diff options
Diffstat (limited to 'src/interp/fortcall.boot.pamphlet')
-rw-r--r-- | src/interp/fortcall.boot.pamphlet | 820 |
1 files changed, 0 insertions, 820 deletions
diff --git a/src/interp/fortcall.boot.pamphlet b/src/interp/fortcall.boot.pamphlet deleted file mode 100644 index 9513e313..00000000 --- a/src/interp/fortcall.boot.pamphlet +++ /dev/null @@ -1,820 +0,0 @@ -\documentclass{article} -\usepackage{axiom} -\begin{document} -\title{\$SPAD/src/interp fortcall.boot} -\author{The Axiom Team} -\maketitle -\begin{abstract} -\end{abstract} -\eject -\tableofcontents -\eject -\section{License} -<<license>>= --- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --- All rights reserved. --- --- Redistribution and use in source and binary forms, with or without --- modification, are permitted provided that the following conditions are --- met: --- --- - Redistributions of source code must retain the above copyright --- notice, this list of conditions and the following disclaimer. --- --- - Redistributions in binary form must reproduce the above copyright --- notice, this list of conditions and the following disclaimer in --- the documentation and/or other materials provided with the --- distribution. --- --- - Neither the name of The Numerical ALgorithms Group Ltd. nor the --- names of its contributors may be used to endorse or promote products --- derived from this software without specific prior written permission. --- --- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -@ -<<*>>= -<<license>> - -makeFort(name,args,decls,results,returnType,aspInfo) == - -- Create an executable Fortran file to call a given library function, - -- and a stub Axiom function to process its arguments. - -- the following is a list of objects for which values need not be - -- passed by the user. - dummies := [SECOND(u) for u in args | EQUAL(car u,0)] - args := [untangle2(u) for u in args] -- lose spad Union representation - where untangle2 u == - atom (v := rest(u)) => v - first(v) - userArgs := [u for u in args | not member(u,dummies)] -- Temporary - decls := [untangle(u) for u in decls] -- lose spad Union representation - where untangle u == - [if atom(rest(v)) then rest(v) else _ - [if atom(w) then w else rest(w) for w in rest(v)] for v in u] - makeFort1(name,args,userArgs,dummies,decls,results,returnType,aspInfo) - -makeFort1(name,args,userArgs,dummies,decls,results,returnType,aspInfo) == - asps := [first(u) for u in aspInfo] - -- Now reorder the arguments so that all the scalars come first, so - -- that when we come to deal with arrays we know all the dimensions. - scalarArgs := [u for u in args | atom getFortranType(u,decls)] - arrayArgs := [u for u in args | not member(u,scalarArgs)] - orderedArgs := [:scalarArgs,:arrayArgs] - file := if $fortranDirectory then - STRCONC($fortranDirectory,"/",STRINGIMAGE name) - else - STRINGIMAGE name - makeFortranFun(name,orderedArgs,args,dummies,decls,results,file, - $fortranDirectory,returnType,asps) - makeSpadFun(name,userArgs,orderedArgs,dummies,decls,results,returnType,asps, - aspInfo,file) - name - -makeFortranFun(name,args,fortranArgs,dummies,decls,results,file,dir, - returnType,asps) == - -- Create a C file to call the library function, and compile it. - fp := MAKE_-OUTSTREAM(STRCONC(file,".c")) - writeCFile(name,args,fortranArgs,dummies,decls,results,returnType,asps,fp) - if null dir then dir := '"." - asps => SYSTEM STRCONC("cc -c ",file,".c ; mv ",file,".o ",dir) - SYSTEM STRCONC("cc ",file,".c -o ",file,".spadexe ",$fortranLibraries) - -writeCFile(name,args,fortranArgs,dummies,decls,results,returnType,asps,fp) == - WRITE_-LINE('"#include <stdio.h>",fp) - WRITE_-LINE('"#include <sys/select.h>",fp) - WRITE_-LINE('"#include <rpc/rpc.h>",fp) - WRITE_-LINE('"#ifndef NULL",fp) - WRITE_-LINE('"#define NULL 0",fp) - WRITE_-LINE('"#endif NULL",fp) - WRITE_-LINE('"#define MAX__ARRAY(x) (x ? x : 20000)",fp) - WRITE_-LINE('"#define CHECK(x) if (!x) {fprintf(stderr,_"xdr failed_"); exit(1);}",fp) - WRITE_-LINE('"void main()",fp) - WRITE_-LINE('"{",fp) - WRITE_-LINE('" XDR xdrs;",fp) - WRITE_-LINE('" {",fp) - if $addUnderscoreToFortranNames then - routineName := STRCONC(name,STRING(95)) - else - routineName := name - -- If it is a function then give it somewhere to stick its result: - if returnType then - returnName := INTERN STRCONC(name,"__result") - wl(['" ",getCType returnType,'" ",returnName,'",",routineName,'"();"],fp) - -- print out type declarations for the Fortran parameters, and build an - -- ordered list of pairs [<parameter> , <type>] - argList := nil - for a in args repeat - argList := [[a, getCType getFortranType(a,decls)], :argList] - printDec(SECOND first argList,a,asps,fp) - argList := nreverse argList; - -- read in the data - WRITE_-LINE('" xdrstdio__create(&xdrs, stdin, XDR__DECODE);",fp) - for a in argList repeat - if LISTP SECOND a then writeMalloc(first a,first SECOND a,rest SECOND a,fp) - not MEMQ(first a,[:dummies,:asps]) => writeXDR(a,'"&xdrs",fp) - -- now call the Library routine. FORTRAN names may have an underscore - -- appended. - if returnType then - wt(['" ",returnName,'"="],fp) - else - wt(['" "],fp) - wt([routineName,'"("],fp) - if first fortranArgs then - printCName(first fortranArgs,isPointer?(first fortranArgs,decls),asps,fp) - for a in rest fortranArgs repeat - PRINC('",",fp) - printCName(a,isPointer?(a,decls),asps,fp) - writeStringLengths(fortranArgs,decls,fp) - WRITE_-LINE('");",fp) - -- now export the results. - WRITE_-LINE('" xdrstdio__create(&xdrs, stdout, XDR__ENCODE);",fp) - if returnType then - writeXDR([returnName,getCType returnType],'"&xdrs",fp) - for r in results repeat - writeXDR([r,getCType getFortranType(r,decls)],'"&xdrs",fp) - WRITE_-LINE('" exit(0);",fp) - WRITE_-LINE('" }",fp) - WRITE_-LINE('"}",fp) - -writeStringLengths(fortranArgs,decls,fp) == - for a in fortranArgs repeat - if isString?(a,decls) then wt(['",&",a,'"__length"],fp) - -isString?(u,decls) == - EQUAL(ty := getFortranType(u,decls),"character") or - LISTP(ty) and EQUAL(first ty,"character") - -isPointer?(u,decls) == - ty := getFortranType(u,decls) - LISTP(ty) or ty in ["character","complex","double complex"] - -printCName(u,ispointer,asps,fp) == - member(u,asps) => - PRINC(u,fp) - if $addUnderscoreToFortranNames then PRINC(STRING(95),fp) - if not ispointer then PRINC('"&",fp) - PRINC(u,fp) - -getFortranType(u,decls) == - -- find u in decls, return the given (Fortran) type. - result := nil - for d in decls repeat for dec in rest d repeat - atom(dec) and dec=u => - return( result := first d ) - LISTP(dec) and first(dec)=u => - return( result := [first d,:rest dec] ) - result => result - error ['"Undeclared Fortran parameter: ",u] - -getCType t == - -- Return the equivalent C type. - LISTP(t) => - --[if first(t)="character" then '"char" else getCType first t,:rest t] - first(t)="character" => ['"char",:rest t] - first(t)="complex" => ['"float",2,:rest t] - first(t)="double complex" => ['"double",2,:rest t] - [getCType first t,:rest t] - t="double" => '"double" - t="double precision" => '"double" - t="integer" => '"int" - t="real" => '"float" - t="logical" => '"int" - t="character" => ['"char",1] - t="complex" => ['"float",2] --'"Complex" -- we use our own typedef - t="double complex" => ['"double",2] --'"DComplex" -- we use our own typedef - error ['"Unrecognised Fortran type: ",t] - -XDRFun t == - LISTP(ty := SECOND t) => - if first(ty)='"char" then '"wrapstring" else '"array" - ty - -printDec(type,dec,asps,fp) == - wt(['" ",if LISTP(type) then first(type) else type,'" "],fp) - member(dec,asps) => - if $addUnderscoreToFortranNames then - wl([dec,STRING(95),'"();"],fp) - else - wl([dec,'"();"],fp) - LISTP(type) => - wl(['"*",dec,'" = NULL;"],fp) - wl(['" u__int ",dec, '"__length = 0;"],fp) - type = '"char" => - wl(['"*",dec,'" = NULL;"],fp) - wl([dec, '";"],fp) - -writeXDR(v,str,fp) == - -- Generate the calls to the filters which will read from the temp - -- file. The CHECK macro ensures that the translation worked. - underscore := STRING CHAR("__:",0) -- to avoid a compiler bug which won't - -- parse " ... __" properly. - wt(['" CHECK(xdr",underscore, XDRFun(v), '"(", str, '",&", first(v)],fp) - if (LISTP (ty :=SECOND v)) and not EQUAL(first ty,'"char") then - wt(['",&",first(v),'"__length,MAX__ARRAY(",first(v),'"__length),"],fp) - wt(['"sizeof(",first(ty),'"),xdr",underscore,first ty],fp) - wl(['"));"],fp) - -prefix2Infix(l) == - atom(l) => [l] - #l=2 => [first l,"(",:prefix2Infix SECOND l,")"] - #l=3 => ["(",:prefix2Infix SECOND l,first l,:prefix2Infix THIRD l,")"] - error '"Function in array dimensions with more than two arguments" - -writeMalloc(name,type,dims,fp) == - -- Write out a malloc for array arguments - -- Need the size as well - wl(['" ",name,'"__length=",prefix2Infix first dims,:[:["*",:prefix2Infix u] - for u in rest dims],'";"], fp) - type = '"char" => - wl(['" ",name,'"=(",type," *)malloc((1+",name, - '"__length)*sizeof(",type,'"));"],fp) - wl(['" ",name,'"=(",type," *)malloc(",name, - '"__length*sizeof(",type,'"));"],fp) - -wl (l,fp) == - for u in l repeat PRINC(u,fp) - TERPRI(fp) - -wt (l,fp) == - for u in l repeat PRINC(u,fp) - --- spadRecordType(v,decs) == --- -- Build a lisp representation of the declaration of a spad record. --- -- This will be the returned type of the spad function which calls the --- -- Fortran code. --- ["Record",:[spadRecordType1(u,decs) for u in v]] --- --- spadRecordType1(u,decls) == --- -- Create a list of the form '( |:| u <spadTypeTTT u>) --- [":",u,spadTypeTTT getFortranType(u,decls)] - -spadTypeTTT u == - -- Return the spad domain equivalent to the given Fortran type. - -- Changed by MCD 8/4/94 to reflect correct format for domains in - -- current system. - LISTP u => - first(u)="character" => ["String"] - first(u)="logical" and #u=2 => ["List",["Boolean"]] - first(u)="logical" => ["List",["List",["Boolean"]]] - #u=2 => ["Matrix",spadTypeTTT first u] - #u=3 => ["Matrix",spadTypeTTT first u] - #u=4 => ["ThreeDimensionalMatrix",spadTypeTTT first u] - error '"Can only handle one-, two- and three-dimensional matrices" - u = "double" => ["DoubleFloat"] - u = "double precision" => ["DoubleFloat"] - u = "real" => ["DoubleFloat"] - u = "integer" => ["Integer"] - u = "logical" => ["Boolean"] - u = "character" => ["String"] - u = "complex" => ["Complex",["DoubleFloat"]] - u = "double complex" => ["Complex",["DoubleFloat"]] - error ['"Unrecognised Fortran type: ",u] - -mkQuote l == - [addQuote(u)for u in l] where - addQuote u == - atom u => ['QUOTE,u] - ["construct",:[addQuote(v) for v in u]] - -makeLispList(l) == - outputList := [] - for u in l repeat - outputList := [:outputList, _ - if atom(u) then ['QUOTE,u] else [["$elt","Lisp","construct"],_ - :makeLispList(u)]] - outputList - -makeSpadFun(name,userArgs,args,dummies,decls,results,returnType,asps,aspInfo, - file) == - -- Create an interpreter function for the user to call. - - fType := ["List", ["Record" , [":","key","Symbol"], [":","entry","Any"]]] - - -- To make sure the spad interpreter isn't confused: - if returnType then - returnName := INTERN STRCONC(name,"Result") - decls := [[returnType,returnName], :decls] - results := [returnName, :results] - argNames := [INTERN STRCONC(STRINGIMAGE(u),'"__arg") for u in userArgs] - aType := [axiomType(a,decls,asps,aspInfo) for a in userArgs] - aspTypes := [SECOND NTH(POSITION(u,userArgs),aType) for u in asps] - nilLst := MAKE_-LIST(#args+1) - decPar := [["$elt","Lisp","construct"],:makeLispList decls] - fargNames := [INTERN STRCONC(STRINGIMAGE(u),'"__arg") for u in args | - not (MEMQ(u,dummies) or MEMQ(u,asps)) ] - for u in asps repeat - fargNames := delete(INTERN STRCONC(STRINGIMAGE(u),'"__arg"),fargNames) - resPar := ["construct",["@",["construct",:fargNames],_ - ["List",["Any"]]]] - call := [["$elt","Lisp","invokeFortran"],STRCONC(file,".spadexe"),_ - [["$elt","Lisp","construct"],:mkQuote args],_ - [["$elt","Lisp","construct"],:mkQuote union(asps,dummies)], decPar,_ - [["$elt","Lisp","construct"],:mkQuote results],resPar] - if asps then - -- Make a unique(ish) id for asp files - aspId := STRCONC(getEnv('"SPADNUM"), GENTEMP('"NAG")) - body := ["SEQ",:makeAspGenerators(asps,aspTypes,aspId),_ - makeCompilation(asps,file,aspId),_ - ["pretend",call,fType] ] - else - body := ["pretend",call,fType] - interpret ["DEF",[name,:argNames],["Result",:aType],nilLst,_ - [["$elt","Result","construct"],body]] - -stripNil u == - [CAR(u), ["construct",:CADR(u)], if CADDR(u) then "true" else "false"] - -makeUnion aspType == - -- The argument is the type of the asp to be generated. We would like to - -- allow the user to be able to provide a fileName as an alternative - -- argument, so this builds the Union of aspType and FileName. - ["Union",[":","fp",aspType],[":","fn","FileName"]] - -axiomType(a,decls,asps,aspInfo) == - a in asps => - entry := first [u for u in aspInfo | first(u) = a] - ftc := ["$elt","FortranType","construct"] - rc := ["$elt", _ - ["Record",[":","key","Symbol"],[":","entry","FortranType"]], _ - "construct"] - makeUnion ["FortranProgram",_ - a,_ - CADR(entry),_ - ["construct",:mkQuote CADDR entry], _ - [ ["$elt", "SymbolTable","symbolTable"],_ - ["construct",_ - :[[rc,first(v),[ftc,:stripNil rest(v)]] for v in CADDDR entry]]_ - ] ] - spadTypeTTT(getFortranType(a,decls)) - -makeAspGenerators(asps,types,aspId) == --- The code generated here will manipulate the Fortran output stack and write --- the asps out as Fortran. - [:makeAspGenerators1(u,v,aspId) for u in asps for v in types] - -makeAspGenerators1(asp,type,aspId) == - [[["$elt","FOP","pushFortranOutputStack"] ,_ - ["filename",'"",STRCONC(STRINGIMAGE asp,aspId),'"f"]] , _ - makeOutputAsFortran INTERN STRCONC(STRINGIMAGE(asp),'"__arg"), _ - [["$elt","FOP","popFortranOutputStack"]] _ - ] - -makeOutputAsFortran arg == - ["IF",["case",arg,"fn"],["outputAsFortran",[arg,"fn"]],_ - ["outputAsFortran",[arg,"fp"]] ] - -makeCompilation(asps,file,aspId) == - [["$elt","Lisp","compileAndLink"],_ - ["construct",:[STRCONC(STRINGIMAGE a,aspId,'".f") for a in asps]], _ - $fortranCompilerName,_ - STRCONC(file,'".o"),_ - STRCONC(file,'".spadexe"),_ - $fortranLibraries] - - -compileAndLink(fortFileList,fortCompiler,cFile,outFile,linkerArgs) == - SYSTEM STRCONC (fortCompiler, addSpaces fortFileList,_ - cFile, " -o ",outFile," ",linkerArgs) - -addSpaces(stringList) == - l := " " - for s in stringList repeat l := STRCONC(l,s," ") - l - -complexRows z == --- Take a list of lists of complexes (i.e. pairs of floats) and --- make them look like a Fortran vector! - [:[:pair2list(u.i) for u in z] for i in 0..#(z.0)-1] - -pair2list u == [car u,cdr u] -vec2Lists1 u == [ELT(u,i) for i in 0..#u-1] -vec2Lists u == [vec2Lists1 ELT(u,i) for i in 0..