aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/divisor.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/divisor.spad.pamphlet')
-rw-r--r--src/algebra/divisor.spad.pamphlet22
1 files changed, 11 insertions, 11 deletions
diff --git a/src/algebra/divisor.spad.pamphlet b/src/algebra/divisor.spad.pamphlet
index 1d402c7b..05a201cc 100644
--- a/src/algebra/divisor.spad.pamphlet
+++ b/src/algebra/divisor.spad.pamphlet
@@ -121,7 +121,7 @@ FractionalIdeal(R, F, UP, A): Exports == Implementation where
g := agcd nr
a := (r quo (b := gcd(gcd(d, r), g)))::F::A
d := d quo b
- r ^= 0 and ((g exquo r) case R) => mkIdeal([a], d)
+ r ~= 0 and ((g exquo r) case R) => mkIdeal([a], d)
invb := inv(b::F)
va:VA := [invb * m for m in nr]
zero? a => mkIdeal(va, d)
@@ -268,7 +268,7 @@ ModularHermitianRowReduction(R): Exports == Implementation where
determinantOfMinor: M -> R
enumerateBinomial: (List Z, Z, Z) -> List Z
- nonzero? v == any?(#1 ^= 0, v)
+ nonzero? v == any?(#1 ~= 0, v)
-- returns [a, i, rown] if v = [0,...,0,a,0,...,0]
-- where a <> 0 and i is the index of a, "failed" otherwise.
@@ -276,7 +276,7 @@ ModularHermitianRowReduction(R): Exports == Implementation where
ans:REC
allZero:Boolean := true
for i in minIndex v .. maxIndex v repeat
- if qelt(v, i) ^= 0 then
+ if qelt(v, i) ~= 0 then
if allZero then
allZero := false
ans := [qelt(v, i), i, rown]
@@ -314,7 +314,7 @@ ModularHermitianRowReduction(R): Exports == Implementation where
lc := [i for i in minColIndex x .. maxColIndex x]$List(Integer)
lr := [i for i in minRowIndex x .. maxRowIndex x]$List(Integer)
for i in 1..(n := binomial(nr, nc)) repeat
- (d := determinant x(enumerateBinomial(lr, nc, i), lc)) ^= 0 =>
+ (d := determinant x(enumerateBinomial(lr, nc, i), lc)) ~= 0 =>
j := i + 1 + (random()$Z rem (n - i))
return gcd(d, determinant x(enumerateBinomial(lr, nc, j), lc))
0
@@ -423,7 +423,7 @@ ModularHermitianRowReduction(R): Exports == Implementation where
if i > nrows then leave
rown := minr - 1
for k in i .. nrows repeat
- if (qelt(x,k,j) ^= 0) and ((rown = minr - 1) or
+ if (qelt(x,k,j) ~= 0) and ((rown = minr - 1) or
sizeLess?(qelt(x,k,j), qelt(x,rown,j))) then rown := k
rown = minr - 1 => "next j"
x := swapRows_!(x, i, rown)
@@ -442,7 +442,7 @@ ModularHermitianRowReduction(R): Exports == Implementation where
qsetelt_!(x, k, j, 0)
un := unitNormal qelt(x,i,j)
qsetelt_!(x,i,j,un.canonical)
- if un.associate ^= 1 then for jj in (j+1)..ncols repeat
+ if un.associate ~= 1 then for jj in (j+1)..ncols repeat
qsetelt_!(x,i,jj,un.associate * qelt(x,i,jj))
xij := qelt(x,i,j)
@@ -549,14 +549,14 @@ FramedModule(R, F, UP, A, ibasis): Exports == Implementation where
v pretend VA
norm m ==
- #(basis m) ^= #ibasis => error "Module not of rank n"
+ #(basis m) ~= #ibasis => error "Module not of rank n"
determinant(coordinates(basis m) * invintmat())
m1 * m2 ==
m := rowEch((cd := splitDenominator wmatrix(
vectProd(basis m1, basis m2))).num)
module [u for i in minRowIndex m .. maxRowIndex m |
- (u := W2A rowdiv(row(m, i), cd.den)) ^= 0]$VA
+ (u := W2A rowdiv(row(m, i), cd.den)) ~= 0]$VA
if A has RetractableTo F then
module(i:FractionalIdeal(R, F, UP, A)) ==
@@ -707,7 +707,7 @@ HyperellipticFiniteDivisor(F, UP, UPUP, R): Exports == Implementation where
divisor(i:ID) ==
-- one?(n := #(v := basis minimize i)) => divisor v minIndex v
(n := #(v := basis minimize i)) = 1 => divisor v minIndex v
- n ^= 2 => ERR
+ n ~= 2 => ERR
a := v minIndex v
h := v maxIndex v
(u := polyIfCan a) case UP =>
@@ -724,7 +724,7 @@ HyperellipticFiniteDivisor(F, UP, UPUP, R): Exports == Implementation where
v::UP
redpolyIfCan(h, a) ==
- degree(p := lift h) ^= 1 => "failed"
+ degree(p := lift h) ~= 1 => "failed"
q := - coefficient(p, 0) / coefficient(p, 1)
rec := extendedEuclidean(denom q, a)
not ground?(rec.generator) => "failed"
@@ -886,7 +886,7 @@ FiniteDivisor(F, UP, UPUP, R): Exports == Implementation where
reduce d ==
(i := minimize(j := ideal d)) = j => d
- #(n := numer i) ^= 2 => divisor i
+ #(n := numer i) ~= 2 => divisor i
cd := splitDenominator lift n(1 + minIndex n)
b := gcd(cd.den * retract(retract(n minIndex n)@RF)@UP,
retract(norm reduce(cd.num))@UP)