diff options
Diffstat (limited to 'src/algebra/gaussfac.spad.pamphlet')
-rw-r--r-- | src/algebra/gaussfac.spad.pamphlet | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/src/algebra/gaussfac.spad.pamphlet b/src/algebra/gaussfac.spad.pamphlet index 1b1e3197..660d9f4c 100644 --- a/src/algebra/gaussfac.spad.pamphlet +++ b/src/algebra/gaussfac.spad.pamphlet @@ -80,7 +80,7 @@ GaussianFactorizationPackage() : C == T for i in 2.. while (s=1 or s=qq1) repeat s:=reduce(i,q)**(r::NNI) t:=s - while t^=qq1 repeat + while t~=qq1 repeat s:=t t:=t**2 s::Z @@ -132,7 +132,7 @@ GaussianFactorizationPackage() : C == T result : List FFE :=[] unity:ZI:=1$ZI - if d^=1 then + if d~=1 then a:=(a exquo d)::Z b:=(b exquo d)::Z r:= intfactor(d) @@ -163,13 +163,13 @@ GaussianFactorizationPackage() : C == T m:=m quo z result:=concat(part,result) - if m^=1 then unity:=unity * m + if m~=1 then unity:=unity * m makeFR(unity,result) ---- write p prime like sum of two squares ---- sumSquares(p:Z) : List Z == p=2 => [1,1] - p rem 4 ^= 1 => error "no solutions" + p rem 4 ~= 1 => error "no solutions" sumsq1(p) @@ -180,9 +180,9 @@ GaussianFactorizationPackage() : C == T prime?(n)$IntegerPrimesPackage(Z) => true re : Z := real a im : Z := imag a - re^=0 and im^=0 => false + re~=0 and im~=0 => false p : Z := abs(re+im) -- a is of the form p, -p, %i*p or -%i*p - p rem 4 ^= 3 => false + p rem 4 ~= 3 => false -- return-value true, if p is a rational prime, -- and false, otherwise prime?(p)$IntegerPrimesPackage(Z) |