diff options
Diffstat (limited to 'src/algebra/multsqfr.spad.pamphlet')
-rw-r--r-- | src/algebra/multsqfr.spad.pamphlet | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/src/algebra/multsqfr.spad.pamphlet b/src/algebra/multsqfr.spad.pamphlet index fbc32eeb..4d71bd73 100644 --- a/src/algebra/multsqfr.spad.pamphlet +++ b/src/algebra/multsqfr.spad.pamphlet @@ -111,19 +111,19 @@ MultivariateSquareFree (E,OV,R,P) : C == T where exp0:Z:=0 unitsq:P:=1 lcf:P:=leadingCoefficient f - if ctf^=1 then + if ctf~=1 then f0:=ctf*f0 f:=(ctf::P)*f lcf:=ctf*lcf sqlead:List FFEP:= empty() sqlc:Factored P:=1 - if lcf^=1$P then + if lcf~=1$P then leadpol:=true sqlc:=squareFree lcf unitsq:=unitsq*(unit sqlc) sqlead:= factors sqlc lfact:=sort(#1.exponent > #2.exponent,lfact) - while lfact^=[] repeat + while lfact~=[] repeat pfact:=lfact.first (g0,exp0):=(pfact.factor,pfact.exponent) lfact:=lfact.rest @@ -132,7 +132,7 @@ MultivariateSquareFree (E,OV,R,P) : C == T where gg := unitNormal leadingCoefficient f sqdec:=cons([gg.associate*f,exp0],sqdec) return [gg.unit, sqdec]$squareForm - if ctf^=1 then g0:=ctf*g0 + if ctf~=1 then g0:=ctf*g0 npol:=consnewpol(f,f0,exp0) (d,d0):=(npol.pol,npol.polval) if leadpol then lcoef:=coefChoose(exp0,sqlc) @@ -147,8 +147,8 @@ MultivariateSquareFree (E,OV,R,P) : C == T where f:=h::SUP f0:=completeEval(h,lvar,lval) lcr:P:=leadingCoefficient result0 - if leadpol and lcr^=1$P then - for lpfact in sqlead while lcr^=1 repeat + if leadpol and lcr~=1$P then + for lpfact in sqlead while lcr~=1 repeat ground? lcr => unitsq:=(unitsq exquo lcr)::P lcr:=1$P @@ -195,7 +195,7 @@ MultivariateSquareFree (E,OV,R,P) : C == T where y:=lvar.im p:=p*monomial(1$P,y,n) result1:=cons(["sqfr",y::P,n],result1) - if p^=1$P then + if p~=1$P then f := (f exquo p)::P if ground? f then return makeFR(f, result1) lvar:=variables(f) @@ -206,7 +206,7 @@ MultivariateSquareFree (E,OV,R,P) : C == T where makeFR(unit result,append(result1,factorList result)) ldeg:=degree(f,lvar) --- general case --- - m:="min"/[j for j in ldeg|j^=0] + m:="min"/[j for j in ldeg|j~=0] i:Z:=1 for j in ldeg while j>m repeat i:=i+1 x:=lvar.i @@ -241,7 +241,7 @@ MultivariateSquareFree (E,OV,R,P) : C == T where member?(lval,ltry) => "new integer" ltry:=cons(lval,ltry) f0:=completeEval(f,lvar,lval) - degree f0 ^=degf => "new integer" + degree f0 ~=degf => "new integer" ctf:=content f0 lfact:List(FFE):=factors(squareFree((f0 exquo (ctf:R)::BP)::BP)) @@ -303,7 +303,7 @@ MultivariateSquareFree (E,OV,R,P) : C == T where plist:=lifting(ud,lvar,[g0,g1],lval,leadlist,ldeg,pmod) plist case "failed" => "failed" (p0:SUP,p1:SUP):=((plist::List SUP).1,(plist::List SUP).2) - if completeEval(p0,lvar,lval) ^= g0 then (p0,p1):=(p1,p0) + if completeEval(p0,lvar,lval) ~= g0 then (p0,p1):=(p1,p0) [primitivePart p0,primitivePart p1] ---- the polynomial is univariate ---- |