347 413398) (-301 "EMR.spad" 412359 412400 412997 413066) (-300 "ELTAGG.spad" 410613 410632 412349 412354) (-299 "ELTAGG.spad" 408831 408852 410569 410574) (-298 "ELTAB.spad" 408306 408319 408821 408826) (-297 "ELFUTS.spad" 407741 407760 408296 408301) (-296 "ELEMFUN.spad" 407430 407438 407731 407736) (-295 "ELEMFUN.spad" 407117 407127 407420 407425) (-294 "ELAGG.spad" 405088 405098 407097 407112) (-293 "ELAGG.spad" 402996 403008 405007 405012) (-292 "ELABOR.spad" 402342 402350 402986 402991) (-291 "ELABEXPR.spad" 401274 401282 402332 402337) (-290 "EFUPXS.spad" 398050 398080 401230 401235) (-289 "EFULS.spad" 394886 394909 398006 398011) (-288 "EFSTRUC.spad" 392901 392917 394876 394881) (-287 "EF.spad" 387677 387693 392891 392896) (-286 "EAB.spad" 385977 385985 387667 387672) (-285 "E04UCFA.spad" 385513 385521 385967 385972) (-284 "E04NAFA.spad" 385090 385098 385503 385508) (-283 "E04MBFA.spad" 384670 384678 385080 385085) (-282 "E04JAFA.spad" 384206 384214 384660 384665) (-281 "E04GCFA.spad" 383742 383750 384196 384201) (-280 "E04FDFA.spad" 383278 383286 383732 383737) (-279 "E04DGFA.spad" 382814 382822 383268 383273) (-278 "E04AGNT.spad" 378688 378696 382804 382809) (-277 "DVARCAT.spad" 375578 375588 378678 378683) (-276 "DVARCAT.spad" 372466 372478 375568 375573) (-275 "DSMP.spad" 369762 369776 370067 370194) (-274 "DSEXT.spad" 369064 369074 369752 369757) (-273 "DSEXT.spad" 368270 368282 368960 368965) (-272 "DROPT1.spad" 367935 367945 368260 368265) (-271 "DROPT0.spad" 362800 362808 367925 367930) (-270 "DROPT.spad" 356759 356767 362790 362795) (-269 "DRAWPT.spad" 354932 354940 356749 356754) (-268 "DRAWHACK.spad" 354240 354250 354922 354927) (-267 "DRAWCX.spad" 351718 351726 354230 354235) (-266 "DRAWCURV.spad" 351265 351280 351708 351713) (-265 "DRAWCFUN.spad" 340797 340805 351255 351260) (-264 "DRAW.spad" 333673 333686 340787 340792) (-263 "DQAGG.spad" 331851 331861 333641 333668) (-262 "DPOLCAT.spad" 327208 327224 331719 331846) (-261 "DPOLCAT.spad" 322651 322669 327164 327169) (-260 "DPMO.spad" 314174 314190 314312 314525) (-259 "DPMM.spad" 305710 305728 305835 306048) (-258 "DOMTMPLT.spad" 305481 305489 305700 305705) (-257 "DOMCTOR.spad" 305236 305244 305471 305476) (-256 "DOMAIN.spad" 304347 304355 305226 305231) (-255 "DMP.spad" 301535 301550 302105 302232) (-254 "DMEXT.spad" 301402 301412 301503 301530) (-253 "DLP.spad" 300762 300772 301392 301397) (-252 "DLIST.spad" 299167 299177 299771 299798) (-251 "DLAGG.spad" 297584 297594 299157 299162) (-250 "DIVRING.spad" 297126 297134 297528 297579) (-249 "DIVRING.spad" 296712 296722 297116 297121) (-248 "DISPLAY.spad" 294902 294910 296702 296707) (-247 "DIRPROD2.spad" 293720 293738 294892 294897) (-246 "DIRPROD.spad" 280952 280968 281592 281691) (-245 "DIRPCAT.spad" 280145 280161 280848 280947) (-244 "DIRPCAT.spad" 278965 278983 279670 279675) (-243 "DIOSP.spad" 277790 277798 278955 278960) (-242 "DIOPS.spad" 276786 276796 277770 277785) (-241 "DIOPS.spad" 275756 275768 276742 276747) (-240 "DIFRING.spad" 275594 275602 275736 275751) (-239 "DIFFSPC.spad" 275173 275181 275584 275589) (-238 "DIFFSPC.spad" 274750 274760 275163 275168) (-237 "DIFFMOD.spad" 274239 274249 274718 274745) (-236 "DIFFDOM.spad" 273404 273415 274229 274234) (-235 "DIFFDOM.spad" 272567 272580 273394 273399) (-234 "DIFEXT.spad" 272386 272396 272547 272562) (-233 "DIAGG.spad" 272016 272026 272366 272381) (-232 "DIAGG.spad" 271654 271666 272006 272011) (-231 "DHMATRIX.spad" 269837 269847 270982 271009) (-230 "DFSFUN.spad" 263477 263485 269827 269832) (-229 "DFLOAT.spad" 260084 260092 263367 263472) (-228 "DFINTTLS.spad" 258315 258331 260074 260079) (-227 "DERHAM.spad" 256229 256261 258295 258310) (-226 "DEQUEUE.spad" 255424 255434 255707 255734) (-225 "DEGRED.spad" 255041 255055 255414 255419) (-224 "DEFINTRF.spad" 252578 252588 255031 255036) (-223 "DEFINTEF.spad" 251088 251104 252568 252573) (-222 "DEFAST.spad" 250472 250480 251078 251083) (-221 "DECIMAL.spad" 248436 248444 248797 248890) (-220 "DDFACT.spad" 246257 246274 248426 248431) (-219 "DBLRESP.spad" 245857 245881 246247 246252) (-218 "DBASIS.spad" 245483 245498 245847 245852) (-217 "DBASE.spad" 244147 244157 245473 245478) (-216 "DATAARY.spad" 243633 243646 244137 244142) (-215 "D03FAFA.spad" 243461 243469 243623 243628) (-214 "D03EEFA.spad" 243281 243289 243451 243456) (-213 "D03AGNT.spad" 242367 242375 243271 243276) (-212 "D02EJFA.spad" 241829 241837 242357 242362) (-211 "D02CJFA.spad" 241307 241315 241819 241824) (-210 "D02BHFA.spad" 240797 240805 241297 241302) (-209 "D02BBFA.spad" 240287 240295 240787 240792) (-208 "D02AGNT.spad" 235157 235165 240277 240282) (-207 "D01WGTS.spad" 233476 233484 235147 235152) (-206 "D01TRNS.spad" 233453 233461 233466 233471) (-205 "D01GBFA.spad" 232975 232983 233443 233448) (-204 "D01FCFA.spad" 232497 232505 232965 232970) (-203 "D01ASFA.spad" 231965 231973 232487 232492) (-202 "D01AQFA.spad" 231419 231427 231955 231960) (-201 "D01APFA.spad" 230859 230867 231409 231414) (-200 "D01ANFA.spad" 230353 230361 230849 230854) (-199 "D01AMFA.spad" 229863 229871 230343 230348) (-198 "D01ALFA.spad" 229403 229411 229853 229858) (-197 "D01AKFA.spad" 228929 228937 229393 229398) (-196 "D01AJFA.spad" 228452 228460 228919 228924) (-195 "D01AGNT.spad" 224519 224527 228442 228447) (-194 "CYCLOTOM.spad" 224025 224033 224509 224514) (-193 "CYCLES.spad" 220817 220825 224015 224020) (-192 "CVMP.spad" 220234 220244 220807 220812) (-191 "CTRIGMNP.spad" 218734 218750 220224 220229) (-190 "CTORKIND.spad" 218337 218345 218724 218729) (-189 "CTORCAT.spad" 217578 217586 218327 218332) (-188 "CTORCAT.spad" 216817 216827 217568 217573) (-187 "CTORCALL.spad" 216406 216416 216807 216812) (-186 "CTOR.spad" 216097 216105 216396 216401) (-185 "CSTTOOLS.spad" 215342 215355 216087 216092) (-184 "CRFP.spad" 209114 209127 215332 215337) (-183 "CRCEAST.spad" 208834 208842 209104 209109) (-182 "CRAPACK.spad" 207901 207911 208824 208829) (-181 "CPMATCH.spad" 207402 207417 207823 207828) (-180 "CPIMA.spad" 207107 207126 207392 207397) (-179 "COORDSYS.spad" 202116 202126 207097 207102) (-178 "CONTOUR.spad" 201543 201551 202106 202111) (-177 "CONTFRAC.spad" 197293 197303 201445 201538) (-176 "CONDUIT.spad" 197051 197059 197283 197288) (-175 "COMRING.spad" 196725 196733 196989 197046) (-174 "COMPPROP.spad" 196243 196251 196715 196720) (-173 "COMPLPAT.spad" 196010 196025 196233 196238) (-172 "COMPLEX2.spad" 195725 195737 196000 196005) (-171 "COMPLEX.spad" 191036 191046 191280 191541) (-170 "COMPILER.spad" 190585 190593 191026 191031) (-169 "COMPFACT.spad" 190187 190201 190575 190580) (-168 "COMPCAT.spad" 188259 188269 189921 190182) (-167 "COMPCAT.spad" 186056 186068 187720 187725) (-166 "COMMUPC.spad" 185804 185822 186046 186051) (-165 "COMMONOP.spad" 185337 185345 185794 185799) (-164 "COMMAAST.spad" 185100 185108 185327 185332) (-163 "COMM.spad" 184911 184919 185090 185095) (-162 "COMBOPC.spad" 183834 183842 184901 184906) (-161 "COMBINAT.spad" 182601 182611 183824 183829) (-160 "COMBF.spad" 180023 180039 182591 182596) (-159 "COLOR.spad" 178860 178868 180013 180018) (-158 "COLONAST.spad" 178526 178534 178850 178855) (-157 "CMPLXRT.spad" 178237 178254 178516 178521) (-156 "CLLCTAST.spad" 177899 177907 178227 178232) (-155 "CLIP.spad" 174007 174015 177889 177894) (-154 "CLIF.spad" 172662 172678 173963 174002) (-153 "CLAGG.spad" 169199 169209 172652 172657) (-152 "CLAGG.spad" 165604 165616 169059 169064) (-151 "CINTSLPE.spad" 164959 164972 165594 165599) (-150 "CHVAR.spad" 163097 163119 164949 164954) (-149 "CHARZ.spad" 163012 163020 163077 163092) (-148 "CHARPOL.spad" 162538 162548 163002 163007) (-147 "CHARNZ.spad" 162300 162308 162518 162533) (-146 "CHAR.spad" 159668 159676 162290 162295) (-145 "CFCAT.spad" 158996 159004 159658 159663) (-144 "CDEN.spad" 158216 158230 158986 158991) (-143 "CCLASS.spad" 156312 156320 157574 157613) (-142 "CATEGORY.spad" 155386 155394 156302 156307) (-141 "CATCTOR.spad" 155277 155285 155376 155381) (-140 "CATAST.spad" 154903 154911 155267 155272) (-139 "CASEAST.spad" 154617 154625 154893 154898) (-138 "CARTEN2.spad" 154007 154034 154607 154612) (-137 "CARTEN.spad" 149374 149398 153997 154002) (-136 "CARD.spad" 146669 146677 149348 149369) (-135 "CAPSLAST.spad" 146451 146459 146659 146664) (-134 "CACHSET.spad" 146075 146083 146441 146446) (-133 "CABMON.spad" 145630 145638 146065 146070) (-132 "BYTEORD.spad" 145305 145313 145620 145625) (-131 "BYTEBUF.spad" 143006 143014 144292 144319) (-130 "BYTE.spad" 142481 142489 142996 143001) (-129 "BTREE.spad" 141425 141435 141959 141986) (-128 "BTOURN.spad" 140301 140311 140903 140930) (-127 "BTCAT.spad" 139693 139703 140269 140296) (-126 "BTCAT.spad" 139105 139117 139683 139688) (-125 "BTAGG.spad" 138571 138579 139073 139100) (-124 "BTAGG.spad" 138057 138067 138561 138566) (-123 "BSTREE.spad" 136669 136679 137535 137562) (-122 "BRILL.spad" 134874 134885 136659 136664) (-121 "BRAGG.spad" 133830 133840 134864 134869) (-120 "BRAGG.spad" 132750 132762 133786 133791) (-119 "BPADICRT.spad" 130575 130587 130822 130915) (-118 "BPADIC.spad" 130247 130259 130501 130570) (-117 "BOUNDZRO.spad" 129903 129920 130237 130242) (-116 "BOP1.spad" 127361 127371 129893 129898) (-115 "BOP.spad" 122503 122511 127351 127356) (-114 "BOOLEAN.spad" 122051 122059 122493 122498) (-113 "BOOLE.spad" 121701 121709 122041 122046) (-112 "BOOLE.spad" 121349 121359 121691 121696) (-111 "BMODULE.spad" 121061 121073 121317 121344) (-110 "BITS.spad" 120435 120443 120650 120677) (-109 "BINDING.spad" 119856 119864 120425 120430) (-108 "BINARY.spad" 117825 117833 118181 118274) (-107 "BGAGG.spad" 117030 117040 117805 117820) (-106 "BGAGG.spad" 116243 116255 117020 117025) (-105 "BFUNCT.spad" 115807 115815 116223 116238) (-104 "BEZOUT.spad" 114947 114974 115757 115762) (-103 "BBTREE.spad" 111695 111705 114425 114452) (-102 "BASTYPE.spad" 111194 111202 111685 111690) (-101 "BASTYPE.spad" 110691 110701 