aboutsummaryrefslogtreecommitdiff
path: root/src/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra')
-rw-r--r--src/algebra/attreg.spad.pamphlet29
-rw-r--r--src/algebra/catdef.spad.pamphlet16
-rw-r--r--src/algebra/integer.spad.pamphlet8
-rw-r--r--src/algebra/lie.spad.pamphlet2
-rw-r--r--src/algebra/matrix.spad.pamphlet7
-rw-r--r--src/algebra/naalgc.spad.pamphlet21
-rw-r--r--src/algebra/si.spad.pamphlet6
-rw-r--r--src/algebra/vector.spad.pamphlet1
-rw-r--r--src/algebra/xlpoly.spad.pamphlet5
-rw-r--r--src/algebra/xpoly.spad.pamphlet1
10 files changed, 8 insertions, 88 deletions
diff --git a/src/algebra/attreg.spad.pamphlet b/src/algebra/attreg.spad.pamphlet
index b8853786..68028a29 100644
--- a/src/algebra/attreg.spad.pamphlet
+++ b/src/algebra/attreg.spad.pamphlet
@@ -18,15 +18,6 @@ AttributeRegistry(): Category == with
commutative("*")
++ \spad{commutative("*")} is true if it has an operation
++ \spad{"*": (D,D) -> D} which is commutative.
- unitsKnown
- ++ \spad{unitsKnown} is true if a monoid (a multiplicative semigroup
- ++ with a 1) has \spad{unitsKnown} means that
- ++ the operation \spadfun{recip} can only return "failed"
- ++ if its argument is not a unit.
- leftUnitary
- ++ \spad{leftUnitary} is true if \spad{1 * x = x} for all x.
- rightUnitary
- ++ \spad{rightUnitary} is true if \spad{x * 1 = x} for all x.
noZeroDivisors
++ \spad{noZeroDivisors} is true if \spad{x * y \~~= 0} implies
++ both x and y are non-zero.
@@ -35,37 +26,17 @@ AttributeRegistry(): Category == with
++ representative for each class of associate elements, that is
++ \spad{associates?(a,b)} returns true if and only if
++ \spad{unitCanonical(a) = unitCanonical(b)}.
- canonicalsClosed
- ++ \spad{canonicalsClosed} is true if
- ++ \spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.
- arbitraryPrecision
- ++ \spad{arbitraryPrecision} means the user can set the
- ++ precision for subsequent calculations.
partiallyOrderedSet
++ \spad{partiallyOrderedSet} is true if
++ a set with \spadop{<} which is transitive,
++ but \spad{not(a < b or a = b)}
++ does not necessarily imply \spad{b<a}.
- central
- ++ \spad{central} is true if, given an algebra over a ring R,
- ++ the image of R is the center
- ++ of the algebra, i.e. the set of members of the algebra which commute
- ++ with all others is precisely the image of R in the algebra.
- noetherian
- ++ \spad{noetherian} is true if all of its ideals are finitely generated.
additiveValuation
++ \spad{additiveValuation} implies
++ \spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.
multiplicativeValuation
++ \spad{multiplicativeValuation} implies
++ \spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.
- NullSquare
- ++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.
- ++ See \axiomType{LieAlgebra}.
- JacobiIdentity
- ++ \axiom{JacobiIdentity} means that
- ++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.
- ++ See \axiomType{LieAlgebra}.
canonical
++ \spad{canonical} is true if and only if distinct elements have
++ distinct data structures. For example, a domain of mathematical objects
diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet
index 9e6a8102..1e9370df 100644
--- a/src/algebra/catdef.spad.pamphlet
+++ b/src/algebra/catdef.spad.pamphlet
@@ -489,9 +489,7 @@ OrderedStructure(T: Type,f: (T,T) -> Boolean): Public == Private where
++ Axiom:
++ \spad{ r*(x*s) = (r*x)*s }
BiModule(R:Ring,S:Ring):Category ==
- Join(LeftModule(R),RightModule(S)) with
- leftUnitary ++ \spad{1 * x = x}
- rightUnitary ++ \spad{x * 1 = x}
+ Join(LeftModule(R),RightModule(S))
@
\section{category CABMON CancellationAbelianMonoid}
@@ -1033,7 +1031,6 @@ Field(): Category == Join(EuclideanDomain,UniqueFactorizationDomain,
++ x/y divides the element x by the element y.
