diff options
Diffstat (limited to 'src/interp/sfsfun.boot')
-rw-r--r-- | src/interp/sfsfun.boot | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/src/interp/sfsfun.boot b/src/interp/sfsfun.boot index baacfff1..f1cba953 100644 --- a/src/interp/sfsfun.boot +++ b/src/interp/sfsfun.boot @@ -1,6 +1,6 @@ -- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. -- All rights reserved. --- Copyright (C) 2007-2009, Gabriel Dos Reis. +-- Copyright (C) 2007-2012, Gabriel Dos Reis. -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without @@ -726,15 +726,15 @@ BesselJ(v,z) == B2:= 10 n := 50 --- number of terms in Chebychev series. --- tests for negative integer order - (FLOATP(v) and ZEROP fracpart(v) and (v<0)) or (COMPLEXP(v) and ZEROP IMAGPART(v) and ZEROP fracpart(REALPART(v)) and REALPART(v)<0.0) => + (float?(v) and ZEROP fracpart(v) and (v<0)) or (COMPLEXP(v) and ZEROP IMAGPART(v) and ZEROP fracpart(REALPART(v)) and REALPART(v)<0.0) => --- odd or even according to v (9.1.5 A&S) --- $J_{-n}(z)=(-1)^{n} J_{n}(z)$ BesselJ(-v,z)*EXPT(-1.0,v) - (FLOATP(z) and (z<0)) or (COMPLEXP(z) and REALPART(z)<0.0) => + (float?(z) and (z<0)) or (COMPLEXP(z) and REALPART(z)<0.0) => --- negative argument (9.1.35 A&S) --- $J_{\nu}(z e^{m \pi i}) = e^{m \nu \pi i} J_{\nu}(z)$ BesselJ(v,-z)*EXPT(-1.0,v) - ZEROP z and ((FLOATP(v) and (v>=0.0)) or (COMPLEXP(v) and + ZEROP z and ((float?(v) and (v>=0.0)) or (COMPLEXP(v) and ZEROP IMAGPART(v) and REALPART(v)>=0.0)) => --- zero arg, pos. real order ZEROP v => 1.0 --- J(0,0)=1 0.0 --- J(v,0)=0 for real v>0 @@ -776,15 +776,15 @@ BesselJRecur(v,z) == BesselI(v,z) == B1 := 15.0 B2 := 10.0 - ZEROP(z) and FLOATP(v) and (v>=0.0) => --- zero arg, pos. real order + ZEROP(z) and float?(v) and (v>=0.0) => --- zero arg, pos. real order ZEROP(v) => 1.0 --- I(0,0)=1 0.0 --- I(v,0)=0 for real v>0 --- Transformations for negative integer orders - FLOATP(v) and ZEROP(fracpart(v)) and (v<0) => BesselI(-v,z) + float?(v) and ZEROP(fracpart(v)) and (v<0) => BesselI(-v,z) --- Halfplane transformations for Re(z)<0 REALPART(z)<0.0 => BesselI(v,-z)*EXPT(-1.0,v) --- Conjugation for complex order and real argument - REALPART(v)<0.0 and not ZEROP IMAGPART(v) and FLOATP(z) => + REALPART(v)<0.0 and not ZEROP IMAGPART(v) and float?(z) => CONJUGATE(BesselI(CONJUGATE(v),z)) ---We now know that Re(z)>= 0.0 abs(z) > B1 => --- asymptotic argument case |