111184 111189) (-100 "BALFACT.spad" 110150 110163 110681 110686) (-99 "AUTOMOR.spad" 109601 109610 110130 110145) (-98 "ATTREG.spad" 106324 106331 109353 109596) (-97 "ATTRBUT.spad" 102347 102354 106304 106319) (-96 "ATTRAST.spad" 102064 102071 102337 102342) (-95 "ATRIG.spad" 101534 101541 102054 102059) (-94 "ATRIG.spad" 101002 101011 101524 101529) (-93 "ASTCAT.spad" 100906 100913 100992 100997) (-92 "ASTCAT.spad" 100808 100817 100896 100901) (-91 "ASTACK.spad" 100018 100027 100286 100313) (-90 "ASSOCEQ.spad" 98852 98863 99974 99979) (-89 "ASP9.spad" 97933 97946 98842 98847) (-88 "ASP80.spad" 97255 97268 97923 97928) (-87 "ASP8.spad" 96298 96311 97245 97250) (-86 "ASP78.spad" 95749 95762 96288 96293) (-85 "ASP77.spad" 95118 95131 95739 95744) (-84 "ASP74.spad" 94210 94223 95108 95113) (-83 "ASP73.spad" 93481 93494 94200 94205) (-82 "ASP7.spad" 92641 92654 93471 93476) (-81 "ASP6.spad" 91508 91521 92631 92636) (-80 "ASP55.spad" 90017 90030 91498 91503) (-79 "ASP50.spad" 87834 87847 90007 90012) (-78 "ASP49.spad" 86833 86846 87824 87829) (-77 "ASP42.spad" 85248 85287 86823 86828) (-76 "ASP41.spad" 83835 83874 85238 85243) (-75 "ASP4.spad" 83130 83143 83825 83830) (-74 "ASP35.spad" 82118 82131 83120 83125) (-73 "ASP34.spad" 81419 81432 82108 82113) (-72 "ASP33.spad" 80979 80992 81409 81414) (-71 "ASP31.spad" 80119 80132 80969 80974) (-70 "ASP30.spad" 79011 79024 80109 80114) (-69 "ASP29.spad" 78477 78490 79001 79006) (-68 "ASP28.spad" 69750 69763 78467 78472) (-67 "ASP27.spad" 68647 68660 69740 69745) (-66 "ASP24.spad" 67734 67747 68637 68642) (-65 "ASP20.spad" 67198 67211 67724 67729) (-64 "ASP19.spad" 61884 61897 67188 67193) (-63 "ASP12.spad" 61298 61311 61874 61879) (-62 "ASP10.spad" 60569 60582 61288 61293) (-61 "ASP1.spad" 59950 59963 60559 60564) (-60 "ARRAY2.spad" 59189 59198 59428 59455) (-59 "ARRAY12.spad" 57902 57913 59179 59184) (-58 "ARRAY1.spad" 56565 56574 56911 56938) (-57 "ARR2CAT.spad" 52347 52368 56533 56560) (-56 "ARR2CAT.spad" 48149 48172 52337 52342) (-55 "ARITY.spad" 47521 47528 48139 48144) (-54 "APPRULE.spad" 46805 46827 47511 47516) (-53 "APPLYORE.spad" 46424 46437 46795 46800) (-52 "ANY1.spad" 45495 45504 46414 46419) (-51 "ANY.spad" 44346 44353 45485 45490) (-50 "ANTISYM.spad" 42791 42807 44326 44341) (-49 "ANON.spad" 42500 42507 42781 42786) (-48 "AN.spad" 40806 40813 42313 42406) (-47 "AMR.spad" 38991 39002 40704 40801) (-46 "AMR.spad" 37007 37020 38722 38727) (-45 "ALIST.spad" 33847 33868 34197 34224) (-44 "ALGSC.spad" 32982 33008 33719 33772) (-43 "ALGPKG.spad" 28765 28776 32938 32943) (-42 "ALGMFACT.spad" 27958 27972 28755 28760) (-41 "ALGMANIP.spad" 25442 25457 27785 27790) (-40 "ALGFF.spad" 23047 23074 23264 23420) (-39 "ALGFACT.spad" 22166 22176 23037 23042) (-38 "ALGEBRA.spad" 21999 22008 22122 22161) (-37 "ALGEBRA.spad" 21864 21875 21989 21994) (-36 "ALAGG.spad" 21376 21397 21832 21859) (-35 "AHYP.spad" 20757 20764 21366 21371) (-34 "AGG.spad" 19466 19473 20747 20752) (-33 "AGG.spad" 18139 18148 19422 19427) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2287934 2287939 2287944 2287949) (-2 NIL 2287914 2287919 2287924 2287929) (-1 NIL 2287894 2287899 2287904 2287909) (0 NIL 2287874 2287879 2287884 2287889) (-1326 "ZMOD.spad" 2287683 2287696 2287812 2287869) (-1325 "ZLINDEP.spad" 2286781 2286792 2287673 2287678) (-1324 "ZDSOLVE.spad" 2276741 2276763 2286771 2286776) (-1323 "YSTREAM.spad" 2276236 2276247 2276731 2276736) (-1322 "YDIAGRAM.spad" 2275870 2275879 2276226 2276231) (-1321 "XRPOLY.spad" 2275090 2275110 2275726 2275795) (-1320 "XPR.spad" 2272885 2272898 2274808 2274907) (-1319 "XPOLYC.spad" 2272204 2272220 2272811 2272880) (-1318 "XPOLY.spad" 2271759 2271770 2272060 2272129) (-1317 "XPBWPOLY.spad" 2270198 2270218 2271533 2271602) (-1316 "XFALG.spad" 2267246 2267262 2270124 2270193) (-1315 "XF.spad" 2265709 2265724 2267148 2267241) (-1314 "XF.spad" 2264152 2264169 2265593 2265598) (-1313 "XEXPPKG.spad" 2263411 2263437 2264142 2264147) (-1312 "XDPOLY.spad" 2263025 2263041 2263267 2263336) (-1311 "XALG.spad" 2262693 2262704 2262981 2263020) (-1310 "WUTSET.spad" 2258663 2258680 2262294 2262321) (-1309 "WP.spad" 2257870 2257914 2258521 2258588) (-1308 "WHILEAST.spad" 2257668 2257677 2257860 2257865) (-1307 "WHEREAST.spad" 2257339 2257348 2257658 2257663) (-1306 "WFFINTBS.spad" 2255002 2255024 2257329 2257334) (-1305 "WEIER.spad" 2253224 2253235 2254992 2254997) (-1304 "VSPACE.spad" 2252897 2252908 2253192 2253219) (-1303 "VSPACE.spad" 2252590 2252603 2252887 2252892) (-1302 "VOID.spad" 2252267 2252276 2252580 2252585) (-1301 "VIEWDEF.spad" 2247468 2247477 2252257 2252262) (-1300 "VIEW3D.spad" 2231429 2231438 2247458 2247463) (-1299 "VIEW2D.spad" 2219328 2219337 2231419 2231424) (-1298 "VIEW.spad" 2217048 2217057 2219318 2219323) (-1297 "VECTOR2.spad" 2215687 2215700 2217038 2217043) (-1296 "VECTOR.spad" 2214187 2214198 2214438 2214465) (-1295 "VECTCAT.spad" 2212099 2212110 2214155 2214182) (-1294 "VECTCAT.spad" 2209818 2209831 2211876 2211881) (-1293 "VARIABLE.spad" 2209598 2209613 2209808 2209813) (-1292 "UTYPE.spad" 2209242 2209251 2209588 2209593) (-1291 "UTSODETL.spad" 2208537 2208561 2209198 2209203) (-1290 "UTSODE.spad" 2206753 2206773 2208527 2208532) (-1289 "UTSCAT.spad" 2204232 2204248 2206651 2206748) (-1288 "UTSCAT.spad" 2201331 2201349 2203752 2203757) (-1287 "UTS2.spad" 2200926 2200961 2201321 2201326) (-1286 "UTS.spad" 2195804 2195832 2199324 2199421) (-1285 "URAGG.spad" 2190525 2190536 2195794 2195799) (-1284 "URAGG.spad" 2185210 2185223 2190481 2190486) (-1283 "UPXSSING.spad" 2182828 2182854 2184264 2184397) (-1282 "UPXSCONS.spad" 2180506 2180526 2180879 2181028) (-1281 "UPXSCCA.spad" 2179077 2179097 2180352 2180501) (-1280 "UPXSCCA.spad" 2177790 2177812 2179067 2179072) (-1279 "UPXSCAT.spad" 2176379 2176395 2177636 2177785) (-1278 "UPXS2.spad" 2175922 2175975 2176369 2176374) (-1277 "UPXS.spad" 2173137 2173165 2173973 2174122) (-1276 "UPSQFREE.spad" 2171552 2171566 2173127 2173132) (-1275 "UPSCAT.spad" 2169347 2169371 2171450 2171547) (-1274 "UPSCAT.spad" 2166827 2166853 2168932 2168937) (-1273 "UPOLYC2.spad" 2166298 2166317 2166817 2166822) (-1272 "UPOLYC.spad" 2161378 2161389 2166140 2166293) (-1271 "UPOLYC.spad" 2156344 2156357 2161108 2161113) (-1270 "UPMP.spad" 2155276 2155289 2156334 2156339) (-1269 "UPDIVP.spad" 2154841 2154855 2155266 2155271) (-1268 "UPDECOMP.spad" 2153102 2153116 2154831 2154836) (-1267 "UPCDEN.spad" 2152319 2152335 2153092 2153097) (-1266 "UP2.spad" 2151683 2151704 2152309 2152314) (-1265 "UP.spad" 2148711 2148726 2149098 2149251) (-1264 "UNISEG2.spad" 2148208 2148221 2148667 2148672) (-1263 "UNISEG.spad" 2147561 2147572 2148127 2148132) (-1262 "UNIFACT.spad" 2146664 2146676 2147551 2147556) (-1261 "ULSCONS.spad" 2137576 2137596 2137946 2138095) (-1260 "ULSCCAT.spad" 2135313 2135333 2137422 2137571) (-1259 "ULSCCAT.spad" 2133158 2133180 2135269 2135274) (-1258 "ULSCAT.spad" 2131398 2131414 2133004 2133153) (-1257 "ULS2.spad" 2130912 2130965 2131388 2131393) (-1256 "ULS.spad" 2120483 2120511 2121428 2121857) (-1255 "UINT8.spad" 2120360 2120369 2120473 2120478) (-1254 "UINT64.spad" 2120236 2120245 2120350 2120355) (-1253 "UINT32.spad" 2120112 2120121 2120226 2120231) (-1252 "UINT16.spad" 2119988 2119997 2120102 2120107) (-1251 "UFD.spad" 2119053 2119062 2119914 2119983) (-1250 "UFD.spad" 2118180 2118191 2119043 2119048) (-1249 "UDVO.spad" 2117061 2117070 2118170 2118175) (-1248 "UDPO.spad" 2114642 2114653 2117017 2117022) (-1247 "TYPEAST.spad" 2114561 2114570 2114632 2114637) (-1246 "TYPE.spad" 2114493 2114502 2114551 2114556) (-1245 "TWOFACT.spad" 2113145 2113160 2114483 2114488) (-1244 "TUPLE.spad" 2112636 2112647 2113041 2113046) (-1243 "TUBETOOL.spad" 2109503 2109512 2112626 2112631) (-1242 "TUBE.spad" 2108150 2108167 2109493 2109498) (-1241 "TSETCAT.spad" 2096221 2096238 2108118 2108145) (-1240 "TSETCAT.spad" 2084278 2084297 2096177 2096182) (-1239 "TS.spad" 2082871 2082887 2083837 2083934) (-1238 "TRMANIP.spad" 2077235 2077252 2082559 2082564) (-1237 "TRIMAT.spad" 2076198 2076223 2077225 2077230) (-1236 "TRIGMNIP.spad" 2074725 2074742 2076188 2076193) (-1235 "TRIGCAT.spad" 2074237 2074246 2074715 2074720) (-1234 "TRIGCAT.spad" 2073747 2073758 2074227 2074232) (-1233 "TREE.spad" 2072193 2072204 2073225 2073252) (-1232 "TRANFUN.spad" 2072032 2072041 2072183 2072188) (-1231 "TRANFUN.spad" 2071869 2071880 2072022 2072027) (-1230 "TOPSP.spad" 2071543 2071552 2071859 2071864) (-1229 "TOOLSIGN.spad" 2071206 2071217 2071533 2071538) (-1228 "TEXTFILE.spad" 2069767 2069776 2071196 2071201) (-1227 "TEX1.spad" 2069323 2069334 2069757 2069762) (-1226 "TEX.spad" 2066517 2066526 2069313 2069318) (-1225 "TEMUTL.spad" 2066072 2066081 2066507 2066512) (-1224 "TBCMPPK.spad" 2064173 2064196 2066062 2066067) (-1223 "TBAGG.spad" 2063231 2063254 2064153 2064168) (-1222 "TBAGG.spad" 2062297 2062322 2063221 2063226) (-1221 "TANEXP.spad" 2061705 2061716 2062287 2062292) (-1220 "TALGOP.spad" 2061429 2061440 2061695 2061700) (-1219 "TABLEAU.spad" 2060910 2060921 2061419 2061424) (-1218 "TABLE.spad" 2058843 2058866 2059113 2059140) (-1217 "TABLBUMP.spad" 2055622 2055633 2058833 2058838) (-1216 "SYSTEM.spad" 2054850 2054859 2055612 2055617) (-1215 "SYSSOLP.spad" 2052333 2052344 2054840 2054845) (-1214 "SYSPTR.spad" 2052232 2052241 2052323 2052328) (-1213 "SYSNNI.spad" 2051455 2051466 2052222 2052227) (-1212 "SYSINT.spad" 2050859 2050870 2051445 2051450) (-1211 "SYNTAX.spad" 2047193 2047202 2050849 2050854) (-1210 "SYMTAB.spad" 2045261 2045270 2047183 2047188) (-1209 "SYMS.spad" 2041290 2041299 2045251 2045256) (-1208 "SYMPOLY.spad" 2040269 2040280 2040351 2040478) (-1207 "SYMFUNC.spad" 2039770 2039781 2040259 2040264) (-1206 "SYMBOL.spad" 2037265 2037274 2039760 2039765) (-1205 "SWITCH.spad" 2034036 2034045 2037255 2037260) (-1204 "SUTS.spad" 2031015 2031043 2032434 2032531) (-1203 "SUPXS.spad" 2028217 2028245 2029066 2029215) (-1202 "SUPFRACF.spad" 2027322 2027340 2028207 2028212) (-1201 "SUP2.spad" 2026714 2026727 2027312 2027317) (-1200 "SUP.spad" 2023356 2023367 2024129 2024282) (-1199 "SUMRF.spad" 2022330 2022341 2023346 2023351) (-1198 "SUMFS.spad" 2021959 2021976 2022320 2022325) (-1197 "SULS.spad" 2011517 2011545 2012475 2012904) (-1196 "SUCHTAST.spad" 2011286 2011295 2011507 2011512) (-1195 "SUCH.spad" 2010976 2010991 2011276 2011281) (-1194 "SUBSPACE.spad" 2003107 2003122 2010966 2010971) (-1193 "SUBRESP.spad" 2002277 2002291 2003063 2003068) (-1192 "STTFNC.spad" 1998745 1998761 2002267 2002272) (-1191 "STTF.spad" 1994844 1994860 1998735 1998740) (-1190 "STTAYLOR.spad" 1987489 1987500 1994719 1994724) (-1189 "STRTBL.spad" 1985504 1985521 1985653 1985680) (-1188 "STRING.spad" 1984270 1984279 1984491 1984518) (-1187 "STREAM3.spad" 1983843 1983858 1984260 1984265) (-1186 "STREAM2.spad" 1982971 1982984 1983833 1983838) (-1185 "STREAM1.spad" 1982677 1982688 1982961 1982966) (-1184 "STREAM.spad" 1979463 1979474 1982070 1982085) (-1183 "STINPROD.spad" 1978399 1978415 1979453 1979458) (-1182 "STEPAST.spad" 1977633 1977642 1978389 1978394) (-1181 "STEP.spad" 1976842 1976851 1977623 1977628) (-1180 "STBL.spad" 1974890 1974918 1975057 1975072) (-1179 "STAGG.spad" 1973589 1973600 1974880 1974885) (-1178 "STAGG.spad" 1972286 1972299 1973579 1973584) (-1177 "STACK.spad" 1971514 1971525 1971764 1971791) (-1176 "SRING.spad" 1971274 1971283 1971504 1971509) (-1175 "SREGSET.spad" 1968973 1968990 1970875 1970902) (-1174 "SRDCMPK.spad" 1967550 1967570 1968963 1968968) (-1173 "SRAGG.spad" 1962733 1962742 1967518 1967545) (-1172 "SRAGG.spad" 1957936 1957947 1962723 1962728) (-1171 "SQMATRIX.spad" 1955431 1955449 1956347 1956434) (-1170 "SPLTREE.spad" 1949897 1949910 1954693 1954720) (-1169 "SPLNODE.spad" 1946517 1946530 1949887 1949892) (-1168 "SPFCAT.spad" 1945326 1945335 1946507 1946512) (-1167 "SPECOUT.spad" 1943878 1943887 1945316 1945321) (-1166 "SPADXPT.spad" 1935969 1935978 1943868 1943873) (-1165 "spad-parser.spad" 1935434 1935443 1935959 1935964) (-1164 "SPADAST.spad" 1935135 1935144 1935424 1935429) (-1163 "SPACEC.spad" 1919350 1919361 1935125 1935130) (-1162 "SPACE3.spad" 1919126 1919137 1919340 1919345) (-1161 "SORTPAK.spad" 1918675 1918688 1919082 1919087) (-1160 "SOLVETRA.spad" 1916438 1916449 1918665 1918670) (-1159 "SOLVESER.spad" 1914894 1914905 1916428 1916433) (-1158 "SOLVERAD.spad" 1910920 1910931 1914884 1914889) (-1157 "SOLVEFOR.spad" 1909382 1909400 1910910 1910915) (-1156 "SNTSCAT.spad" 1908982 1908999 1909350 1909377) (-1155 "SMTS.spad" 1907264 1907290 1908541 1908638) (-1154 "SMP.spad" 1904667 1904687 1905057 1905184) (-1153 "SMITH.spad" 1903512 1903537 1904657 1904662) (-1152 "SMATCAT.spad" 1901630 1901660 1903456 1903507) (-1151 "SMATCAT.spad" 1899680 1899712 1901508 1901513) (-1150 "SKAGG.spad" 1898649 1898660 1899648 1899675) (-1149 "SINT.spad" 1897589 1897598 1898515 1898644) (-1148 "SIMPAN.spad" 1897317 1897326 1897579 1897584) (-1147 "SIGNRF.spad" 1896442 1896453 1897307 1897312) (-1146 "SIGNEF.spad" 1895728 1895745 1896432 1896437) (-1145 "SIGAST.spad" 1895145 1895154 1895718 1895723) (-1144 "SIG.spad" 1894507 1894516 1895135 1895140) (-1143 "SHP.spad" 1892451 1892466 1894463 1894468) (-1142 "SHDP.spad" 1879806 1879833 1880323 1880422) (-1141 "SGROUP.spad" 1879414 1879423 1879796 1879801) (-1140 "SGROUP.spad" 1879020 1879031 1879404 1879409) (-1139 "SGCF.spad" 1872159 1872168 1879010 1879015) (-1138 "SFRTCAT.spad" 1871105 1871122 1872127 1872154) (-1137 "SFRGCD.spad" 1870168 1870188 1871095 1871100) (-1136 "SFQCMPK.spad" 1864981 1865001 1870158 1870163) (-1135 "SFORT.spad" 1864420 1864434 1864971 1864976) (-1134 "SEXOF.spad" 1864263 1864303 1864410 1864415) (-1133 "SEXCAT.spad" 1862091 1862131 1864253 1864258) (-1132 "SEX.spad" 1861983 1861992 1862081 1862086) (-1131 "SETMN.spad" 1860443 1860460 1861973 1861978) (-1130 "SETCAT.spad" 1859928 1859937 1860433 1860438) (-1129 "SETCAT.spad" 1859411 1859422 1859918 1859923) (-1128 "SETAGG.spad" 1855960 1855971 1859391 1859406) (-1127 "SETAGG.spad" 1852517 1852530 1855950 1855955) (-1126 "SET.spad" 1850790 1850801 1851887 1851926) (-1125 "SEQAST.spad" 1850493 1850502 1850780 1850785) (-1124 "SEGXCAT.spad" 1849649 1849662 1850483 1850488) (-1123 "SEGCAT.spad" 1848574 1848585 1849639 1849644) (-1122 "SEGBIND2.spad" 1848272 1848285 1848564 1848569) (-1121 "SEGBIND.spad" 1848030 1848041 1848219 1848224) (-1120 "SEGAST.spad" 1847760 1847769 1848020 1848025) (-1119 "SEG2.spad" 1847195 1847208 1847716 1847721) (-1118 "SEG.spad" 1847008 1847019 1847114 1847119) (-1117 "SDVAR.spad" 1846284 1846295 1846998 1847003) (-1116 "SDPOL.spad" 1843539 1843550 1843830 1843957) (-1115 "SCPKG.spad" 1841628 1841639 1843529 1843534) (-1114 "SCOPE.spad" 1840805 1840814 1841618 1841623) (-1113 "SCACHE.spad" 1839501 1839512 1840795 1840800) (-1112 "SASTCAT.spad" 1839410 1839419 1839491 1839496) (-1111 "SAOS.spad" 1839282 1839291 1839400 1839405) (-1110 "SAERFFC.spad" 1838995 1839015 1839272 1839277) (-1109 "SAEFACT.spad" 1838696 1838716 1838985 1838990) (-1108 "SAE.spad" 1836130 1836146 1836741 1836876) (-1107 "RURPK.spad" 1833789 1833805 1836120 1836125) (-1106 "RULESET.spad" 1833242 1833266 1833779 1833784) (-1105 "RULECOLD.spad" 1833094 1833107 1833232 1833237) (-1104 "RULE.spad" 1831342 1831366 1833084 1833089) (-1103 "RTVALUE.spad" 1831077 1831086 1831332 1831337) (-1102 "RSTRCAST.spad" 1830794 1830803 1831067 1831072) (-1101 "RSETGCD.spad" 1827236 1827256 1830784 1830789) (-1100 "RSETCAT.spad" 1817204 1817221 1827204 1827231) (-1099 "RSETCAT.spad" 1807192 1807211 1817194 1817199) (-1098 "RSDCMPK.spad" 1805692 1805712 1807182 1807187) (-1097 "RRCC.spad" 1804076 1804106 1805682 1805687) (-1096 "RRCC.spad" 1802458 1802490 1804066 1804071) (-1095 "RPTAST.spad" 1802160 1802169 1802448 1802453) (-1094 "RPOLCAT.spad" 1781664 1781679 1802028 1802155) (-1093 "RPOLCAT.spad" 1760863 1760880 1781229 1781234) (-1092 "ROUTINE.spad" 1756264 1756273 1759012 1759039) (-1091 "ROMAN.spad" 1755592 1755601 1756130 1756259) (-1090 "ROIRC.spad" 1754672 1754704 1755582 1755587) (-1089 "RNS.spad" 1753648 1753657 1754574 1754667) (-1088 "RNS.spad" 1752710 1752721 1753638 1753643) (-1087 "RNGBIND.spad" 1751870 1751884 1752665 1752670) (-1086 "RNG.spad" 1751605 1751614 1751860 1751865) (-1085 "RMODULE.spad" 1751386 1751397 1751595 1751600) (-1084 "RMCAT2.spad" 1750806 1750863 1751376 1751381) (-1083 "RMATRIX.spad" 1749576 1749595 1749919 1749958) (-1082 "RMATCAT.spad" 1745155 1745186 1749532 1749571) (-1081 "RMATCAT.spad" 1740624 1740657 1745003 1745008) (-1080 "RLINSET.spad" 1740328 1740339 1740614 1740619) (-1079 "RINTERP.spad" 1740216 1740236 1740318 1740323) (-1078 "RING.spad" 1739686 1739695 1740196 1740211) (-1077 "RING.spad" 1739164 1739175 1739676 1739681) (-1076 "RIDIST.spad" 1738556 1738565 1739154 1739159) (-1075 "RGCHAIN.spad" 1737077 1737093 1737971 1737998) (-1074 "RGBCSPC.spad" 1736866 1736878 1737067 1737072) (-1073 "RGBCMDL.spad" 1736428 1736440 1736856 1736861) (-1072 "RFFACTOR.spad" 1735890 1735901 1736418 1736423) (-1071 "RFFACT.spad" 1735625 1735637 1735880 1735885) (-1070 "RFDIST.spad" 1734621 1734630 1735615 1735620) (-1069 "RF.spad" 1732295 1732306 1734611 1734616) (-1068 "RETSOL.spad" 1731714 1731727 1732285 1732290) (-1067 "RETRACT.spad" 1731142 1731153 1731704 1731709) (-1066 "RETRACT.spad" 1730568 1730581 1731132 1731137) (-1065 "RETAST.spad" 1730380 1730389 1730558 1730563) (-1064 "RESULT.spad" 1727942 1727951 1728529 1728556) (-1063 "RESRING.spad" 1727289 1727336 1727880 1727937) (-1062 "RESLATC.spad" 1726613 1726624 1727279 1727284) (-1061 "REPSQ.spad" 1726344 1726355 1726603 1726608) (-1060 "REPDB.spad" 1726051 1726062 1726334 1726339) (-1059 "REP2.spad" 1715765 1715776 1725893 1725898) (-1058 "REP1.spad" 1709985 1709996 1715715 1715720) (-1057 "REP.spad" 1707539 1707548 1709975 1709980) (-1056 "REGSET.spad" 1705331 1705348 1707140 1707167) (-1055 "REF.spad" 1704666 1704677 1705286 1705291) (-1054 "REDORDER.spad" 1703872 1703889 1704656 1704661) (-1053 "RECLOS.spad" 1702631 1702651 1703335 1703428) (-1052 "REALSOLV.spad" 1701771 1701780 1702621 1702626) (-1051 "REAL0Q.spad" 1699069 1699084 1701761 1701766) (-1050 "REAL0.spad" 1695913 1695928 1699059 1699064) (-1049 "REAL.spad" 1695785 1695794 1695903 1695908) (-1048 "RDUCEAST.spad" 1695506 1695515 1695775 1695780) (-1047 "RDIV.spad" 1695161 1695186 1695496 1695501) (-1046 "RDIST.spad" 1694728 1694739 1695151 1695156) (-1045 "RDETRS.spad" 1693592 1693610 1694718 1694723) (-1044 "RDETR.spad" 1691731 1691749 1693582 1693587) (-1043 "RDEEFS.spad" 1690830 1690847 1691721 1691726) (-1042 "RDEEF.spad" 1689840 1689857 1690820 1690825) (-1041 "RCFIELD.spad" 1687058 1687067 1689742 1689835) (-1040 "RCFIELD.spad" 1684362 1684373 1687048 1687053) (-1039 "RCAGG.spad" 1682298 1682309 1684352 1684357) (-1038 "RCAGG.spad" 1680161 1680174 1682217 1682222) (-1037 "RATRET.spad" 1679521 1679532 1680151 1680156) (-1036 "RATFACT.spad" 1679213 1679225 1679511 1679516) (-1035 "RANDSRC.spad" 1678532 1678541 1679203 1679208) (-1034 "RADUTIL.spad" 1678288 1678297 1678522 1678527) (-1033 "RADIX.spad" 1675067 1675081 1676613 1676706) (-1032 "RADFF.spad" 1672770 1672807 1672889 1673045) (-1031 "RADCAT.spad" 1672365 1672374 1672760 1672765) (-1030 "RADCAT.spad" 1671958 1671969 1672355 1672360) (-1029 "QUEUE.spad" 1671177 1671188 1671436 1671463) (-1028 "QUATCT2.spad" 1670797 1670816 1671167 1671172) (-1027 "QUATCAT.spad" 1668967 1668978 1670727 1670792) (-1026 "QUATCAT.spad" 1666885 1666898 1668647 1668652) (-1025 "QUAT.spad" 1665337 1665348 1665680 1665745) (-1024 "QUAGG.spad" 1664170 1664181 1665305 1665332) (-1023 "QQUTAST.spad" 1663938 1663947 1664160 1664165) (-1022 "QFORM.spad" 1663556 1663571 1663928 1663933) (-1021 "QFCAT2.spad" 1663248 1663265 1663546 1663551) (-1020 "QFCAT.spad" 1661950 1661961 1663150 1663243) (-1019 "QFCAT.spad" 1660234 1660247 1661436 1661441) (-1018 "QEQUAT.spad" 