++ Error: if y is 0.
canonicalUnitNormal ++ either 0 or 1.
- canonicalsClosed ++ since \spad{0*0=0}, \spad{1*1=1}
add
--declarations
x,y: %
@@ -1224,8 +1221,6 @@ Group(): Category == Monoid with
inv: % -> % ++ inv(x) returns the inverse of x.
/: (%,%) -> % ++ x/y is the same as x times the inverse of y.
**: (%,Integer) -> % ++ x**n returns x raised to the integer power n.
- unitsKnown ++ unitsKnown asserts that recip only returns
- ++ "failed" for non-units.
conjugate: (%,%) -> %
++ conjugate(p,q) computes \spad{inv(q) * p * q}; this is 'right action
++ by conjugation'.
@@ -1261,7 +1256,6 @@ Group(): Category == Monoid with
++
++ Conditional attributes:
++ canonicalUnitNormal\tab{20}the canonical field is the same for all associates
-++ canonicalsClosed\tab{20}the product of two canonicals is itself canonical
IntegralDomain(): Category ==
Join(CommutativeRing, Algebra(%), EntireRing) with
@@ -1411,8 +1405,6 @@ Module(R:CommutativeRing): Category == Join(BiModule(R,R), LinearSet R)
++ \spad{leftIdentity("*":(%,%)->%,1)}\tab{30}\spad{1*x=x}
++ \spad{rightIdentity("*":(%,%)->%,1)}\tab{30}\spad{x*1=x}
++
-++ Conditional attributes:
-++ unitsKnown\tab{15}\spadfun{recip} only returns "failed" on non-units
Monoid(): Category == SemiGroup with
--operations
1: % ++ 1 is the multiplicative identity.
@@ -1422,7 +1414,7 @@ Monoid(): Category == SemiGroup with
++ of x n times, i.e. exponentiation.
recip: % -> Union(%,"failed")
++ recip(x) tries to compute the multiplicative inverse for x
- ++ or "failed" if it cannot find the inverse (see unitsKnown).
+ ++ or "failed" if it cannot find the inverse.
add
import RepeatedSquaring(%)
one? x == x = 1
@@ -2012,10 +2004,6 @@ Ring(): Category == Join(Rng,SemiRing,LeftModule(%),CoercibleFrom Integer) with
++ \spad{n*x=0} for all x in the ring, or zero if no such n
++ exists.
--We can not make this a constant, since some domains are mutable
- unitsKnown
- ++ recip truly yields
- ++ reciprocal or "failed" if not a unit.
- ++ Note: \spad{recip(0) = "failed"}.
add
n:Integer
coerce(n) == n * 1$%
diff --git a/src/algebra/integer.spad.pamphlet b/src/algebra/integer.spad.pamphlet
index ba924720..df709373 100644
--- a/src/algebra/integer.spad.pamphlet
+++ b/src/algebra/integer.spad.pamphlet
@@ -73,10 +73,6 @@ IntegerSolveLinearPolynomialEquation(): C ==T
Integer: IntegerNumberSystem with
canonical
++ mathematical equality is data structure equality.
- canonicalsClosed
- ++ two positives multiply to give positive.
- noetherian
- ++ ascending chain condition on ideals.
== add
ZP ==> SparseUnivariatePolynomial %
ZZP ==> SparseUnivariatePolynomial Integer
@@ -298,10 +294,6 @@ PositiveInteger: Join(OrderedAbelianSemiGroup,Monoid) with
RomanNumeral(): Join(IntegerNumberSystem,ConvertibleFrom Symbol) with
canonical
++ mathematical equality is data structure equality.
- canonicalsClosed
- ++ two positives multiply to give positive.
