aboutsummaryrefslogtreecommitdiff
path: root/src/interp/sfsfun.boot
diff options
context:
space:
mode:
Diffstat (limited to 'src/interp/sfsfun.boot')
-rw-r--r--src/interp/sfsfun.boot14
1 files changed, 7 insertions, 7 deletions
diff --git a/src/interp/sfsfun.boot b/src/interp/sfsfun.boot
index baacfff1..f1cba953 100644
--- a/src/interp/sfsfun.boot
+++ b/src/interp/sfsfun.boot
@@ -1,6 +1,6 @@
-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.
--- Copyright (C) 2007-2009, Gabriel Dos Reis.
+-- Copyright (C) 2007-2012, Gabriel Dos Reis.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
@@ -726,15 +726,15 @@ BesselJ(v,z) ==
B2:= 10
n := 50 --- number of terms in Chebychev series.
--- tests for negative integer order
- (FLOATP(v) and ZEROP fracpart(v) and (v<0)) or (COMPLEXP(v) and ZEROP IMAGPART(v) and ZEROP fracpart(REALPART(v)) and REALPART(v)<0.0) =>
+ (float?(v) and ZEROP fracpart(v) and (v<0)) or (COMPLEXP(v) and ZEROP IMAGPART(v) and ZEROP fracpart(REALPART(v)) and REALPART(v)<0.0) =>
--- odd or even according to v (9.1.5 A&S)
--- $J_{-n}(z)=(-1)^{n} J_{n}(z)$
BesselJ(-v,z)*EXPT(-1.0,v)
- (FLOATP(z) and (z<0)) or (COMPLEXP(z) and REALPART(z)<0.0) =>
+ (float?(z) and (z<0)) or (COMPLEXP(z) and REALPART(z)<0.0) =>
--- negative argument (9.1.35 A&S)
--- $J_{\nu}(z e^{m \pi i}) = e^{m \nu \pi i} J_{\nu}(z)$
BesselJ(v,-z)*EXPT(-1.0,v)
- ZEROP z and ((FLOATP(v) and (v>=0.0)) or (COMPLEXP(v) and
+ ZEROP z and ((float?(v) and (v>=0.0)) or (COMPLEXP(v) and
ZEROP IMAGPART(v) and REALPART(v)>=0.0)) => --- zero arg, pos. real order
ZEROP v => 1.0 --- J(0,0)=1
0.0 --- J(v,0)=0 for real v>0
@@ -776,15 +776,15 @@ BesselJRecur(v,z) ==
BesselI(v,z) ==
B1 := 15.0
B2 := 10.0
- ZEROP(z) and FLOATP(v) and (v>=0.0) => --- zero arg, pos. real order
+ ZEROP(z) and float?(v) and (v>=0.0) => --- zero arg, pos. real order
ZEROP(v) => 1.0 --- I(0,0)=1
0.0 --- I(v,0)=0 for real v>0
--- Transformations for negative integer orders
- FLOATP(v) and ZEROP(fracpart(v)) and (v<0) => BesselI(-v,z)
+ float?(v) and ZEROP(fracpart(v)) and (v<0) => BesselI(-v,z)
--- Halfplane transformations for Re(z)<0
REALPART(z)<0.0 => BesselI(v,-z)*EXPT(-1.0,v)
--- Conjugation for complex order and real argument
- REALPART(v)<0.0 and not ZEROP IMAGPART(v) and FLOATP(z) =>
+ REALPART(v)<0.0 and not ZEROP IMAGPART(v) and float?(z) =>
CONJUGATE(BesselI(CONJUGATE(v),z))
---We now know that Re(z)>= 0.0
abs(z) > B1 => --- asymptotic argument case