1659792 1659801 1660224 1660229) (-1017 "QCMPACK.spad" 1654706 1654726 1659782 1659787) (-1016 "QALGSET2.spad" 1652701 1652720 1654696 1654701) (-1015 "QALGSET.spad" 1648805 1648838 1652615 1652620) (-1014 "PWFFINTB.spad" 1646220 1646242 1648795 1648800) (-1013 "PUSHVAR.spad" 1645558 1645578 1646210 1646215) (-1012 "PTRANFN.spad" 1641693 1641704 1645548 1645553) (-1011 "PTPACK.spad" 1638780 1638791 1641683 1641688) (-1010 "PTFUNC2.spad" 1638602 1638617 1638770 1638775) (-1009 "PTCAT.spad" 1637856 1637867 1638570 1638597) (-1008 "PSQFR.spad" 1637170 1637195 1637846 1637851) (-1007 "PSEUDLIN.spad" 1636055 1636066 1637160 1637165) (-1006 "PSETPK.spad" 1622759 1622776 1635933 1635938) (-1005 "PSETCAT.spad" 1617158 1617182 1622739 1622754) (-1004 "PSETCAT.spad" 1611531 1611557 1617114 1617119) (-1003 "PSCURVE.spad" 1610529 1610538 1611521 1611526) (-1002 "PSCAT.spad" 1609311 1609341 1610427 1610524) (-1001 "PSCAT.spad" 1608183 1608215 1609301 1609306) (-1000 "PRTITION.spad" 1606880 1606889 1608173 1608178) (-999 "PRTDAST.spad" 1606599 1606607 1606870 1606875) (-998 "PRS.spad" 1596217 1596234 1606555 1606560) (-997 "PRQAGG.spad" 1595652 1595662 1596185 1596212) (-996 "PROPLOG.spad" 1595256 1595264 1595642 1595647) (-995 "PROPFUN2.spad" 1594879 1594892 1595246 1595251) (-994 "PROPFUN1.spad" 1594285 1594296 1594869 1594874) (-993 "PROPFRML.spad" 1592853 1592864 1594275 1594280) (-992 "PROPERTY.spad" 1592349 1592357 1592843 1592848) (-991 "PRODUCT.spad" 1590031 1590043 1590315 1590370) (-990 "PRINT.spad" 1589783 1589791 1590021 1590026) (-989 "PRIMES.spad" 1588044 1588054 1589773 1589778) (-988 "PRIMELT.spad" 1586165 1586179 1588034 1588039) (-987 "PRIMCAT.spad" 1585808 1585816 1586155 1586160) (-986 "PRIMARR2.spad" 1584575 1584587 1585798 1585803) (-985 "PRIMARR.spad" 1583414 1583424 1583584 1583611) (-984 "PREASSOC.spad" 1582796 1582808 1583404 1583409) (-983 "PR.spad" 1581161 1581173 1581860 1581987) (-982 "PPCURVE.spad" 1580298 1580306 1581151 1581156) (-981 "PORTNUM.spad" 1580089 1580097 1580288 1580293) (-980 "POLYROOT.spad" 1578938 1578960 1580045 1580050) (-979 "POLYLIFT.spad" 1578203 1578226 1578928 1578933) (-978 "POLYCATQ.spad" 1576329 1576351 1578193 1578198) (-977 "POLYCAT.spad" 1569831 1569852 1576197 1576324) (-976 "POLYCAT.spad" 1562629 1562652 1568997 1569002) (-975 "POLY2UP.spad" 1562081 1562095 1562619 1562624) (-974 "POLY2.spad" 1561678 1561690 1562071 1562076) (-973 "POLY.spad" 1558941 1558951 1559456 1559583) (-972 "POLUTIL.spad" 1557906 1557935 1558897 1558902) (-971 "POLTOPOL.spad" 1556654 1556669 1557896 1557901) (-970 "POINT.spad" 1555318 1555328 1555405 1555432) (-969 "PNTHEORY.spad" 1552020 1552028 1555308 1555313) (-968 "PMTOOLS.spad" 1550795 1550809 1552010 1552015) (-967 "PMSYM.spad" 1550344 1550354 1550785 1550790) (-966 "PMQFCAT.spad" 1549935 1549949 1550334 1550339) (-965 "PMPREDFS.spad" 1549397 1549419 1549925 1549930) (-964 "PMPRED.spad" 1548884 1548898 1549387 1549392) (-963 "PMPLCAT.spad" 1547961 1547979 1548813 1548818) (-962 "PMLSAGG.spad" 1547546 1547560 1547951 1547956) (-961 "PMKERNEL.spad" 1547125 1547137 1547536 1547541) (-960 "PMINS.spad" 1546705 1546715 1547115 1547120) (-959 "PMFS.spad" 1546282 1546300 1546695 1546700) (-958 "PMDOWN.spad" 1545572 1545586 1546272 1546277) (-957 "PMASSFS.spad" 1544547 1544563 1545562 1545567) (-956 "PMASS.spad" 1543565 1543573 1544537 1544542) (-955 "PLOTTOOL.spad" 1543345 1543353 1543555 1543560) (-954 "PLOT3D.spad" 1539809 1539817 1543335 1543340) (-953 "PLOT1.spad" 1538982 1538992 1539799 1539804) (-952 "PLOT.spad" 1533905 1533913 1538972 1538977) (-951 "PLEQN.spad" 1521307 1521334 1533895 1533900) (-950 "PINTERPA.spad" 1521091 1521107 1521297 1521302) (-949 "PINTERP.spad" 1520713 1520732 1521081 1521086) (-948 "PID.spad" 1519687 1519695 1520639 1520708) (-947 "PICOERCE.spad" 1519344 1519354 1519677 1519682) (-946 "PI.spad" 1518961 1518969 1519318 1519339) (-945 "PGROEB.spad" 1517570 1517584 1518951 1518956) (-944 "PGE.spad" 1509243 1509251 1517560 1517565) (-943 "PGCD.spad" 1508197 1508214 1509233 1509238) (-942 "PFRPAC.spad" 1507346 1507356 1508187 1508192) (-941 "PFR.spad" 1504049 1504059 1507248 1507341) (-940 "PFOTOOLS.spad" 1503307 1503323 1504039 1504044) (-939 "PFOQ.spad" 1502677 1502695 1503297 1503302) (-938 "PFO.spad" 1502096 1502123 1502667 1502672) (-937 "PFECAT.spad" 1499806 1499814 1502022 1502091) (-936 "PFECAT.spad" 1497544 1497554 1499762 1499767) (-935 "PFBRU.spad" 1495432 1495444 1497534 1497539) (-934 "PFBR.spad" 1492992 1493015 1495422 1495427) (-933 "PF.spad" 1492566 1492578 1492797 1492890) (-932 "PERMGRP.spad" 1487336 1487346 1492556 1492561) (-931 "PERMCAT.spad" 1485997 1486007 1487316 1487331) (-930 "PERMAN.spad" 1484553 1484567 1485987 1485992) (-929 "PERM.spad" 1480360 1480370 1484383 1484398) (-928 "PENDTREE.spad" 1479580 1479590 1479860 1479865) (-927 "PDSPC.spad" 1478393 1478403 1479570 1479575) (-926 "PDSPC.spad" 1477204 1477216 1478383 1478388) (-925 "PDRING.spad" 1477046 1477056 1477184 1477199) (-924 "PDMOD.spad" 1476862 1476874 1477014 1477041) (-923 "PDEPROB.spad" 1475877 1475885 1476852 1476857) (-922 "PDEPACK.spad" 1470013 1470021 1475867 1475872) (-921 "PDECOMP.spad" 1469483 1469500 1470003 1470008) (-920 "PDECAT.spad" 1467839 1467847 1469473 1469478) (-919 "PDDOM.spad" 1467277 1467290 1467829 1467834) (-918 "PDDOM.spad" 1466713 1466728 1467267 1467272) (-917 "PCOMP.spad" 1466566 1466579 1466703 1466708) (-916 "PBWLB.spad" 1465162 1465179 1466556 1466561) (-915 "PATTERN2.spad" 1464900 1464912 1465152 1465157) (-914 "PATTERN1.spad" 1463244 1463260 1464890 1464895) (-913 "PATTERN.spad" 1457815 1457825 1463234 1463239) (-912 "PATRES2.spad" 1457487 1457501 1457805 1457810) (-911 "PATRES.spad" 1455070 1455082 1457477 1457482) (-910 "PATMATCH.spad" 1453258 1453289 1454769 1454774) (-909 "PATMAB.spad" 1452687 1452697 1453248 1453253) (-908 "PATLRES.spad" 1451773 1451787 1452677 1452682) (-907 "PATAB.spad" 1451537 1451547 1451763 1451768) (-906 "PARTPERM.spad" 1449593 1449601 1451527 1451532) (-905 "PARSURF.spad" 1449027 1449055 1449583 1449588) (-904 "PARSU2.spad" 1448824 1448840 1449017 1449022) (-903 "script-parser.spad" 1448344 1448352 1448814 1448819) (-902 "PARSCURV.spad" 1447778 1447806 1448334 1448339) (-901 "PARSC2.spad" 1447569 1447585 1447768 1447773) (-900 "PARPCURV.spad" 1447031 1447059 1447559 1447564) (-899 "PARPC2.spad" 1446822 1446838 1447021 1447026) (-898 "PARAMAST.spad" 1445950 1445958 1446812 1446817) (-897 "PAN2EXPR.spad" 1445362 1445370 1445940 1445945) (-896 "PALETTE.spad" 1444348 1444356 1445352 1445357) (-895 "PAIR.spad" 1443355 1443368 1443924 1443929) (-894 "PADICRC.spad" 1440559 1440577 1441722 1441815) (-893 "PADICRAT.spad" 1438418 1438430 1438631 1438724) (-892 "PADICCT.spad" 1436967 1436979 1438344 1438413) (-891 "PADIC.spad" 1436670 1436682 1436893 1436962) (-890 "PADEPAC.spad" 1435359 1435378 1436660 1436665) (-889 "PADE.spad" 1434111 1434127 1435349 1435354) (-888 "OWP.spad" 1433359 1433389 1433969 1434036) (-887 "OVERSET.spad" 1432932 1432940 1433349 1433354) (-886 "OVAR.spad" 1432713 1432736 1432922 1432927) (-885 "OUTFORM.spad" 1422121 1422129 1432703 1432708) (-884 "OUTBFILE.spad" 1421555 1421563 1422111 1422116) (-883 "OUTBCON.spad" 1420625 1420633 1421545 1421550) (-882 "OUTBCON.spad" 1419693 1419703 1420615 1420620) (-881 "OUT.spad" 1418811 1418819 1419683 1419688) (-880 "OSI.spad" 1418286 1418294 1418801 1418806) (-879 "OSGROUP.spad" 1418204 1418212 1418276 1418281) (-878 "ORTHPOL.spad" 1416683 1416693 1418115 1418120) (-877 "OREUP.spad" 1416127 1416155 1416354 1416393) (-876 "ORESUP.spad" 1415419 1415443 1415798 1415837) (-875 "OREPCTO.spad" 1413308 1413320 1415339 1415344) (-874 "OREPCAT.spad" 1407495 1407505 1413264 1413303) (-873 "OREPCAT.spad" 1401572 1401584 1407343 1407348) (-872 "ORDTYPE.spad" 1400809 1400817 1401562 1401567) (-871 "ORDTYPE.spad" 1400044 1400054 1400799 1400804) (-870 "ORDSTRCT.spad" 1399814 1399829 1399977 1399982) (-869 "ORDSET.spad" 1399514 1399522 1399804 1399809) (-868 "ORDRING.spad" 1399331 1399339 1399494 1399509) (-867 "ORDMON.spad" 1399186 1399194 1399321 1399326) (-866 "ORDFUNS.spad" 1398318 1398334 1399176 1399181) (-865 "ORDFIN.spad" 1398138 1398146 1398308 1398313) (-864 "ORDCOMP2.spad" 1397431 1397443 1398128 1398133) (-863 "ORDCOMP.spad" 1395884 1395894 1396966 1396995) (-862 "OPTPROB.spad" 1394522 1394530 1395874 1395879) (-861 "OPTPACK.spad" 1386931 1386939 1394512 1394517) (-860 "OPTCAT.spad" 1384610 1384618 1386921 1386926) (-859 "OPSIG.spad" 1384272 1384280 1384600 1384605) (-858 "OPQUERY.spad" 1383853 1383861 1384262 1384267) (-857 "OPERCAT.spad" 1383319 1383329 1383843 1383848) (-856 "OPERCAT.spad" 1382783 1382795 1383309 1383314) (-855 "OP.spad" 1382525 1382535 1382605 1382672) (-854 "ONECOMP2.spad" 1381949 1381961 1382515 1382520) (-853 "ONECOMP.spad" 1380682 1380692 1381484 1381513) (-852 "OMSAGG.spad" 1380470 1380480 1380638 1380677) (-851 "OMPKG.spad" 1379102 1379110 1380460 1380465) (-850 "OMLO.spad" 1378535 1378547 1378988 1379027) (-849 "OMEXPR.spad" 1378369 1378379 1378525 1378530) (-848 "OMERRK.spad" 1377419 1377427 1378359 1378364) (-847 "OMERR.spad" 1376964 1376972 1377409 1377414) (-846 "OMENC.spad" 1376316 1376324 1376954 1376959) (-845 "OMDEV.spad" 1370649 1370657 1376306 1376311) (-844 "OMCONN.spad" 1370058 1370066 1370639 1370644) (-843 "OM.spad" 1369055 1369063 1370048 1370053) (-842 "OINTDOM.spad" 1368818 1368826 1368981 1369050) (-841 "OFMONOID.spad" 1366957 1366967 1368774 1368779) (-840 "ODVAR.spad" 1366218 1366228 1366947 1366952) (-839 "ODR.spad" 1365862 1365888 1366030 1366179) (-838 "ODPOL.spad" 1363073 1363083 1363413 1363540) (-837 "ODP.spad" 1350572 1350592 1350945 1351044) (-836 "ODETOOLS.spad" 1349221 1349240 1350562 1350567) (-835 "ODESYS.spad" 1346915 1346932 1349211 1349216) (-834 "ODERTRIC.spad" 1342948 1342965 1346872 1346877) (-833 "ODERED.spad" 1342347 1342371 1342938 1342943) (-832 "ODERAT.spad" 1339980 1339997 1342337 1342342) (-831 "ODEPRRIC.spad" 1337073 1337095 1339970 1339975) (-830 "ODEPROB.spad" 1336330 1336338 1337063 1337068) (-829 "ODEPRIM.spad" 1333728 1333750 1336320 1336325) (-828 "ODEPAL.spad" 1333114 1333138 1333718 1333723) (-827 "ODEPACK.spad" 1319844 1319852 1333104 1333109) (-826 "ODEINT.spad" 1319279 1319295 1319834 1319839) (-825 "ODEIFTBL.spad" 1316682 1316690 1319269 1319274) (-824 "ODEEF.spad" 1312177 1312193 1316672 1316677) (-823 "ODECONST.spad" 1311722 1311740 1312167 1312172) (-822 "ODECAT.spad" 1310320 1310328 1311712 1311717) (-821 "OCTCT2.spad" 1309958 1309979 1310310 1310315) (-820 "OCT.spad" 1308046 1308056 1308760 1308799) (-819 "OCAMON.spad" 1307894 1307902 1308036 1308041) (-818 "OC.spad" 1305690 1305700 1307850 1307889) (-817 "OC.spad" 1303208 1303220 1305370 1305375) (-816 "OASGP.spad" 1303023 1303031 1303198 1303203) (-815 "OAMONS.spad" 1302545 1302553 1303013 1303018) (-814 "OAMON.spad" 1302303 1302311 1302535 1302540) (-813 "OAMON.spad" 1302059 1302069 1302293 1302298) (-812 "OAGROUP.spad" 1301597 1301605 1302049 1302054) (-811 "OAGROUP.spad" 1301133 1301143 1301587 1301592) (-810 "NUMTUBE.spad" 1300724 1300740 1301123 1301128) (-809 "NUMQUAD.spad" 1288700 1288708 1300714 1300719) (-808 "NUMODE.spad" 1280052 1280060 1288690 1288695) (-807 "NUMINT.spad" 1277618 1277626 1280042 1280047) (-806 "NUMFMT.spad" 1276458 1276466 1277608 1277613) (-805 "NUMERIC.spad" 1268572 1268582 1276263 1276268) (-804 "NTSCAT.spad" 1267080 1267096 1268540 1268567) (-803 "NTPOLFN.spad" 1266625 1266635 1266991 1266996) (-802 "NSUP2.spad" 1266017 1266029 1266615 1266620) (-801 "NSUP.spad" 1259012 1259022 1263432 1263585) (-800 "NSMP.spad" 1255111 1255130 1255403 1255530) (-799 "NREP.spad" 1253513 1253527 1255101 1255106) (-798 "NPCOEF.spad" 1252759 1252779 1253503 1253508) (-797 "NORMRETR.spad" 1252357 1252396 1252749 1252754) (-796 "NORMPK.spad" 1250299 1250318 1252347 1252352) (-795 "NORMMA.spad" 1249987 1250013 1250289 1250294) (-794 "NONE1.spad" 1249663 1249673 1249977 1249982) (-793 "NONE.spad" 1249404 1249412 1249653 1249658) (-792 "NODE1.spad" 1248891 1248907 1249394 1249399) (-791 "NNI.spad" 1247786 1247794 1248865 1248886) (-790 "NLINSOL.spad" 1246412 1246422 1247776 1247781) (-789 "NIPROB.spad" 1244953 1244961 1246402 1246407) (-788 "NFINTBAS.spad" 1242513 1242530 1244943 1244948) (-787 "NETCLT.spad" 1242487 1242498 1242503 1242508) (-786 "NCODIV.spad" 1240711 1240727 1242477 1242482) (-785 "NCNTFRAC.spad" 1240353 1240367 1240701 1240706) (-784 "NCEP.spad" 1238519 1238533 1240343 1240348) (-783 "NASRING.spad" 1238123 1238131 1238509 1238514) (-782 "NASRING.spad" 1237725 1237735 1238113 1238118) (-781 "NARNG.spad" 1237125 1237133 1237715 1237720) (-780 "NARNG.spad" 1236523 1236533 1237115 1237120) (-779 "NAGSP.spad" 1235600 1235608 1236513 1236518) (-778 "NAGS.spad" 1225317 1225325 1235590 1235595) (-777 "NAGF07.spad" 1223748 1223756 1225307 1225312) (-776 "NAGF04.spad" 1218150 1218158 1223738 1223743) (-775 "NAGF02.spad" 1212243 1212251 1218140 1218145) (-774 "NAGF01.spad" 1208012 1208020 1212233 1212238) (-773 "NAGE04.spad" 1201720 1201728 1208002 1208007) (-772 "NAGE02.spad" 1192372 1192380 1201710 1201715) (-771 "NAGE01.spad" 1188366 1188374 1192362 1192367) (-770 "NAGD03.spad" 1186362 1186370 1188356 1188361) (-769 "NAGD02.spad" 1179093 1179101 1186352 1186357) (-768 "NAGD01.spad" 1173378 1173386 1179083 1179088) (-767 "NAGC06.spad" 1169245 1169253 1173368 1173373) (-766 "NAGC05.spad" 1167738 1167746 1169235 1169240) (-765 "NAGC02.spad" 1167013 1167021 1167728 1167733) (-764 "NAALG.spad" 1166578 1166588 1166981 1167008) (-763 "NAALG.spad" 1166163 1166175 1166568 1166573) (-762 "MULTSQFR.spad" 1163121 1163138 1166153 1166158) (-761 "MULTFACT.spad" 1162504 1162521 1163111 1163116) (-760 "MTSCAT.spad" 1160598 1160619 1162402 1162499) (-759 "MTHING.spad" 1160257 1160267 1160588 1160593) (-758 "MSYSCMD.spad" 1159691 1159699 1160247 1160252) (-757 "MSETAGG.spad" 1159536 1159546 1159659 1159686) (-756 "MSET.spad" 1157449 1157459 1159197 1159236) (-755 "MRING.spad" 1154426 1154438 1157157 1157224) (-754 "MRF2.spad" 1153988 1154002 1154416 1154421) (-753 "MRATFAC.spad" 1153534 1153551 1153978 1153983) (-752 "MPRFF.spad" 1151574 1151593 1153524 1153529) (-751 "MPOLY.spad" 1148973 1148988 1149332 1149459) (-750 "MPCPF.spad" 1148237 1148256 1148963 1148968) (-749 "MPC3.spad" 1148054 1148094 1148227 1148232) (-748 "MPC2.spad" 1147707 1147740 1148044 1148049) (-747 "MONOTOOL.spad" 1146058 1146075 1147697 1147702) (-746 "MONOID.spad" 1145377 1145385 1146048 1146053) (-745 "MONOID.spad" 1144694 1144704 1145367 1145372) (-744 "MONOGEN.spad" 1143442 1143455 1144554 1144689) (-743 "MONOGEN.spad" 1142212 1142227 1143326 1143331) (-742 "MONADWU.spad" 1140290 1140298 1142202 1142207) (-741 "MONADWU.spad" 1138366 1138376 1140280 1140285) (-740 "MONAD.spad" 1137526 1137534 1138356 1138361) (-739 "MONAD.spad" 1136684 1136694 1137516 1137521) (-738 "MOEBIUS.spad" 1135420 1135434 1136664 1136679) (-737 "MODULE.spad" 1135290 1135300 1135388 1135415) (-736 "MODULE.spad" 1135180 1135192 1135280 1135285) (-735 "MODRING.spad" 1134515 1134554 1135160 1135175) (-734 "MODOP.spad" 1133172 1133184 1134337 1134404) (-733 "MODMONOM.spad" 1132903 1132921 1133162 1133167) (-732 "MODMON.spad" 1129527 1129543 1130246 1130399) (-731 "MODFIELD.spad" 1128889 1128928 1129429 1129522) (-730 "MMLFORM.spad" 1127749 1127757 1128879 1128884) (-729 "MMAP.spad" 1127491 1127525 1127739 1127744) (-728 "MLO.spad" 1125950 1125960 1127447 1127486) (-727 "MLIFT.spad" 1124562 1124579 1125940 1125945) (-726 "MKUCFUNC.spad" 1124097 1124115 1124552 1124557) (-725 "MKRECORD.spad" 1123685 1123698 1124087 1124092) (-724 "MKFUNC.spad" 1123092 1123102 1123675 1123680) (-723 "MKFLCFN.spad" 1122060 1122070 1123082 1123087) (-722 "MKBCFUNC.spad" 1121555 1121573 1122050 1122055) (-721 "MINT.spad" 1120994 1121002 1121457 1121550) (-720 "MHROWRED.spad" 1119505 1119515 1120984 1120989) (-719 "MFLOAT.spad" 1118025 1118033 1119395 1119500) (-718 "MFINFACT.spad" 1117425 1117447 1118015 1118020) (-717 "MESH.spad" 1115220 1115228 1117415 1117420) (-716 "MDDFACT.spad" 1113439 1113449 1115210 1115215) (-715 "MDAGG.spad" 1112730 1112740 1113419 1113434) (-714 "MCMPLX.spad" 1108095 1108103 1108709 1108910) (-713 "MCDEN.spad" 1107305 1107317 1108085 1108090) (-712 "MCALCFN.spad" 1104403 1104429 1107295 1107300) (-711 "MAYBE.spad" 1103703 1103714 1104393 1104398) (-710 "MATSTOR.spad" 1101019 1101029 1103693 1103698) (-709 "MATRIX.spad" 1099585 1099595 1100069 1100096) (-708 "MATLIN.spad" 1096953 1096977 1099469 1099474) (-707 "MATCAT2.spad" 1096235 1096283 1096943 1096948) (-706 "MATCAT.spad" 1087797 1087819 1096203 1096230) (-705 "MATCAT.spad" 1079231 1079255 1087639 1087644) (-704 "MAPPKG3.spad" 1078146 1078160 1079221 1079226) (-703 "MAPPKG2.spad" 1077484 1077496 1078136 1078141) (-702 "MAPPKG1.spad" 1076312 1076322 1077474 1077479) (-701 "MAPPAST.spad" 1075651 1075659 1076302 1076307) (-700 "MAPHACK3.spad" 1075463 1075477 1075641 1075646) (-699 "MAPHACK2.spad" 1075232 1075244 1075453 1075458) (-698 "MAPHACK1.spad" 1074876 1074886 1075222 1075227) (-697 "MAGMA.spad" 1072682 1072699 1074866 1074871) (-696 "MACROAST.spad" 1072277 1072285 1072672 1072677) (-695 "M3D.spad" 1069862 1069872 1071520 1071525) (-694 "LZSTAGG.spad" 1067116 1067126 1069852 1069857) (-693 "LZSTAGG.spad" 1064368 1064380 1067106 1067111) (-692 "LWORD.spad" 1061113 1061130 1064358 1064363) (-691 "LSTAST.spad" 1060897 1060905 1061103 1061108) (-690 "LSQM.spad" 1059006 1059020 1059400 1059451) (-689 "LSPP.spad" 1058541 1058558 1058996 1059001) (-688 "LSMP1.spad" 1056384 1056398 1058531 1058536) (-687 "LSMP.spad" 1055241 1055269 1056374 1056379) (-686 "LSAGG.spad" 1054910 1054920 1055209 1055236) (-685 "LSAGG.spad" 1054599 1054611 1054900 1054905) (-684 "LPOLY.spad" 1053561 1053580 1054455 1054524) (-683 "LPEFRAC.spad" 1052832 1052842 1053551 1053556) (-682 "LOGIC.spad" 1052434 1052442 1052822 1052827) (-681 "LOGIC.spad" 1052034 1052044 1052424 1052429) (-680 "LODOOPS.spad" 1050964 1050976 1052024 1052029) (-679 "LODOF.spad" 1050010 1050027 1050921 1050926) (-678 "LODOCAT.spad" 1048676 1048686 1049966 1050005) (-677 "LODOCAT.spad" 1047340 1047352 1048632 1048637) (-676 "LODO2.spad" 1046604 1046616 1047011 1047050) (-675 "LODO1.spad" 1045995 1046005 1046275 1046314) (-674 "LODO.spad" 1045370 1045386 1045666 1045705) (-673 "LODEEF.spad" 1044172 1044190 1045360 1045365) (-672 "LO.spad" 1043573 1043587 1044106 1044133) (-671 "LNAGG.spad" 1039760 1039770 1043563 1043568) (-670 "LNAGG.spad" 1035911 1035923 1039716 1039721) (-669 "LMOPS.spad" 1032679 1032696 1035901 1035906) (-668 "LMODULE.spad" 1032463 1032473 1032669 1032674) (-667 "LMDICT.spad" 1031634 1031644 1031882 1031909) (-666 "LLINSET.spad" 1031341 1031351 1031624 1031629) (-665 "LITERAL.spad" 1031247 1031258 1031331 1031336) (-664 "LIST3.spad" 1030558 1030572 1031237 1031242) (-663 "LIST2MAP.spad" 1027485 1027497 1030548 1030553) (-662 "LIST2.spad" 1026187 1026199 1027475 1027480) (-661 "LIST.spad" 1023784 1023794 1025196 1025223) (-660 "LINSET.spad" 1023563 1023573 1023774 1023779) (-659 "LINFORM.spad" 1023026 1023038 1023531 1023558) (-658 "LINEXP.spad" 1021769 1021779 1023016 1023021) (-657 "LINELT.spad" 1021140 1021152 1021652 1021679) (-656 "LINDEP.spad" 1019989 1020001 1021052 1021057) (-655 "LINBASIS.spad" 1019625 1019640 1019979 1019984) (-654 "LIMITRF.spad" 1017572 1017582 1019615 1019620) (-653 "LIMITPS.spad" 1016482 1016495 1017562 1017567) (-652 "LIECAT.spad" 1015966 1015976 1016408 1016477) (-651 "LIECAT.spad" 1015478 1015490 1015922 1015927) (-650 "LIE.spad" 1013473 1013485 1014747 1014892) (-649 "LIB.spad" 1011188 1011196 1011634 1011649) (-648 "LGROBP.spad" 1008541 1008560 1011178 1011183) (-647 "LFCAT.spad" 1007600 1007608 1008531 1008536) (-646 "LF.spad" 1006555 1006571 1007590 1007595) (-645 "LEXTRIPK.spad" 1002178 1002193 1006545 1006550) (-644 "LEXP.spad" 1000197 1000224 1002158 1002173) (-643 "LETAST.spad" 999896 999904 1000187 1000192) (-642 "LEADCDET.spad" 998302 998319 999886 999891) (-641 "LAZM3PK.spad" 997046 997068 998292 998297) (-640 "LAUPOL.spad" 995631 995644 996531 996600) (-639 "LAPLACE.spad" 995214 995230 995621 995626) (-638 "LALG.spad" 994990 995000 995194 995209) (-637 "LALG.spad" 994774 994786 994980 994985) (-636 "LA.spad" 994214 994228 994696 994735) (-635 "KVTFROM.spad" 993957 993967 994204 994209) (-634 "KTVLOGIC.spad" 993501 993509 993947 993952) (-633 "KRCFROM.spad" 993247 993257 993491 993496) (-632 "KOVACIC.spad" 991978 991995 993237 993242) (-631 "KONVERT.spad" 991700 991710 991968 991973) (-630 "KOERCE.spad" 991437 991447 991690 991695) (-629 "KERNEL2.spad" 991140 991152 991427 991432) (-628 "KERNEL.spad" 989780 989790 990909 990914) (-627 "KDAGG.spad" 988889 988911 989760 989775) (-626 "KDAGG.spad" 988006 988030 988879 988884) (-625 "KAFILE.spad" 986836 986852 987071 987098) (-624 "JVMOP.spad" 986749 986757 986826 986831) (-623 "JVMMDACC.spad" 985803 985811 986739 986744) (-622 "JVMFDACC.spad" 985119 985127 985793 985798) (-621 "JVMCSTTG.spad" 983848 983856 985109 985114) (-620 "JVMCFACC.spad" 983294 983302 983838 983843) (-619 "JVMBCODE.spad" 983205 983213 983284 983289) (-618 "JORDAN.spad" 981013 981025 982474 982619) (-617 "JOINAST.spad" 980715 980723 981003 981008) (-616 "IXAGG.spad" 978848 978872 980705 980710) (-615 "IXAGG.spad" 976836 976862 978695 978700) (-614 "IVECTOR.spad" 975432 975447 975587 975614) (-613 "ITUPLE.spad" 974608 974618 975422 975427) (-612 "ITRIGMNP.spad" 973455 973474 974598 974603) (-611 "ITFUN3.spad" 972961 972975 973445 973450) (-610 "ITFUN2.spad" 972705 972717 972951 972956) (-609 "ITFORM.spad" 972060 972068 972695 972700) (-608 "ITAYLOR.spad" 970054 970069 971924 972021) (-607 "ISUPS.spad" 962452 962467 968989 969086) (-606 "ISUMP.spad" 961953 961969 962442 962447) (-605 "ISTRING.spad" 960859 960872 960940 960967) (-604 "ISAST.spad" 960578 960586 960849 960854) (-603 "IRURPK.spad" 959295 959314 960568 960573) (-602 "IRSN.spad" 957299 957307 959285 959290) (-601 "IRRF2F.spad" 955792 955802 957255 957260) (-600 "IRREDFFX.spad" 955393 955404 955782 955787) (-599 "IROOT.spad" 953732 953742 955383 955388) (-598 "IRFORM.spad" 953056 953064 953722 953727) (-597 "IR2F.spad" 952270 952286 953046 953051) (-596 "IR2.spad" 951298 951314 952260 952265) (-595 "IR.spad" 949101 949115 951147 951174) (-594 "IPRNTPK.spad" 948861 948869 949091 949096) (-593 "IPF.spad" 948426 948438 948666 948759) (-592 "IPADIC.spad" 948195 948221 948352 948421) (-591 "IP4ADDR.spad" 947752 947760 948185 948190) (-590 "IOMODE.spad" 947274 947282 947742 947747) (-589 "IOBFILE.spad" 946659 946667 947264 947269) (-588 "IOBCON.spad" 946524 946532 946649 946654) (-587 "INVLAPLA.spad" 946173 946189 946514 946519) (-586 "INTTR.spad" 939567 939584 946163 946168) (-585 "INTTOOLS.spad" 937310 937326 939129 939134) (-584 "INTSLPE.spad" 936638 936646 937300 937305) (-583 "INTRVL.spad" 936204 936214 936552 936633) (-582 "INTRF.spad" 934636 934650 936194 936199) (-581 "INTRET.spad" 934068 934078 934626 934631) (-580 "INTRAT.spad" 932803 932820 934058 934063) (-579 "INTPM.spad" 931170 931186 932428 932433) (-578 "INTPAF.spad" 929046 929064 931099 931104) (-577 "INTPACK.spad" 919612 919620 929036 929041) (-576 "INTHERTR.spad" 918886 918903 919602 919607) (-575 "INTHERAL.spad" 918556 918580 918876 918881) (-574 "INTHEORY.spad" 914995 915003 918546 918551) (-573 "INTG0.spad" 908759 908777 914924 914929) (-572 "INTFTBL.spad" 904213 904221 908749 908754) (-571 "INTFACT.spad" 903280 903290 904203 904208) (-570 "INTEF.spad" 901691 901707 903270 903275) (-569 "INTDOM.spad" 900314 900322 901617 901686) (-568 "INTDOM.spad" 898999 899009 900304 900309) (-567 "INTCAT.spad" 897266 897276 898913 898994) (-566 "INTBIT.spad" 896773 896781 897256 897261) (-565 "INTALG.spad" 895961 895988 896763 896768) (-564 "INTAF.spad" 895461 895477 895951 895956) (-563 "INTABL.spad" 893501 893532 893664 893691) (-562 "INT8.spad" 893381 893389 893491 893496) (-561 "INT64.spad" 893260 893268 893371 893376) (-560 "INT32.spad" 893139 893147 893250 893255) (-559 "INT16.spad" 893018 893026 893129 893134) (-558 "INT.spad" 892461 892469 892872 893013) (-557 "INS.spad" 889964 889972 892363 892456) (-556 "INS.spad" 887553 887563 889954 889959) (-555 "INPSIGN.spad" 887023 887036 887543 887548) (-554 "INPRODPF.spad" 886119 886138 887013 887018) (-553 "INPRODFF.spad" 885207 885231 886109 886114) (-552 "INNMFACT.spad" 884182 884199 885197 885202) (-551 "INMODGCD.spad" 883686 883716 884172 884177) (-550 "INFSP.spad" 881983 882005 883676 883681) (-549 "INFPROD0.spad" 881063 881082 881973 881978) (-548 "INFORM1.spad" 880688 880698 881053 881058) (-547 "INFORM.spad" 877895 877903 880678 880683) (-546 "INFINITY.spad" 877447 877455 877885 877890) (-545 "INETCLTS.spad" 877424 877432 877437 877442) (-544 "INEP.spad" 875970 875992 877414 877419) (-543 "INDE.spad" 875619 875636 875880 875885) (-542 "INCRMAPS.spad" 875056 875066 875609 875614) (-541 "INBFILE.spad" 874152 874160 875046 875051) (-540 "INBFF.spad" 870002 870013 874142 874147) (-539 "INBCON.spad" 868268 868276 869992 869997) (-538 "INBCON.spad" 866532 866542 868258 868263) (-537 "INAST.spad" 866193 866201 866522 866527) (-536 "IMPTAST.spad" 865901 865909 866183 866188) (-535 "IMATRIX.spad" 864717 864743 865229 865256) (-534 "IMATQF.spad" 863811 863855 864673 864678) (-533 "IMATLIN.spad" 862432 862456 863767 863772) (-532 "ILIST.spad" 860916 860931 861441 861468) (-531 "IIARRAY2.spad" 860191 860229 860394 860421) (-530 "IFF.spad" 859601 859617 859872 859965) (-529 "IFAST.spad" 859215 859223 859591 859596) (-528 "IFARRAY.spad" 856526 856541 858224 858251) (-527 "IFAMON.spad" 856388 856405 856482 856487) (-526 "IEVALAB.spad" 855801 855813 856378 856383) (-525 "IEVALAB.spad" 855212 855226 855791 855796) (-524 "IDPOAMS.spad" 854890 854902 855124 855129) (-523 "IDPOAM.spad" 854532 854544 854802 854807) (-522 "IDPO.spad" 854267 854279 854444 854449) (-521 "IDPC.spad" 852996 853008 854257 854262) (-520 "IDPAM.spad" 852663 852675 852908 852913) (-519 "IDPAG.spad" 852332 852344 852575 852580) (-518 "IDENT.spad" 851982 851990 852322 852327) (-517 "IDECOMP.spad" 849221 849239 851972 851977) (-516 "IDEAL.spad" 844167 844206 849153 849158) (-515 "ICDEN.spad" 843380 843396 844157 844162) (-514 "ICARD.spad" 842571 842579 843370 843375) (-513 "IBPTOOLS.spad" 841178 841195 842561 842566) (-512 "IBITS.spad" 840334 840347 840767 840794) (-511 "IBATOOL.spad" 837319 837338 840324 840329) (-510 "IBACHIN.spad" 835826 835841 837309 837314) (-509 "IARRAY2.spad" 834693 834719 835304 835331) (-508 "IARRAY1.spad" 833556 833571 833702 833729) (-507 "IAN.spad" 831776 831784 833369 833462) (-506 "IALGFACT.spad" 831387 831420 831766 831771) (-505 "HYPCAT.spad" 830811 830819 831377 831382) (-504 "HYPCAT.spad" 830233 830243 830801 830806) (-503 "HOSTNAME.spad" 830049 830057 830223 830228) (-502 "HOMOTOP.spad" 829792 829802 830039 830044) (-501 "HOAGG.spad" 827074 827084 829782 829787) (-500 "HOAGG.spad" 824089 824101 826799 826804) (-499 "HEXADEC.spad" 822049 822057 822414 822507) (-498 "HEUGCD.spad" 821140 821151 822039 822044) (-497 "HELLFDIV.spad" 820746 820770 821130 821135) (-496 "HEAP.spad" 820009 820019 820224 820251) (-495 "HEADAST.spad" 819550 819558 819999 820004) (-494 "HDP.spad" 807045 807061 807422 807521) (-493 "HDMP.spad" 804187 804202 804803 804930) (-492 "HB.spad" 802462 802470 804177 804182) (-491 "HASHTBL.spad" 800454 800485 800665 800692) (-490 "HASAST.spad" 800170 800178 800444 800449) (-489 "HACKPI.spad" 799661 799669 800072 800165) (-488 "GTSET.spad" 798555 798571 799262 799289) (-487 "GSTBL.spad" 796596 796631 796770 796785) (-486 "GSERIES.spad" 793828 793855 794647 794796) (-485 "GROUP.spad" 793101 793109 793808 793823) (-484 "GROUP.spad" 792382 792392 793091 793096) (-483 "GROEBSOL.spad" 790876 790897 792372 792377) (-482 "GRMOD.spad" 789455 789467 790866 790871) (-481 "GRMOD.spad" 788032 788046 789445 789450) (-480 "GRIMAGE.spad" 780945 780953 788022 788027) (-479 "GRDEF.spad" 779324 779332 780935 780940) (-478 "GRAY.spad" 777795 777803 779314 779319) (-477 "GRALG.spad" 776888 776900 777785 777790) (-476 "GRALG.spad" 775979 775993 776878 776883) (-475 "GPOLSET.spad" 775404 775427 775616 775643) (-474 "GOSPER.spad" 774681 774699 775394 775399) (-473 "GMODPOL.spad" 773829 773856 774649 774676) (-472 "GHENSEL.spad" 772912 772926 773819 773824) (-471 "GENUPS.spad" 769205 769218 772902 772907) (-470 "GENUFACT.spad" 768782 768792 769195 769200) (-469 "GENPGCD.spad" 768384 768401 768772 768777) (-468 "GENMFACT.spad" 767836 767855 768374 768379) (-467 "GENEEZ.spad" 765795 765808 767826 767831) (-466 "GDMP.spad" 762779 762796 763553 763680) (-465 "GCNAALG.spad" 756702 756729 762573 762640) (-464 "GCDDOM.spad" 755894 755902 756628 756697) (-463 "GCDDOM.spad" 755148 755158 755884 755889) (-462 "GBINTERN.spad" 751168 751206 755138 755143) (-461 "GBF.spad" 746951 746989 751158 751163) (-460 "GBEUCLID.spad" 744833 744871 746941 746946) (-459 "GB.spad" 742359 742397 744789 744794) (-458 "GAUSSFAC.spad" 741672 741680 742349 742354) (-457 "GALUTIL.spad" 739998 740008 741628 741633) (-456 "GALPOLYU.spad" 738452 738465 739988 739993) (-455 "GALFACTU.spad" 736665 736684 738442 738447) (-454 "GALFACT.spad" 726878 726889 736655 736660) (-453 "FVFUN.spad" 723901 723909 726868 726873) (-452 "FVC.spad" 722953 722961 723891 723896) (-451 "FUNDESC.spad" 722631 722639 722943 722948) (-450 "FUNCTION.spad" 722480 722492 722621 722626) (-449 "FTEM.spad" 721645 721653 722470 722475) (-448 "FT.spad" 719945 719953 721635 721640) (-447 "FSUPFACT.spad" 718842 718861 719878 719883) (-446 "FST.spad" 716928 716936 718832 718837) (-445 "FSRED.spad" 716408 716424 716918 716923) (-444 "FSPRMELT.spad" 715274 715290 716365 716370) (-443 "FSPECF.spad" 