- noetherian
- ++ ascending chain condition on ideals.
roman : Symbol -> %
++ roman(n) creates a roman numeral for symbol n.
roman : Integer -> %
diff --git a/src/algebra/lie.spad.pamphlet b/src/algebra/lie.spad.pamphlet
index d039c5ef..a8d2c857 100644
--- a/src/algebra/lie.spad.pamphlet
+++ b/src/algebra/lie.spad.pamphlet
@@ -201,8 +201,6 @@ LieSquareMatrix(n,R): Exports == Implementation where
-- symdecomp : % -> Record(sym:%,antisym:%)
-- if R has commutative("*") then
-- minorsVect: -> Vector(Union(R,"uncomputed")) --range: 1..2**n-1
--- if R has commutative("*") then central
--- if R has commutative("*") and R has unitsKnown then unitsKnown
@
\section{License}
diff --git a/src/algebra/matrix.spad.pamphlet b/src/algebra/matrix.spad.pamphlet
index 6aded198..159f0217 100644
--- a/src/algebra/matrix.spad.pamphlet
+++ b/src/algebra/matrix.spad.pamphlet
@@ -310,13 +310,6 @@ SquareMatrix(ndim,R): Exports == Implementation where
-- if R has commutative("*") then
-- minorsVect: -> Vector(Union(R,"uncomputed")) --range: 1..2**n-1
-- ++ \spad{minorsVect(m)} returns a vector of the minors of the matrix m
- if R has commutative("*") then central
- ++ the elements of the Ring R, viewed as diagonal matrices, commute
- ++ with all matrices and, indeed, are the only matrices which commute
- ++ with all matrices.
- if R has commutative("*") and R has unitsKnown then unitsKnown
- ++ the invertible matrices are simply the matrices whose determinants
- ++ are units in the Ring R.
if R has ConvertibleTo InputForm then ConvertibleTo InputForm
Implementation ==> Matrix R add
diff --git a/src/algebra/naalgc.spad.pamphlet b/src/algebra/naalgc.spad.pamphlet
index f5b56a47..3f85f7ef 100644
--- a/src/algebra/naalgc.spad.pamphlet
+++ b/src/algebra/naalgc.spad.pamphlet
@@ -78,8 +78,6 @@ Monad(): Category == SetCategory with
++ Axioms
++ leftIdentity("*":(%,%)->%,1) \tab{30} 1*x=x
++ rightIdentity("*":(%,%)->%,1) \tab{30} x*1=x
-++ Common Additional Axioms
-++ unitsKnown---if "recip" says "failed", that PROVES input wasn't a unit
MonadWithUnit(): Category == Monad with
--constants
1: constant -> %
@@ -102,15 +100,15 @@ MonadWithUnit(): Category == Monad with
++ recip(a) returns an element, which is both a left and a right
++ inverse of \spad{a},
++ or \spad{"failed"} if such an element doesn't exist or cannot
- ++ be determined (see unitsKnown).
+ ++ be determined.
leftRecip: % -> Union(%,"failed")
++ leftRecip(a) returns an element, which is a left inverse of \spad{a},
++ or \spad{"failed"} if such an element doesn't exist or cannot
- ++ be determined (see unitsKnown).
+ ++ be determined.
rightRecip: % -> Union(%,"failed")
++ rightRecip(a) returns an element, which is a right inverse of
++ \spad{a}, or \spad{"failed"} if such an element doesn't exist
- ++ or cannot be determined (see unitsKnown).
+ ++ or cannot be determined.
add
import RepeatedSquaring(%)
one? x == x = 1
@@ -404,16 +402,16 @@ FiniteRankNonAssociativeAlgebra(R:CommutativeRing):
++ recip(a) returns an element, which is both a left and a right
++ inverse of \spad{a},
++ or \spad{"failed"} if there is no unit element, if such an
- ++ element doesn't exist or cannot be determined (see unitsKnown).
+ ++ element doesn't exist or cannot be determined.
leftRecip: % -> Union(%,"failed")
++ leftRecip(a) returns an element, which is a left inverse of \spad{a},
++ or \spad{"failed"} if there is no unit element, if such an
- ++ element doesn't exist or cannot be determined (see unitsKnown).