#u-1] - -spad2lisp(u) == - -- Turn complexes into arrays of floats - first first(u)="Complex" => - makeVector([makeVector([CADR u,CDDR u],'DOUBLE_-FLOAT)],NIL) - -- Turn arrays of complexes into arrays of floats so that tarnsposing - -- them puts them in the correct fortran order - first first(u)="Matrix" and first SECOND first(u) = "Complex" => - makeVector([makeVector(complexRows vec2Lists rest u,'DOUBLE_-FLOAT)],NIL) - rest(u) - -invokeFortran(objFile,args,dummies,decls,results,actual) == - actual := [spad2lisp(u) for u in first actual] - returnedValues := spadify( _ - fortCall(objFile,prepareData(args,dummies,actual,decls),_ - prepareResults(results,args,dummies,actual,decls)),_ - results,decls,inFirstNotSecond(args,dummies),actual) - --- -- If there are one or two elements in returnedValues we must return a --- -- cons cell, otherwise a vector. This is to match the internal --- -- representation of an Axiom Record. --- #returnedValues = 1 => returnedValues --- #returnedValues = 2 => CONS(first returnedValues,SECOND returnedValues) --- makeVector(returnedValues,nil) - -int2Bool u == - -- Return something which looks like an axiom boolean - u=1 => "TRUE" - NIL - -makeResultRecord(name,type,value) == - -- Take an object returned by the NAG routine and make it into an AXIOM - -- object of type Record(key:Symbol,entry:Any) for use by Result. - CONS(name,CONS(spadTypeTTT type,value)) - -spadify(l,results,decls,names,actual) == - -- The elements of list l are the output forms returned from the Fortran - -- code: integers, floats and vectors. Return spad forms of these, of - -- type Record(key:Symbol,entry:Any) (for use with the Result domain). - SETQ(RESULTS,l) - spadForms := nil - for i in 0..(#l -1) repeat - fort := NTH(i,l) - name := NTH(i,results) - ty := getFortranType(name,decls) - -- Result is a string - STRINGP fort => - spadForms := [makeResultRecord(name,ty,fort), :spadForms] - -- Result is a Complex Scalar - ty in ["double complex" , "complex"] => - spadForms := [makeResultRecord(name,ty, _ - CONS(ELT(fort,0),ELT(fort,1)) ),:spadForms] - -- Result is a Complex vector or array - LISTP(ty) and first(ty) in ["double complex" , "complex"] => - dims := [getVal(u,names,actual) for u in rest ty] - els := nil - if #dims=1 then - els := [makeVector([CONS(ELT(fort,2*i),ELT(fort,2*i+1)) _ - for i in 0..(first(dims)-1)],nil)] - else if #dims=2 then - for r in 0..(first(dims) - 1) repeat - innerEls := nil - for c in 0..(SECOND(dims) - 1) repeat - offset := 2*(c*first(dims)+r) - innerEls := [CONS(ELT(fort,offset),ELT(fort,offset+1)),:innerEls] - els := [makeVector(NREVERSE innerEls,nil),:els] - else - error ['"Can't cope with complex output dimensions higher than 2"] - spadForms := [makeResultRecord(name,ty,makeVector(NREVERSE els,nil)), - :spadForms] - -- Result is a Boolean vector or array - LISTP(ty) and first(ty)="logical" and #ty=2 => - dim := getVal(first rest ty,names,actual) - spadForms := [makeResultRecord(name,ty,_ - [int2Bool ELT(fort,i) for i in 0..dim-1]), :spadForms] - LISTP(ty) and first(ty)="logical" => - dims := [getVal(u,names,actual) for u in rest ty] - els := nil - if #dims=2 then - for r in 0..(first(dims) - 1) repeat - innerEls := nil - for c in 0..(SECOND(dims) - 1) repeat - innerEls := [int2Bool ELT(fort,c*first(dims)+r),:innerEls] - els := [NREVERSE innerEls,:els] - else - error ['"Can't cope with logical output dimensions higher than 2"] - spadForms := [makeResultRecord(name,ty,NREVERSE els), :spadForms] - -- Result is a vector or array - VECTORP fort => - dims := [getVal(u,names,actual) for u in rest ty] - els := nil - -- Check to see whether we are dealing with a dummy (0-dimensional) array. - if MEMQ(0,dims) then - els := [[]] - else if #dims=1 then - els := [makeVector([ELT(fort,i) for i in 0..(first(dims)-1)],nil)] - else if #dims=2 then - for r in 0..