713365 713381 715264 715269) (-442 "FSINT.spad" 713025 713041 713355 713360) (-441 "FSERIES.spad" 712216 712228 712845 712944) (-440 "FSCINT.spad" 711533 711549 712206 712211) (-439 "FSAGG2.spad" 710268 710284 711523 711528) (-438 "FSAGG.spad" 709385 709395 710224 710263) (-437 "FSAGG.spad" 708464 708476 709305 709310) (-436 "FS2UPS.spad" 702979 703013 708454 708459) (-435 "FS2EXPXP.spad" 702120 702143 702969 702974) (-434 "FS2.spad" 701775 701791 702110 702115) (-433 "FS.spad" 696043 696053 701550 701770) (-432 "FS.spad" 690083 690095 695592 695597) (-431 "FRUTIL.spad" 689037 689047 690073 690078) (-430 "FRNAALG.spad" 684314 684324 688979 689032) (-429 "FRNAALG.spad" 679603 679615 684270 684275) (-428 "FRNAAF2.spad" 679051 679069 679593 679598) (-427 "FRMOD.spad" 678458 678488 678979 678984) (-426 "FRIDEAL2.spad" 678062 678094 678448 678453) (-425 "FRIDEAL.spad" 677287 677308 678042 678057) (-424 "FRETRCT.spad" 676806 676816 677277 677282) (-423 "FRETRCT.spad" 676182 676194 676655 676660) (-422 "FRAMALG.spad" 674562 674575 676138 676177) (-421 "FRAMALG.spad" 672974 672989 674552 674557) (-420 "FRAC2.spad" 672579 672591 672964 672969) (-419 "FRAC.spad" 670365 670375 670752 670925) (-418 "FR2.spad" 669701 669713 670355 670360) (-417 "FR.spad" 663323 663333 668596 668665) (-416 "FPS.spad" 660162 660170 663213 663318) (-415 "FPS.spad" 657029 657039 660082 660087) (-414 "FPC.spad" 656075 656083 656931 657024) (-413 "FPC.spad" 655207 655217 656065 656070) (-412 "FPATMAB.spad" 654969 654979 655197 655202) (-411 "FPARFRAC.spad" 653811 653828 654959 654964) (-410 "FORTRAN.spad" 652317 652360 653801 653806) (-409 "FORTFN.spad" 649487 649495 652307 652312) (-408 "FORTCAT.spad" 649171 649179 649477 649482) (-407 "FORT.spad" 648120 648128 649161 649166) (-406 "FORDER.spad" 647811 647835 648110 648115) (-405 "FOP.spad" 647012 647020 647801 647806) (-404 "FNLA.spad" 646436 646458 646980 647007) (-403 "FNCAT.spad" 645031 645039 646426 646431) (-402 "FNAME.spad" 644923 644931 645021 645026) (-401 "FMTC.spad" 644721 644729 644849 644918) (-400 "FMONOID.spad" 644402 644412 644677 644682) (-399 "FMONCAT.spad" 641571 641581 644392 644397) (-398 "FMFUN.spad" 638601 638609 641561 641566) (-397 "FMCAT.spad" 636277 636295 638569 638596) (-396 "FMC.spad" 635329 635337 636267 636272) (-395 "FM1.spad" 634694 634706 635263 635290) (-394 "FM.spad" 634309 634321 634548 634575) (-393 "FLOATRP.spad" 632052 632066 634299 634304) (-392 "FLOATCP.spad" 629491 629505 632042 632047) (-391 "FLOAT.spad" 622805 622813 629357 629486) (-390 "FLINEXP.spad" 622527 622537 622795 622800) (-389 "FLINEXP.spad" 622190 622202 622460 622465) (-388 "FLASORT.spad" 621516 621528 622180 622185) (-387 "FLALG.spad" 619186 619205 621442 621511) (-386 "FLAGG2.spad" 617903 617919 619176 619181) (-385 "FLAGG.spad" 614969 614979 617883 617898) (-384 "FLAGG.spad" 611936 611948 614852 614857) (-383 "FINRALG.spad" 610021 610034 611892 611931) (-382 "FINRALG.spad" 608032 608047 609905 609910) (-381 "FINITE.spad" 607184 607192 608022 608027) (-380 "FINAALG.spad" 596369 596379 607126 607179) (-379 "FINAALG.spad" 585566 585578 596325 596330) (-378 "FILECAT.spad" 584100 584117 585556 585561) (-377 "FILE.spad" 583683 583693 584090 584095) (-376 "FIELD.spad" 583089 583097 583585 583678) (-375 "FIELD.spad" 582581 582591 583079 583084) (-374 "FGROUP.spad" 581244 581254 582561 582576) (-373 "FGLMICPK.spad" 580039 580054 581234 581239) (-372 "FFX.spad" 579422 579437 579755 579848) (-371 "FFSLPE.spad" 578933 578954 579412 579417) (-370 "FFPOLY2.spad" 577993 578010 578923 578928) (-369 "FFPOLY.spad" 569335 569346 577983 577988) (-368 "FFP.spad" 568740 568760 569051 569144) (-367 "FFNBX.spad" 567260 567280 568456 568549) (-366 "FFNBP.spad" 565781 565798 566976 567069) (-365 "FFNB.spad" 564246 564267 565462 565555) (-364 "FFINTBAS.spad" 561760 561779 564236 564241) (-363 "FFIELDC.spad" 559345 559353 561662 561755) (-362 "FFIELDC.spad" 557016 557026 559335 559340) (-361 "FFHOM.spad" 555788 555805 557006 557011) (-360 "FFF.spad" 553231 553242 555778 555783) (-359 "FFCGX.spad" 552086 552106 552947 553040) (-358 "FFCGP.spad" 550983 551003 551802 551895) (-357 "FFCG.spad" 549775 549796 550664 550757) (-356 "FFCAT2.spad" 549522 549562 549765 549770) (-355 "FFCAT.spad" 542687 542709 549361 549517) (-354 "FFCAT.spad" 535931 535955 542607 542612) (-353 "FF.spad" 535379 535395 535612 535705) (-352 "FEXPR.spad" 527079 527125 535126 535165) (-351 "FEVALAB.spad" 526787 526797 527069 527074) (-350 "FEVALAB.spad" 526271 526283 526555 526560) (-349 "FDIVCAT.spad" 524367 524391 526261 526266) (-348 "FDIVCAT.spad" 522461 522487 524357 524362) (-347 "FDIV2.spad" 522117 522157 522451 522456) (-346 "FDIV.spad" 521575 521599 522107 522112) (-345 "FCTRDATA.spad" 520583 520591 521565 521570) (-344 "FCPAK1.spad" 519118 519126 520573 520578) (-343 "FCOMP.spad" 518497 518507 519108 519113) (-342 "FC.spad" 508504 508512 518487 518492) (-341 "FAXF.spad" 501539 501553 508406 508499) (-340 "FAXF.spad" 494626 494642 501495 501500) (-339 "FARRAY.spad" 492602 492612 493635 493662) (-338 "FAMR.spad" 490746 490758 492500 492597) (-337 "FAMR.spad" 488874 488888 490630 490635) (-336 "FAMONOID.spad" 488558 488568 488828 488833) (-335 "FAMONC.spad" 486878 486890 488548 488553) (-334 "FAGROUP.spad" 486518 486528 486774 486801) (-333 "FACUTIL.spad" 484730 484747 486508 486513) (-332 "FACTFUNC.spad" 483932 483942 484720 484725) (-331 "EXPUPXS.spad" 480684 480707 481983 482132) (-330 "EXPRTUBE.spad" 477972 477980 480674 480679) (-329 "EXPRODE.spad" 475140 475156 477962 477967) (-328 "EXPR2UPS.spad" 471262 471275 475130 475135) (-327 "EXPR2.spad" 470967 470979 471252 471257) (-326 "EXPR.spad" 466052 466062 466766 467061) (-325 "EXPEXPAN.spad" 462796 462821 463428 463521) (-324 "EXITAST.spad" 462532 462540 462786 462791) (-323 "EXIT.spad" 462203 462211 462522 462527) (-322 "EVALCYC.spad" 461663 461677 462193 462198) (-321 "EVALAB.spad" 461243 461253 461653 461658) (-320 "EVALAB.spad" 460821 460833 461233 461238) (-319 "EUCDOM.spad" 458411 458419 460747 460816) (-318 "EUCDOM.spad" 456063 456073 458401 458406) (-317 "ESTOOLS2.spad" 455658 455672 456053 456058) (-316 "ESTOOLS1.spad" 455335 455346 455648 455653) (-315 "ESTOOLS.spad" 447213 447221 455325 455330) (-314 "ESCONT1.spad" 446954 446966 447203 447208) (-313 "ESCONT.spad" 443747 443755 446944 446949) (-312 "ES2.spad" 443260 443276 443737 443742) (-311 "ES1.spad" 442830 442846 443250 443255) (-310 "ES.spad" 435701 435709 442820 442825) (-309 "ES.spad" 428475 428485 435596 435601) (-308 "ERROR.spad" 425802 425810 428465 428470) (-307 "EQTBL.spad" 423796 423818 424005 424032) (-306 "EQ2.spad" 423514 423526 423786 423791) (-305 "EQ.spad" 418290 418300 421085 421197) (-304 "EP.spad" 414616 414626 418280 418285) (-303 "ENV.spad" 413294 413302 414606 414611) (-302 "ENTIRER.spad" 412962 412970 413238 413289) (-301 "EMR.spad" 412250 412291 412888 412957) (-300 "ELTAGG.spad" 410504 410523 412240 412245) (-299 "ELTAGG.spad" 408722 408743 410460 410465) (-298 "ELTAB.spad" 408197 408210 408712 408717) (-297 "ELFUTS.spad" 407632 407651 408187 408192) (-296 "ELEMFUN.spad" 407321 407329 407622 407627) (-295 "ELEMFUN.spad" 407008 407018 407311 407316) (-294 "ELAGG.spad" 404979 404989 406988 407003) (-293 "ELAGG.spad" 402887 402899 404898 404903) (-292 "ELABOR.spad" 402233 402241 402877 402882) (-291 "ELABEXPR.spad" 401165 401173 402223 402228) (-290 "EFUPXS.spad" 397941 397971 401121 401126) (-289 "EFULS.spad" 394777 394800 397897 397902) (-288 "EFSTRUC.spad" 392792 392808 394767 394772) (-287 "EF.spad" 387568 387584 392782 392787) (-286 "EAB.spad" 385868 385876 387558 387563) (-285 "E04UCFA.spad" 385404 385412 385858 385863) (-284 "E04NAFA.spad" 384981 384989 385394 385399) (-283 "E04MBFA.spad" 384561 384569 384971 384976) (-282 "E04JAFA.spad" 384097 384105 384551 384556) (-281 "E04GCFA.spad" 383633 383641 384087 384092) (-280 "E04FDFA.spad" 383169 383177 383623 383628) (-279 "E04DGFA.spad" 382705 382713 383159 383164) (-278 "E04AGNT.spad" 378579 378587 382695 382700) (-277 "DVARCAT.spad" 375469 375479 378569 378574) (-276 "DVARCAT.spad" 372357 372369 375459 375464) (-275 "DSMP.spad" 369653 369667 369958 370085) (-274 "DSEXT.spad" 368955 368965 369643 369648) (-273 "DSEXT.spad" 368161 368173 368851 368856) (-272 "DROPT1.spad" 367826 367836 368151 368156) (-271 "DROPT0.spad" 362691 362699 367816 367821) (-270 "DROPT.spad" 356650 356658 362681 362686) (-269 "DRAWPT.spad" 354823 354831 356640 356645) (-268 "DRAWHACK.spad" 354131 354141 354813 354818) (-267 "DRAWCX.spad" 351609 351617 354121 354126) (-266 "DRAWCURV.spad" 351156 351171 351599 351604) (-265 "DRAWCFUN.spad" 340688 340696 351146 351151) (-264 "DRAW.spad" 333564 333577 340678 340683) (-263 "DQAGG.spad" 331742 331752 333532 333559) (-262 "DPOLCAT.spad" 327099 327115 331610 331737) (-261 "DPOLCAT.spad" 322542 322560 327055 327060) (-260 "DPMO.spad" 314065 314081 314203 314416) (-259 "DPMM.spad" 305601 305619 305726 305939) (-258 "DOMTMPLT.spad" 305372 305380 305591 305596) (-257 "DOMCTOR.spad" 305127 305135 305362 305367) (-256 "DOMAIN.spad" 304238 304246 305117 305122) (-255 "DMP.spad" 301426 301441 301996 302123) (-254 "DMEXT.spad" 301293 301303 301394 301421) (-253 "DLP.spad" 300653 300663 301283 301288) (-252 "DLIST.spad" 299058 299068 299662 299689) (-251 "DLAGG.spad" 297475 297485 299048 299053) (-250 "DIVRING.spad" 297017 297025 297419 297470) (-249 "DIVRING.spad" 296603 296613 297007 297012) (-248 "DISPLAY.spad" 294793 294801 296593 296598) (-247 "DIRPROD2.spad" 293611 293629 294783 294788) (-246 "DIRPROD.spad" 280843 280859 281483 281582) (-245 "DIRPCAT.spad" 280036 280052 280739 280838) (-244 "DIRPCAT.spad" 278856 278874 279561 279566) (-243 "DIOSP.spad" 277681 277689 278846 278851) (-242 "DIOPS.spad" 276677 276687 277661 277676) (-241 "DIOPS.spad" 275647 275659 276633 276638) (-240 "DIFRING.spad" 275485 275493 275627 275642) (-239 "DIFFSPC.spad" 275064 275072 275475 275480) (-238 "DIFFSPC.spad" 274641 274651 275054 275059) (-237 "DIFFMOD.spad" 274130 274140 274609 274636) (-236 "DIFFDOM.spad" 273295 273306 274120 274125) (-235 "DIFFDOM.spad" 272458 272471 273285 273290) (-234 "DIFEXT.spad" 272277 272287 272438 272453) (-233 "DIAGG.spad" 271907 271917 272257 272272) (-232 "DIAGG.spad" 271545 271557 271897 271902) (-231 "DHMATRIX.spad" 269728 269738 270873 270900) (-230 "DFSFUN.spad" 263368 263376 269718 269723) (-229 "DFLOAT.spad" 259975 259983 263258 263363) (-228 "DFINTTLS.spad" 258206 258222 259965 259970) (-227 "DERHAM.spad" 256120 256152 258186 258201) (-226 "DEQUEUE.spad" 255315 255325 255598 255625) (-225 "DEGRED.spad" 254932 254946 255305 255310) (-224 "DEFINTRF.spad" 252514 252524 254922 254927) (-223 "DEFINTEF.spad" 251052 251068 252504 252509) (-222 "DEFAST.spad" 250436 250444 251042 251047) (-221 "DECIMAL.spad" 248400 248408 248761 248854) (-220 "DDFACT.spad" 246221 246238 248390 248395) (-219 "DBLRESP.spad" 245821 245845 246211 246216) (-218 "DBASIS.spad" 245447 245462 245811 245816) (-217 "DBASE.spad" 244111 244121 245437 245442) (-216 "DATAARY.spad" 243597 243610 244101 244106) (-215 "D03FAFA.spad" 243425 243433 243587 243592) (-214 "D03EEFA.spad" 243245 243253 243415 243420) (-213 "D03AGNT.spad" 242331 242339 243235 243240) (-212 "D02EJFA.spad" 241793 241801 242321 242326) (-211 "D02CJFA.spad" 241271 241279 241783 241788) (-210 "D02BHFA.spad" 240761 240769 241261 241266) (-209 "D02BBFA.spad" 240251 240259 240751 240756) (-208 "D02AGNT.spad" 235121 235129 240241 240246) (-207 "D01WGTS.spad" 233440 233448 235111 235116) (-206 "D01TRNS.spad" 233417 233425 233430 233435) (-205 "D01GBFA.spad" 232939 232947 233407 233412) (-204 "D01FCFA.spad" 232461 232469 232929 232934) (-203 "D01ASFA.spad" 231929 231937 232451 232456) (-202 "D01AQFA.spad" 231383 231391 231919 231924) (-201 "D01APFA.spad" 230823 230831 231373 231378) (-200 "D01ANFA.spad" 230317 230325 230813 230818) (-199 "D01AMFA.spad" 229827 229835 230307 230312) (-198 "D01ALFA.spad" 229367 229375 229817 229822) (-197 "D01AKFA.spad" 228893 228901 229357 229362) (-196 "D01AJFA.spad" 228416 228424 228883 228888) (-195 "D01AGNT.spad" 224483 224491 228406 228411) (-194 "CYCLOTOM.spad" 223989 223997 224473 224478) (-193 "CYCLES.spad" 220781 220789 223979 223984) (-192 "CVMP.spad" 220198 220208 220771 220776) (-191 "CTRIGMNP.spad" 218698 218714 220188 220193) (-190 "CTORKIND.spad" 218301 218309 218688 218693) (-189 "CTORCAT.spad" 217542 217550 218291 218296) (-188 "CTORCAT.spad" 216781 216791 217532 217537) (-187 "CTORCALL.spad" 216370 216380 216771 216776) (-186 "CTOR.spad" 216061 216069 216360 216365) (-185 "CSTTOOLS.spad" 215306 215319 216051 216056) (-184 "CRFP.spad" 209078 209091 215296 215301) (-183 "CRCEAST.spad" 208798 208806 209068 209073) (-182 "CRAPACK.spad" 207865 207875 208788 208793) (-181 "CPMATCH.spad" 207366 207381 207787 207792) (-180 "CPIMA.spad" 207071 207090 207356 207361) (-179 "COORDSYS.spad" 202080 202090 207061 207066) (-178 "CONTOUR.spad" 201507 201515 202070 202075) (-177 "CONTFRAC.spad" 197257 197267 201409 201502) (-176 "CONDUIT.spad" 197015 197023 197247 197252) (-175 "COMRING.spad" 196689 196697 196953 197010) (-174 "COMPPROP.spad" 196207 196215 196679 196684) (-173 "COMPLPAT.spad" 195974 195989 196197 196202) (-172 "COMPLEX2.spad" 195689 195701 195964 195969) (-171 "COMPLEX.spad" 191036 191046 191280 191541) (-170 "COMPILER.spad" 190585 190593 191026 191031) (-169 "COMPFACT.spad" 190187 190201 190575 190580) (-168 "COMPCAT.spad" 188259 188269 189921 190182) (-167 "COMPCAT.spad" 186056 186068 187720 187725) (-166 "COMMUPC.spad" 185804 185822 186046 186051) (-165 "COMMONOP.spad" 185337 185345 185794 185799) (-164 "COMMAAST.spad" 185100 185108 185327 185332) (-163 "COMM.spad" 184911 184919 185090 185095) (-162 "COMBOPC.spad" 183834 183842 184901 184906) (-161 "COMBINAT.spad" 182601 182611 183824 183829) (-160 "COMBF.spad" 180023 180039 182591 182596) (-159 "COLOR.spad" 178860 178868 180013 180018) (-158 "COLONAST.spad" 178526 178534 178850 178855) (-157 "CMPLXRT.spad" 178237 178254 178516 178521) (-156 "CLLCTAST.spad" 177899 177907 178227 178232) (-155 "CLIP.spad" 174007 174015 177889 177894) (-154 "CLIF.spad" 172662 172678 173963 174002) (-153 "CLAGG.spad" 169199 169209 172652 172657) (-152 "CLAGG.spad" 165604 165616 169059 169064) (-151 "CINTSLPE.spad" 164959 164972 165594 165599) (-150 "CHVAR.spad" 163097 163119 164949 164954) (-149 "CHARZ.spad" 163012 163020 163077 163092) (-148 "CHARPOL.spad" 162538 162548 163002 163007) (-147 "CHARNZ.spad" 162300 162308 162518 162533) (-146 "CHAR.spad" 159668 159676 162290 162295) (-145 "CFCAT.spad" 158996 159004 159658 159663) (-144 "CDEN.spad" 158216 158230 158986 158991) (-143 "CCLASS.spad" 156312 156320 157574 157613) (-142 "CATEGORY.spad" 155386 155394 156302 156307) (-141 "CATCTOR.spad" 155277 155285 155376 155381) (-140 "CATAST.spad" 154903 154911 155267 155272) (-139 "CASEAST.spad" 154617 154625 154893 154898) (-138 "CARTEN2.spad" 154007 154034 154607 154612) (-137 "CARTEN.spad" 149374 149398 153997 154002) (-136 "CARD.spad" 146669 146677 149348 149369) (-135 "CAPSLAST.spad" 146451 146459 146659 146664) (-134 "CACHSET.spad" 146075 146083 146441 146446) (-133 "CABMON.spad" 145630 145638 146065 146070) (-132 "BYTEORD.spad" 145305 145313 145620 145625) (-131 "BYTEBUF.spad" 143006 143014 144292 144319) (-130 "BYTE.spad" 142481 142489 142996 143001) (-129 "BTREE.spad" 141425 141435 141959 141986) (-128 "BTOURN.spad" 140301 140311 140903 140930) (-127 "BTCAT.spad" 139693 139703 140269 140296) (-126 "BTCAT.spad" 139105 139117 139683 139688) (-125 "BTAGG.spad" 138571 138579 139073 139100) (-124 "BTAGG.spad" 138057 138067 138561 138566) (-123 "BSTREE.spad" 136669 136679 137535 137562) (-122 "BRILL.spad" 134874 134885 136659 136664) (-121 "BRAGG.spad" 133830 133840 134864 134869) (-120 "BRAGG.spad" 132750 132762 133786 133791) (-119 "BPADICRT.spad" 130575 130587 130822 130915) (-118 "BPADIC.spad" 130247 130259 130501 130570) (-117 "BOUNDZRO.spad" 129903 129920 130237 130242) (-116 "BOP1.spad" 127361 127371 129893 129898) (-115 "BOP.spad" 122503 122511 127351 127356) (-114 "BOOLEAN.spad" 122051 122059 122493 122498) (-113 "BOOLE.spad" 121701 121709 122041 122046) (-112 "BOOLE.spad" 121349 121359 121691 121696) (-111 "BMODULE.spad" 121061 121073 121317 121344) (-110 "BITS.spad" 120435 120443 120650 120677) (-109 "BINDING.spad" 119856 119864 120425 120430) (-108 "BINARY.spad" 117825 117833 118181 118274) (-107 "BGAGG.spad" 117030 117040 117805 117820) (-106 "BGAGG.spad" 116243 116255 117020 117025) (-105 "BFUNCT.spad" 115807 115815 116223 116238) (-104 "BEZOUT.spad" 114947 114974 115757 115762) (-103 "BBTREE.spad" 111695 111705 114425 114452) (-102 "BASTYPE.spad" 111194 111202 111685 111690) (-101 "BASTYPE.spad" 110691 110701 111184 111189) (-100 "BALFACT.spad" 110150 110163 110681 110686) (-99 "AUTOMOR.spad" 109601 109610 110130 110145) (-98 "ATTREG.spad" 106324 106331 109353 109596) (-97 "ATTRBUT.spad" 102347 102354 106304 106319) (-96 "ATTRAST.spad" 102064 102071 102337 102342) (-95 "ATRIG.spad" 101534 101541 102054 102059) (-94 "ATRIG.spad" 101002 101011 101524 101529) (-93 "ASTCAT.spad" 100906 100913 100992 100997) (-92 "ASTCAT.spad" 100808 100817 100896 100901) (-91 "ASTACK.spad" 100018 100027 100286 100313) (-90 "ASSOCEQ.spad" 98852 98863 99974 99979) (-89 "ASP9.spad" 97933 97946 98842 98847) (-88 "ASP80.spad" 97255 97268 97923 97928) (-87 "ASP8.spad" 96298 96311 97245 97250) (-86 "ASP78.spad" 95749 95762 96288 96293) (-85 "ASP77.spad" 95118 95131 95739 95744) (-84 "ASP74.spad" 94210 94223 95108 95113) (-83 "ASP73.spad" 93481 93494 94200 94205) (-82 "ASP7.spad" 92641 92654 93471 93476) (-81 "ASP6.spad" 91508 91521 92631 92636) (-80 "ASP55.spad" 90017 90030 91498 91503) (-79 "ASP50.spad" 87834 87847 90007 90012) (-78 "ASP49.spad" 86833 86846 87824 87829) (-77 "ASP42.spad" 85248 85287 86823 86828) (-76 "ASP41.spad" 83835 83874 85238 85243) (-75 "ASP4.spad" 83130 83143 83825 83830) (-74 "ASP35.spad" 82118 82131 83120 83125) (-73 "ASP34.spad" 81419 81432 82108 82113) (-72 "ASP33.spad" 80979 80992 81409 81414) (-71 "ASP31.spad" 80119 80132 80969 80974) (-70 "ASP30.spad" 79011 79024 80109 80114) (-69 "ASP29.spad" 78477 78490 79001 79006) (-68 "ASP28.spad" 69750 69763 78467 78472) (-67 "ASP27.spad" 68647 68660 69740 69745) (-66 "ASP24.spad" 67734 67747 68637 68642) (-65 "ASP20.spad" 67198 67211 67724 67729) (-64 "ASP19.spad" 61884 61897 67188 67193) (-63 "ASP12.spad" 61298 61311 61874 61879) (-62 "ASP10.spad" 60569 60582 61288 61293) (-61 "ASP1.spad" 59950 59963 60559 60564) (-60 "ARRAY2.spad" 59189 59198 59428 59455) (-59 "ARRAY12.spad" 57902 57913 59179 59184) (-58 "ARRAY1.spad" 56565 56574 56911 56938) (-57 "ARR2CAT.spad" 52347 52368 56533 56560) (-56 "ARR2CAT.spad" 48149 48172 52337 52342) (-55 "ARITY.spad" 47521 47528 48139 48144) (-54 "APPRULE.spad" 46805 46827 47511 47516) (-53 "APPLYORE.spad" 46424 46437 46795 46800) (-52 "ANY1.spad" 45495 45504 46414 46419) (-51 "ANY.spad" 44346 44353 45485 45490) (-50 "ANTISYM.spad" 42791 42807 44326 44341) (-49 "ANON.spad" 42500 42507 42781 42786) (-48 "AN.spad" 40806 40813 42313 42406) (-47 "AMR.spad" 38991 39002 40704 40801) (-46 "AMR.spad" 37007 37020 38722 38727) (-45 "ALIST.spad" 33847 33868 34197 34224) (-44 "ALGSC.spad" 32982 33008 33719 33772) (-43 "ALGPKG.spad" 28765 28776 32938 32943) (-42 "ALGMFACT.spad" 27958 27972 28755 28760) (-41 "ALGMANIP.spad" 25442 25457 27785 27790) (-40 "ALGFF.spad" 23047 23074 23264 23420) (-39 "ALGFACT.spad" 22166 22176 23037 23042) (-38 "ALGEBRA.spad" 21999 22008 22122 22161) (-37 "ALGEBRA.spad" 21864 21875 21989 21994) (-36 "ALAGG.spad" 21376 21397 21832 21859) (-35 "AHYP.spad" 20757 20764 21366 21371) (-34 "AGG.spad" 19466 19473 20747 20752) (-33 "AGG.spad" 18139 18148 19422 19427) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file