aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/intrf.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/intrf.spad.pamphlet')
-rw-r--r--src/algebra/intrf.spad.pamphlet34
1 files changed, 17 insertions, 17 deletions
diff --git a/src/algebra/intrf.spad.pamphlet b/src/algebra/intrf.spad.pamphlet
index 17f21167..73a73040 100644
--- a/src/algebra/intrf.spad.pamphlet
+++ b/src/algebra/intrf.spad.pamphlet
@@ -97,7 +97,7 @@ SubResultantPackage(R, UP): Exports == Implementation where
F := Sn
null l => error "SUBRESP: strange Subresultant chain from PRS"
zero? Sn => error "SUBRESP: strange Subresultant chain from PRS"
- while (l ^= []) repeat
+ while (l ~= []) repeat
res.(n) := Sn
F := first(l)
l := rest(l)
@@ -422,7 +422,7 @@ TranscendentalIntegration(F, UP): Exports == Implementation where
-- in k[z] of the restriction of D to k.
kappa(p, derivation) ==
ans:UP := 0
- while p ^= 0 repeat
+ while p ~= 0 repeat
ans := ans + derivation(leadingCoefficient(p)::UP)*monomial(1,degree p)
p := reductum p
ans
@@ -469,7 +469,7 @@ TranscendentalIntegration(F, UP): Exports == Implementation where
expintegratepoly(p, FRDE) ==
coef0:F := 0
notelm := answr := 0$GP
- while p ^= 0 repeat
+ while p ~= 0 repeat
ans1 := FRDE(n := degree p, a := leadingCoefficient p)
answr := answr + monomial(ans1.ans, n)
if ~ans1.sol? then -- Risch d.e. has no complete solution
@@ -487,7 +487,7 @@ TranscendentalIntegration(F, UP): Exports == Implementation where
tanintegratespecial(f, derivation, FRDE) ==
ans:RF := 0
p := monomial(1, 2)$UP + 1
- while (n := degree(denom f) quo 2) ^= 0 repeat
+ while (n := degree(denom f) quo 2) ~= 0 repeat
r := numer(f) rem p
a := coefficient(r, 1)
b := coefficient(r, 0)
@@ -507,21 +507,21 @@ TranscendentalIntegration(F, UP): Exports == Implementation where
expextintfrac(f, derivation, g) ==
zero? f => [0, 0]
degree numer f >= degree denom f => error "Not a proper fraction"
- order(denom f,monomial(1,1)) ^= 0 => error "Not integral at t = 0"
+ order(denom f,monomial(1,1)) ~= 0 => error "Not integral at t = 0"
r := HermiteIntegrate(f, derivation)
zero? g =>
- r.logpart ^= 0 => "failed"
+ r.logpart ~= 0 => "failed"
[r.answer, 0]
degree numer g >= degree denom g => error "Not a proper fraction"
- order(denom g,monomial(1,1)) ^= 0 => error "Not integral at t = 0"
- differentiate(c := r.logpart / g, derivation) ^= 0 => "failed"
+ order(denom g,monomial(1,1)) ~= 0 => error "Not integral at t = 0"
+ differentiate(c := r.logpart / g, derivation) ~= 0 => "failed"
[r.answer, c]
limitedLogs(f, logderiv, lu) ==
zero? f => empty()
empty? lu => "failed"
empty? rest lu =>
- logderiv(c0 := f / logderiv(u0 := first lu)) ^= 0 => "failed"
+ logderiv(c0 := f / logderiv(u0 := first lu)) ~= 0 => "failed"
[[c0, u0]]
num := numer f
den := denom f
@@ -538,14 +538,14 @@ TranscendentalIntegration(F, UP): Exports == Implementation where
m := rowEchelon m
ans := empty()$LLG
for i in minRowIndex m .. maxRowIndex m |
- qelt(m, i, maxColIndex m) ^= 0 repeat
+ qelt(m, i, maxColIndex m) ~= 0 repeat
OK := false
for pp in l1 for j in minColIndex m .. maxColIndex m - 1
while not OK repeat
- if qelt(m, i, j) ^= 0 then
+ if qelt(m, i, j) ~= 0 then
OK := true
c := qelt(m, i, maxColIndex m) / qelt(m, i, j)
- logderiv(c0 := c::UP::RF) ^= 0 => return "failed"
+ logderiv(c0 := c::UP::RF) ~= 0 => return "failed"
ans := concat([c0, pp.logand2], ans)
not OK => return "failed"
ans
@@ -553,13 +553,13 @@ TranscendentalIntegration(F, UP): Exports == Implementation where
-- returns q in UP s.t. p = q', or "failed"
primintfldpoly(p, extendedint, t') ==
(u := primintegratepoly(p, extendedint, t')) case UPUP => "failed"
- u.a0 ^= 0 => "failed"
+ u.a0 ~= 0 => "failed"
u.answer
-- returns q in GP st p = q', or "failed"
expintfldpoly(p, FRDE) ==
(u := expintegratepoly(p, FRDE)) case GPGP => "failed"
- u.a0 ^= 0 => "failed"
+ u.a0 ~= 0 => "failed"
u.answer
-- returns (v in RF, c1...cn in RF, a in F) s.t. ci' = 0,
@@ -649,7 +649,7 @@ TranscendentalIntegration(F, UP): Exports == Implementation where
r := monomialIntPoly(rec.polypart, derivation)
t := monomial(1, 1)$UP
c := coefficient(r.polypart, 1) / leadingCoefficient(derivation t)
- derivation(c::UP) ^= 0 =>
+ derivation(c::UP) ~= 0 =>
[i1 + mkAnswer(r.answer::RF, empty(),
[[r.polypart::RF + rec.specpart, dummy]$NE]), 0]
logs:List(LOG) :=
@@ -721,10 +721,10 @@ TranscendentalIntegration(F, UP): Exports == Implementation where
degree numer f >= degree denom f => error "Not a proper fraction"
r := HermiteIntegrate(f, derivation)
zero? g =>
- r.logpart ^= 0 => "failed"
+ r.logpart ~= 0 => "failed"
[r.answer, 0]
degree numer g >= degree denom g => error "Not a proper fraction"
- differentiate(c := r.logpart / g, derivation) ^= 0 => "failed"
+ differentiate(c := r.logpart / g, derivation) ~= 0 => "failed"
[r.answer, c]
@