+ ++ element doesn't exist or cannot be determined.
rightRecip: % -> Union(%,"failed")
++ rightRecip(a) returns an element, which is a right inverse of
++ \spad{a},
++ or \spad{"failed"} if there is no unit element, if such an
- ++ element doesn't exist or cannot be determined (see unitsKnown).
+ ++ element doesn't exist or cannot be determined.
associatorDependence:() -> List Vector R
++ associatorDependence() looks for the associator identities, i.e.
++ finds a basis of the solutions of the linear combinations of the
@@ -450,13 +448,6 @@ FiniteRankNonAssociativeAlgebra(R:CommutativeRing):
-- about characteristic
-- if R has CharacteristicZero then CharacteristicZero
-- if R has CharacteristicNonZero then CharacteristicNonZero
- unitsKnown
- ++ unitsKnown means that \spadfun{recip} truly yields reciprocal
- ++ or \spad{"failed"} if not a unit,
- ++ similarly for \spadfun{leftRecip} and
- ++ \spadfun{rightRecip}. The reason is that we use left, respectively
- ++ right, minimal polynomials to decide this question.
-
add
--n := rank()
--b := someBasis()
diff --git a/src/algebra/si.spad.pamphlet b/src/algebra/si.spad.pamphlet
index 795a75ed..561fc89e 100644
--- a/src/algebra/si.spad.pamphlet
+++ b/src/algebra/si.spad.pamphlet
@@ -182,12 +182,6 @@ IntegerNumberSystem(): Category ==
SingleInteger(): Join(IntegerNumberSystem,OrderedFinite,BooleanLogic) with
canonical
++ \spad{canonical} means that mathematical equality is implied by data structure equality.
- canonicalsClosed
- ++ \spad{canonicalClosed} means two positives multiply to give positive.
- noetherian
- ++ \spad{noetherian} all ideals are finitely generated (in fact principal).
-
- -- bit operations
xor: (%, %) -> %
++ xor(n,m) returns the bit-by-bit logical {\em xor} of
++ the single integers n and m.
diff --git a/src/algebra/vector.spad.pamphlet b/src/algebra/vector.spad.pamphlet
index ea83ba12..7d143b7a 100644
--- a/src/algebra/vector.spad.pamphlet
+++ b/src/algebra/vector.spad.pamphlet
@@ -238,7 +238,6 @@ DirectProductCategory(dim:NonNegativeInteger, R:Type): Category ==
if R has Monoid then LinearSet R
if R has Finite then Finite
if R has CommutativeRing then Module R
- if R has unitsKnown then unitsKnown
if R has OrderedSet then OrderedSet
if R has OrderedAbelianMonoidSup then OrderedAbelianMonoidSup
if R has Field then VectorSpace R
diff --git a/src/algebra/xlpoly.spad.pamphlet b/src/algebra/xlpoly.spad.pamphlet
index f607199d..6090799a 100644
--- a/src/algebra/xlpoly.spad.pamphlet
+++ b/src/algebra/xlpoly.spad.pamphlet
@@ -353,11 +353,6 @@ import Field
++ \axiomType{LiePolynomial} and
++ \axiomType{XPBWPolynomial}. \newline Author : Michel Petitot (petitot@lifl.fr).
LieAlgebra(R: CommutativeRing): Category == Module(R) with
- --attributes
- NullSquare
- ++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.
- JacobiIdentity
- ++ \axiom{JacobiIdentity} means that \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.
--exports
construct: ($,$) -> $
++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x} and \axiom{y}.
diff --git a/src/algebra/xpoly.spad.pamphlet b/src/algebra/xpoly.spad.pamphlet
index b2021bf8..dbaf46dc 100644
--- a/src/algebra/xpoly.spad.pamphlet
+++ b/src/algebra/xpoly.spad.pamphlet
@@ -536,7 +536,6 @@ XPolynomialRing(R:Ring,E:OrderedMonoid): T == C where
--assertions
if R has noZeroDivisors then noZeroDivisors
- if R has unitsKnown then unitsKnown
if R has canonicalUnitNormal then canonicalUnitNormal
++ canonicalUnitNormal guarantees that the function
++ unitCanonical returns the same representative for all