diff options
Diffstat (limited to 'src/algebra/smith.spad.pamphlet')
-rw-r--r-- | src/algebra/smith.spad.pamphlet | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/src/algebra/smith.spad.pamphlet b/src/algebra/smith.spad.pamphlet new file mode 100644 index 00000000..8c89d9ef --- /dev/null +++ b/src/algebra/smith.spad.pamphlet @@ -0,0 +1,284 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra smith.spad} +\author{Patrizia Gianni} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package SMITH SmithNormalForm} +<<package SMITH SmithNormalForm>>= +)abbrev package SMITH SmithNormalForm +++ Author: Patrizia Gianni +++ Date Created: October 1992 +++ Date Last Updated: +++ Basic Operations: +++ Related Domains: Matrix(R) +++ Also See: +++ AMS Classifications: +++ Keywords: matrix, canonical forms, linear algebra +++ Examples: +++ References: +++ Description: +++ \spadtype{SmithNormalForm} is a package +++ which provides some standard canonical forms for matrices. + +SmithNormalForm(R,Row,Col,M) : Exports == Implementation where + + R : EuclideanDomain + Row : FiniteLinearAggregate R + Col : FiniteLinearAggregate R + M : MatrixCategory(R,Row,Col) + + I ==> Integer + NNI ==> NonNegativeInteger + HermiteForm ==> Record(Hermite:M,eqMat:M) + SmithForm ==> Record(Smith : M, leftEqMat : M, rightEqMat : M) + PartialV ==> Union(Col, "failed") + Both ==> Record(particular: PartialV, basis: List Col) + + Exports == with + hermite : M -> M + ++ \spad{hermite(m)} returns the Hermite normal form of the + ++ matrix m. + completeHermite : M -> HermiteForm + ++ \spad{completeHermite} returns a record that contains + ++ the Hermite normal form H of the matrix and the equivalence matrix + ++ U such that U*m = H + smith : M -> M + ++ \spad{smith(m)} returns the Smith Normal form of the matrix m. + completeSmith : M -> SmithForm + ++ \spad{completeSmith} returns a record that contains + ++ the Smith normal form H of the matrix and the left and right + ++ equivalence matrices U and V such that U*m*v = H + diophantineSystem : (M,Col) -> Both + ++ \spad{diophantineSystem(A,B)} returns a particular integer solution and + ++ an integer basis of the equation \spad{AX = B}. + + Implementation == add + MATCAT1 ==> MatrixCategoryFunctions2(R,Row,Col,M,QF,Row2,Col2,M2) + MATCAT2 ==> MatrixCategoryFunctions2(QF,Row2,Col2,M2,R,Row,Col,M) + QF ==> Fraction R + Row2 ==> Vector QF + Col2 ==> Vector QF + M2 ==> Matrix QF + + ------ Local Functions ----- + elRow1 : (M,I,I) -> M + elRow2 : (M,R,I,I) -> M + elColumn2 : (M,R,I,I) -> M + isDiagonal? : M -> Boolean + ijDivide : (SmithForm ,I,I) -> SmithForm + lastStep : SmithForm -> SmithForm + test1 : (M,Col,NNI) -> Union(NNI, "failed") + test2 : (M, Col,NNI,NNI) -> Union( Col, "failed") + + -- inconsistent system : case 0 = c -- + test1(sm:M,b:Col,m1 : NNI) : Union(NNI , "failed") == + km:=m1 + while zero? sm(km,km) repeat + if not zero?(b(km)) then return "failed" + km:= (km - 1) :: NNI + km + + if Col has shallowlyMutable then + + test2(sm : M ,b : Col, n1:NNI,dk:NNI) : Union( Col, "failed") == + -- test divisibility -- + sol:Col := new(n1,0) + for k in 1..dk repeat + if (c:=(b(k) exquo sm(k,k))) case "failed" then return "failed" + sol(k):= c::R + sol + + -- test if the matrix is diagonal or pseudo-diagonal -- + isDiagonal?(m : M) : Boolean == + m1:= nrows m + n1:= ncols m + for i in 1..m1 repeat + for j in 1..n1 | (j ^= i) repeat + if not zero?(m(i,j)) then return false + true + + -- elementary operation of first kind: exchange two rows -- + elRow1(m:M,i:I,j:I) : M == + vec:=row(m,i) + setRow!(m,i,row(m,j)) + setRow!(m,j,vec) + m + + -- elementary operation of second kind: add to row i-- + -- a*row j (i^=j) -- + elRow2(m : M,a:R,i:I,j:I) : M == + vec:= map(a*#1,row(m,j)) + vec:=map("+",row(m,i),vec) + setRow!