(first(dims) - 1) repeat - innerEls := nil - for c in 0..(SECOND(dims) - 1) repeat - innerEls := [ELT(fort,c*first(dims)+r),:innerEls] - els := [makeVector(NREVERSE innerEls,nil),:els] - else if #dims=3 then - iDim := first(dims) - jDim := SECOND dims - kDim := THIRD dims - for r in 0..(iDim - 1) repeat - middleEls := nil - for c in 0..(jDim - 1) repeat - innerEls := nil - for p in 0..(kDim - 1) repeat - offset := p*jDim + c*kDim + r - innerEls := [ELT(fort,offset),:innerEls] - middleEls := [makeVector(NREVERSE innerEls,nil),:middleEls] - els := [makeVector(NREVERSE middleEls,nil),:els] - else - error ['"Can't cope with output dimensions higher than 3"] - if not MEMQ(0,dims) then els := makeVector(NREVERSE els,nil) - spadForms := [makeResultRecord(name,ty,els), :spadForms] - -- Result is a Boolean Scalar - atom fort and ty="logical" => - spadForms := [makeResultRecord(name,ty,int2Bool fort), :spadForms] - -- Result is a Scalar - atom fort => - spadForms := [makeResultRecord(name,ty,fort),:spadForms] - error ['"Unrecognised output format: ",fort] - NREVERSE spadForms - -lispType u == - -- Return the lisp type equivalent to the given Fortran type. - LISTP u => lispType first u - u = "real" => "SHORT-FLOAT" - u = "double" => "DOUBLE-FLOAT" - u = "double precision" => "DOUBLE-FLOAT" - u = "integer" => "FIXNUM" - u = "logical" => "BOOLEAN" - u = "character" => "CHARACTER" - u = "complex" => "SHORT-FLOAT" - u = "double complex" => "DOUBLE-FLOAT" - error ['"Unrecognised Fortran type: ",u] - -getVal(u,names,values) == - -- if u is the i'th element of names, return the i'th element of values, - -- otherwise if it is an arithmetic expression evaluate it. - NUMBERP(u) => u - LISTP(u) => eval [first(u), :[getVal(v,names,values) for v in rest u]] - (place := POSITION(u,names)) => NTH(place,values) - error ['"No value found for parameter: ",u] - - -prepareData(args,dummies,values,decls) == --- TTT: we don't --- writeData handles all the mess - [args,dummies,values,decls] - - -checkForBoolean u == - u = "BOOLEAN" => "FIXNUM" - u - -prepareResults(results,args,dummies,values,decls) == - -- Create the floating point zeros (boot doesn't like 0.0d0, 0.0D0 etc) - shortZero : fluid := COERCE(0.0,'SHORT_-FLOAT) - longZero : fluid := COERCE(0.0,'DOUBLE_-FLOAT) - data := nil - for u in results repeat - type := getFortranType(u,decls) - data := [defaultValue(type,inFirstNotSecond(args,dummies),values),:data] - where defaultValue(type,argNames,actual) == - LISTP(type) and first(type)="character" => MAKE_-STRING(1) - LISTP(type) and first(type) in ["complex","double complex"] => - makeVector( makeList( - 2*APPLY('_*,[getVal(tt,argNames,actual) for tt in rest(type)]),_ - if first(type)="complex" then shortZero else longZero),_ - if first(type)="complex" then "SHORT-FLOAT" else "DOUBLE-FLOAT" ) - LISTP type => makeVector(_ - makeList( - APPLY('_*,[getVal(tt,argNames,actual) for tt in rest(type)]),_ - defaultValue(first type,argNames,actual)),_ - checkForBoolean lispType first(type) ) - type = "integer" => 0 - type = "real" => shortZero - type = "double" => longZero - type = "double precision" => longZero - type = "logical" => 0 - type = "character" => MAKE_-STRING(1) - type = "complex" => makeVector([shortZero,shortZero],'SHORT_-FLOAT) - type = "double complex" => makeVector([longZero,longZero],'LONG_-FLOAT) - error ['"Unrecognised Fortran type: ",type] - NREVERSE data - --- TTT this is dead code now --- transposeVector(u,type) == --- -- Take a vector of vectors and return a single vector which is in column --- -- order (i.e. swap from C to Fortran order). --- els := nil --- rows := CAR ARRAY_-DIMENSIONS(u)-1 --- cols := CAR ARRAY_-DIMENSIONS(ELT(u,0))-1 --- -- Could be a 