aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/intfact.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/intfact.spad.pamphlet')
-rw-r--r--src/algebra/intfact.spad.pamphlet13
1 files changed, 10 insertions, 3 deletions
diff --git a/src/algebra/intfact.spad.pamphlet b/src/algebra/intfact.spad.pamphlet
index f5485d51..4d4cc811 100644
--- a/src/algebra/intfact.spad.pamphlet
+++ b/src/algebra/intfact.spad.pamphlet
@@ -156,6 +156,7 @@ IntegerPrimesPackage(I:IntegerNumberSystem): with
nm1 := n-1
q := (nm1) quo two
+ k : NonNegativeInteger
for k in 1.. while not odd? q repeat q := q quo two
-- q = (n-1) quo 2**k for largest possible k
@@ -378,6 +379,8 @@ IntegerFactorizationPackage(I): Exports == Implementation where
if n<0 then (m := -n; u := -1)
else (m := n; u := 1)
(m > 1) and ((v := perfectSqrt m) case I) =>
+ sv : FF
+ l : List FFE
for rec in (l := factorList(sv := squareFree(v::I))) repeat
rec.xpnt := 2 * rec.xpnt
makeFR(u * unit sv, l)
@@ -438,6 +441,7 @@ IntegerFactorizationPackage(I): Exports == Implementation where
if n<d*d then
if n>1 then ls := concat_!(ls, ["prime",n,1]$FFE)
return makeFR(1, ls)
+ m : Integer
for m in 0.. while zero?(n rem d) repeat n := n quo d
if m>0 then ls := concat_!(ls, ["prime",d,convert m]$FFE)
d := d+s
@@ -463,7 +467,9 @@ IntegerFactorizationPackage(I): Exports == Implementation where
f:LMI := dictionary() -- number which could not be factored
insert_!(n, a)
while not empty? a repeat
- n := inspect a; c := count(n, a); remove_!(n, a)
+ n := inspect a;
+ c := count(n, a);
+ remove_!(n, a)
prime?(n)$IntegerPrimesPackage(I) => insert_!(n, b, c)
-- test for a perfect power
(s := perfectNthRoot n).exponent > 1 =>
@@ -475,8 +481,9 @@ IntegerFactorizationPackage(I): Exports == Implementation where
insert_!(x+y,a,c)
insert_!(x-y,a,c)
(d := PollardSmallFactor n) case I =>
- for m in 0.. while zero?(n rem d) repeat n := n quo d
- insert_!(d, a, m * c)
+ m' : NonNegativeInteger
+ for m' in 0.. while zero?(n rem d) repeat n := n quo d
+ insert_!(d, a, m' * c)
if n > 1 then insert_!(n, a, c)
-- an elliptic curve factorization attempt should be made here
insert_!(n, f, c)