diff options
Diffstat (limited to 'src/algebra')
-rw-r--r-- | src/algebra/cycles.spad.pamphlet | 39 |
1 files changed, 14 insertions, 25 deletions
diff --git a/src/algebra/cycles.spad.pamphlet b/src/algebra/cycles.spad.pamphlet index ca9ce44d..4fca9d13 100644 --- a/src/algebra/cycles.spad.pamphlet +++ b/src/algebra/cycles.spad.pamphlet @@ -32,13 +32,6 @@ CycleIndicators: Exports == Implementation where PTN ==> Partition RN ==> Fraction Integer FR ==> Factored Integer - h ==> complete - s ==> powerSum - --a ==> elementary - alt ==> alternating - cyc ==> cyclic - dih ==> dihedral - ev == eval Exports ==> with complete: I -> SPOL RN @@ -55,8 +48,6 @@ CycleIndicators: Exports == Implementation where ++\spad{elementary n} is the \spad{n} th elementary symmetric ++ function expressed in terms of power sums. - -- s2h: I -> SPOL RN--s to h - alternating: I -> SPOL RN ++\spad{alternating n} is the cycle index of the ++ alternating group of degree n. @@ -122,8 +113,9 @@ CycleIndicators: Exports == Implementation where even?: L I -> B even? li == even?( #([i for i in li | even? i])) - alt i == + alternating i == 2 * _+/[trm(partition li) for li in list(partitions i) | even? li] + elementary i == if i=0 then 1 @@ -145,20 +137,20 @@ CycleIndicators: Exports == Implementation where li : L I := [n for j in 1..m] monomial(1,partition li) - s n == ss(n,1) + powerSum n == ss(n,1) - cyc n == - n = 1 => s 1 + cyclic n == + n = 1 => powerSum 1 +/[(eulerPhi(i) / n) * ss(i,numer(n/i)) for i in divisors n] - dih n == + dihedral n == k := n quo 2 - odd? n => (1/2) * cyc n + (1/2) * ss(2,k) * s 1 - (1/2) * cyc n + (1/4) * ss(2,k) + (1/4) * ss(2,k-1) * ss(1,2) + odd? n => (1/2) * cyclic n + (1/2) * ss(2,k) * powerSum 1 + (1/2) * cyclic n + (1/4) * ss(2,k) + (1/4) * ss(2,k-1) * ss(1,2) trm2: L I -> SPOL RN trm2 li == - lli := powers(li)$PTN + lli := powers(partition li)$PTN xx := 1/(pdct partition li) prod : SPOL RN := 1 for ll in lli repeat @@ -189,11 +181,11 @@ CycleIndicators: Exports == Implementation where p := leadingCoefficient(spol1) * cupp(degree spol1,spol2) p + cup(reductum spol1,spol2) - ev spol == + eval spol == zero? spol => 0 - leadingCoefficient(spol) + ev(reductum spol) + leadingCoefficient(spol) + eval(reductum spol) - cap(spol1,spol2) == ev cup(spol1,spol2) + cap(spol1,spol2) == eval cup(spol1,spol2) mtpol: (I,SPOL RN) -> SPOL RN mtpol(n,spol)== @@ -201,7 +193,6 @@ CycleIndicators: Exports == Implementation where deg := partition [n*k for k in (degree spol)::L(I)] monomial(leadingCoefficient spol,deg) + mtpol(n,reductum spol) - fn2: I -> SPOL RN evspol: ((I -> SPOL RN),SPOL RN) -> SPOL RN evspol(fn2,spol) == zero? spol => 0 @@ -211,10 +202,8 @@ CycleIndicators: Exports == Implementation where wreath(spol1,spol2) == evspol(mtpol(#1,spol2),spol1) - hh: I -> SPOL RN --symmetric group - hh n == if n=0 then 1 else if n<0 then 0 else h n SFunction li== - a:Matrix SPOL RN:=matrix [[hh(k -j+i) for k in li for j in 1..#li] + a:Matrix SPOL RN:=matrix [[complete(k -j+i) for k in li for j in 1..#li] for i in 1..#li] determinant a @@ -227,7 +216,7 @@ CycleIndicators: Exports == Implementation where #li1 < #li2 => error "skewSFunction: partition1 does not include partition2" li2:=roundup (li1,li2) - a:Matrix SPOL RN:=matrix [[hh(k-li2.i-j+i) + a:Matrix SPOL RN:=matrix [[complete(k-li2.i-j+i) for k in li1 for j in 1..#li1] for i in 1..#li1] determinant a |