3D Matrix --- if VECTORP ELT(ELT(u,0),0) then --- planes := CAR ARRAY_-DIMENSIONS(ELT(ELT(u,0),0))-1 --- for k in 0..planes repeat for j in 0..cols repeat for i in 0..rows repeat --- els := [ELT(ELT(ELT(u,i),j),k),:els] --- else --- for j in 0..cols repeat for i in 0..rows repeat --- els := [ELT(ELT(u,i),j),:els] --- makeVector(NREVERSE els,type) - - -writeData(tmpFile,indata) == - -- Write the elements of the list data to a temporary file. Return the - -- name of that file. - -- - str := MAKE_-OUTSTREAM(tmpFile) - xstr := xdrOpen(str,true) - [args,dummies,values,decls] := indata - for v in values repeat - -- the two Boolean values - v = "T" => - xdrWrite(xstr,1) - NULL v => - xdrWrite(xstr,0) - -- characters - STRINGP v => - xdrWrite(xstr,v) - -- some array - VECTORP v => - rows := CAR ARRAY_-DIMENSIONS(v) - -- is it 2d or more (most likely) ? - VECTORP ELT(v,0) => - cols := CAR ARRAY_-DIMENSIONS(ELT(v,0)) - -- is it 3d ? - VECTORP ELT(ELT(v,0),0) => - planes := CAR ARRAY_-DIMENSIONS(ELT(ELT(v,0),0)) - -- write 3d array - xdrWrite(xstr,rows*cols*planes) - for k in 0..planes-1 repeat - for j in 0..cols-1 repeat - for i in 0..rows-1 repeat - xdrWrite(xstr,ELT(ELT(ELT(v,i),j),k)) - -- write 2d array - xdrWrite(xstr,rows*cols) - for j in 0..cols-1 repeat - for i in 0..rows-1 repeat xdrWrite(xstr,ELT(ELT(v,i),j)) - -- write 1d array - xdrWrite(xstr,rows) - for i in 0..rows-1 repeat xdrWrite(xstr,ELT(v,i)) - -- this is used for lists of booleans apparently in f01 - LISTP v => - xdrWrite(xstr,LENGTH v) - for el in v repeat - if el then xdrWrite(xstr,1) else xdrWrite(xstr,0) - -- integers - INTEGERP v => - xdrWrite(xstr,v) - -- floats - FLOATP v => - xdrWrite(xstr,v) - SHUT(str) - tmpFile - -readData(tmpFile,results) == - -- read in the results from tmpFile. The list results is a list of - -- dummy objects of the correct type which will receive the data. - str := MAKE_-INSTREAM(tmpFile) - xstr := xdrOpen(str,false) - results := [xdrRead1(xstr,r) for r in results] where - xdrRead1(x,dummy) == - VECTORP(dummy) and ZEROP(LENGTH dummy) => dummy - xdrRead(x,dummy) - SHUT(str) - results - -generateDataName()==STRCONC($fortranTmpDir,getEnv('"HOST"), - getEnv('"SPADNUM"), GENTEMP('"NAG"),'"data") -generateResultsName()==STRCONC($fortranTmpDir,getEnv('"HOST"), - getEnv('"SPADNUM"), GENTEMP('"NAG"),'"results") - - -fortCall(objFile,data,results) == - tmpFile1 := writeData(generateDataName(),data) - tmpFile2 := generateResultsName() - SYSTEM STRCONC(objFile," < ",tmpFile1," > ",tmpFile2) - results := readData(tmpFile2,results) - -- SYSTEM STRCONC("rm -f ",tmpFile1," ",tmpFile2) - PROBE_-FILE(tmpFile1) and DELETE_-FILE(tmpFile1) - PROBE_-FILE(tmpFile2) and DELETE_-FILE(tmpFile2) - results - -invokeNagman(objFiles,nfile,args,dummies,decls,results,actual) == - actual := [spad2lisp(u) for u in first actual] - result := spadify(protectedNagCall(objFiles,nfile, _ - prepareData(args,dummies,actual,decls),_ - prepareResults(results,args,dummies,actual,decls)),_ - results,decls,inFirstNotSecond(args,dummies),actual) - -- Tidy up asps - -- if objFiles then SYSTEM STRCONC("rm -f ",addSpaces objFiles) - for fn in objFiles repeat PROBE_-FILE(fn) and DELETE_-FILE(fn) - result - - -nagCall(objFiles,nfile,data,results,tmpFiled,tmpFiler) == - nagMessagesString := - $nagMessages => '"on" - '"off" - writeData(tmpFiled,data) - toSend:=STRCONC($nagHost," ",nfile," ",tmpFiler," ",tmpFiled," ",_ - STRINGIMAGE($fortPersistence)," ", nagMessagesString," ",addSpaces objFiles) - sockSendString(8,toSend) - if sockGetInt(8)=1 then - results := readData(tmpFiler,results) - else - error ['"An error was detected while reading data: ", _ - '"perhaps an incorrect array index was given ?"] - results - -protectedNagCall(objFiles,nfile,data,results) == - errors :=true - val:=NIL - td:=generateDataName() - tr:=generateResultsName() - UNWIND_-PROTECT( (val:=nagCall(objFiles,nfile,data,results,td,tr) ;errors :=NIL), - errors =>( resetStackLimits(); sendNagmanErrorSignal();cleanUpAfterNagman(td,tr,objFiles))) - val - - -cleanUpAfterNagman(f1,f2,listf)== - PROBE_-FILE(f1) and DELETE_-FILE(f1) - PROBE_-FILE(f2) and DELETE_-FILE(f2) - for fn in listf repeat PROBE_-FILE(fn) and DELETE_-FILE(fn) - -sendNagmanErrorSignal()== --- excite nagman's signal handler! - sockSendSignal(8,15) - - --- Globals --- $fortranDirectory := nil --- $fortranLibraries := '"-L/usr/local/lib/f90 -lf90 -L/usr/local/lib -lnag -lm" --- $fortranTmpDir := '"/tmp/" --- $addUnderscoreToFortranNames := true --- $fortranCompilerName := '"f90" - -inFirstNotSecond(f,s)== - [i for i in f | not i in s] - --- Code for use in the Windows version of the AXIOM/NAG interface. - -multiToUnivariate f == - -- Take an AnonymousFunction, replace the bound variables by references to - -- elements of a vector, and compile it. - (first f) ^= "+->" => error "in multiToUnivariate: not an AnonymousFunction" - if PAIRP CADR f then - vars := CDADR f -- throw away 'Tuple at start of variable list - else - vars := [CADR f] - body := COPY_-TREE CADDR f - newVariable := GENSYM() - for index in 0..#vars-1 repeat - -- Remember that AXIOM lists, vectors etc are indexed from 1 - body := NSUBST(["elt",newVariable,index+1],vars.(index),body) - -- We want a Vector DoubleFloat -> DoubleFloat - target := [["DoubleFloat"],["Vector",["DoubleFloat"]]] - rest interpret ["ADEF",[newVariable],target,[[],[]],body] - -functionAndJacobian f == - -- Take a mapping into n functions of n variables, produce code which will - -- evaluate function and jacobian values. - (first f) ^= "+->" => error "in functionAndJacobian: not an AnonymousFunction" - if PAIRP CADR f then - vars := CDADR f -- throw away 'Tuple at start of variable list - else - vars := [CADR f] - #(vars) ^= #(CDADDR f) => - error "number of variables should equal number of functions" - funBodies := COPY_-TREE CDADDR f - jacBodies := [:[DF(f,v) for v in vars] for f in funBodies] where - DF(fn,var) == - ["@",["convert",["differentiate",fn,var]],"InputForm"] - jacBodies := CDDR interpret [["$elt",["List",["InputForm"]],"construct"],:jacBodies] - newVariable := GENSYM() - for index in 0..#vars-1 repeat - -- Remember that AXIOM lists, vectors etc are indexed from 1 - funBodies := NSUBST(["elt",newVariable,index+1],vars.(index),funBodies) - jacBodies := NSUBST(["elt",newVariable,index+1],vars.(index),jacBodies) - target := [["Vector",["DoubleFloat"]],["Vector",["DoubleFloat"]],["Integer"]] - rest interpret - ["ADEF",[newVariable,"flag"],target,[[],[],[]],_ - ["IF", ["=","flag",1],_ - ["vector",["construct",:funBodies]],_ - ["vector",["construct",:jacBodies]]]] - - -vectorOfFunctions f == - -- Take a mapping into n functions of m variables, produce code which will - -- evaluate function values. - (first f) ^= "+->" => error "in vectorOfFunctions: not an AnonymousFunction" - if PAIRP CADR f then - vars := CDADR f -- throw away 'Tuple at start of variable list - else - vars := [CADR f] - funBodies := COPY_-TREE CDADDR f - newVariable := GENSYM() - for index in 0..#vars-1 repeat - -- Remember that AXIOM lists, vectors etc are indexed from 1 - funBodies := NSUBST(["elt",newVariable,index+1],vars.(index),funBodies) - target := [["Vector",["DoubleFloat"]],["Vector",["DoubleFloat"]]] - rest interpret ["ADEF",[newVariable],target,[[],[]],["vector",["construct",:funBodies]]] - - - - - -@ -\eject -\begin{thebibliography}{99} -\bibitem{1} nothing -\end{thebibliography} -\end{document} |