(m,i,vec) + m + -- elementary operation of second kind: add to column i -- + -- a*column j (i^=j) -- + elColumn2(m : M,a:R,i:I,j:I) : M == + vec:= map(a*#1,column(m,j)) + vec:=map("+",column(m,i),vec) + setColumn!(m,i,vec) + m + + -- modify SmithForm in such a way that the term m(i,i) -- + -- divides the term m(j,j). m is diagonal -- + ijDivide(sf : SmithForm , i : I,j : I) : SmithForm == + m:=sf.Smith + mii:=m(i,i) + mjj:=m(j,j) + extGcd:=extendedEuclidean(mii,mjj) + d := extGcd.generator + mii:=(mii exquo d)::R + mjj := (mjj exquo d) :: R + -- add to row j extGcd.coef1*row i -- + lMat:=elRow2(sf.leftEqMat,extGcd.coef1,j,i) + -- switch rows i and j -- + lMat:=elRow1(lMat,i,j) + -- add to row j -mii*row i -- + lMat := elRow2(lMat,-mii,j,i) +-- lMat := ijModify(mii,mjj,extGcd.coef1,extGcd.coef2,sf.leftEqMat,i,j) + m(j,j):= m(i,i) * mjj + m(i,i):= d + -- add to column i extGcd.coef2 * column j -- + rMat := elColumn2(sf.rightEqMat,extGcd.coef2,i,j) + -- add to column j -mjj*column i -- + rMat:=elColumn2(rMat,-mjj,j,i) + -- multiply by -1 column j -- + setColumn!(rMat,j,map(-1 * #1,column(rMat,j))) + [m,lMat,rMat] + + + -- given a diagonal matrix compute its Smith form -- + lastStep(sf : SmithForm) : SmithForm == + m:=sf.Smith + m1:=min(nrows m,ncols m) + for i in 1..m1 while (mii:=m(i,i)) ^=0 repeat + for j in i+1..m1 repeat + if (m(j,j) exquo mii) case "failed" then return + lastStep(ijDivide(sf,i,j)) + sf + + -- given m and t row-equivalent matrices, with t in upper triangular -- + -- form compute the matrix u such that u*m=t -- + findEqMat(m : M,t : M) : Record(Hermite : M, eqMat : M) == + m1:=nrows m + n1:=ncols m + "and"/[zero? t(m1,j) for j in 1..n1] => -- there are 0 rows + if "and"/[zero? t(1,j) for j in 1..n1] + then return [m,scalarMatrix(m1,1)] -- m is the zero matrix + mm:=horizConcat(m,scalarMatrix(m1,1)) + mmh:=rowEchelon mm + [subMatrix(mmh,1,m1,1,n1), subMatrix(mmh,1,m1,n1+1,n1+m1)] + u:M:=zero(m1,m1) + j:=1 + while t(1,j)=0 repeat j:=j+1 -- there are 0 columns + t1:=copy t + mm:=copy m + if j>1 then + t1:=subMatrix(t,1,m1,j,n1) + mm:=subMatrix(m,1,m1,j,n1) + t11:=t1(1,1) + for i in 1..m1 repeat + u(i,1) := (mm(i,1) exquo t11) :: R + for j in 2..m1 repeat + j0:=j + while zero?(tjj:=t1(j,j0)) repeat j0:=j0+1 + u(i,j) :=((mm(i,j0) - ("+"/[u(i,k) * t1(k,j0) for k in 1..(j-1)])) exquo + tjj) :: R + u1:M2:= map(#1 :: QF,u)$MATCAT1 + [t,map(retract$QF,(inverse u1)::M2)$MATCAT2] + + --- Hermite normal form of m --- + hermite(m:M) : M == rowEchelon m + + -- Hermite normal form and equivalence matrix -- + completeHermite(m : M) : Record(Hermite : M, eqMat : M) == + findEqMat(m,rowEchelon m) + + smith(m : M) : M == completeSmith(m).Smith + + completeSmith(m : M) : Record(Smith : M, leftEqMat : M, rightEqMat : M) == + cm1:=completeHermite m + leftm:=cm1.eqMat + m1:=cm1.Hermite + isDiagonal? m1 => lastStep([m1,leftm,scalarMatrix(ncols m,1)]) + nr:=nrows m + cm1:=completeHermite transpose m1 + rightm:= transpose cm1.eqMat + m1:=cm1.Hermite + isDiagonal? m1 => + cm2:=lastStep([m1,leftm,rightm]) + nrows(m:=cm2.Smith) = nr => cm2 + [transpose m,cm2.leftEqMat, cm2.rightEqMat] + cm2:=completeSmith m1 + cm2:=lastStep([cm2.Smith,transpose(cm2.rightEqMat)*leftm, + rightm*transpose(cm2.leftEqMat)]) + nrows(m:=cm2.Smith) = nr => cm2 + [transpose m, cm2.leftEqMat, cm2.rightEqMat] + + -- Find the solution in R of the linear system mX = b -- + diophantineSystem(m : M, b : Col) : Both == + sf:=completeSmith m + sm:=sf.Smith + m1:=nrows sm + lm:=sf.leftEqMat + b1:Col:= lm* b + (t1:=test1(sm,b1,m1)) case "failed" => ["failed",empty()] + dk:=t1 :: NNI + n1:=ncols sm + (t2:=test2(sm,b1,n1,dk)) case "failed" => ["failed",empty()] + rm := sf.rightEqMat + sol:=rm*(t2 :: Col) -- particular solution + dk = n1 => [sol,list new(n1,0)] + lsol:List Col := [column(rm,i) for i in (dk+1)..n1] + [sol,lsol] + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<package SMITH SmithNormalForm>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |