aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/curve.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/curve.spad.pamphlet')
-rw-r--r--src/algebra/curve.spad.pamphlet20
1 files changed, 10 insertions, 10 deletions
diff --git a/src/algebra/curve.spad.pamphlet b/src/algebra/curve.spad.pamphlet
index 5ca9495b..d216b16d 100644
--- a/src/algebra/curve.spad.pamphlet
+++ b/src/algebra/curve.spad.pamphlet
@@ -168,13 +168,13 @@ FunctionFieldCategory(F, UP, UPUP): Category == Definition where
Q2RF q == numer(q)::UP / denom(q)::UP
infOrder f == (degree denom f)::Z - (degree numer f)::Z
integral? f == ground?(integralCoordinates(f).den)
- integral?(f:$, a:F) == (integralCoordinates(f).den)(a) ^= 0
+ integral?(f:$, a:F) == (integralCoordinates(f).den)(a) ~= 0
-- absolutelyIrreducible? == one? numberOfComponents()
absolutelyIrreducible? == numberOfComponents() = 1
yCoordinates f == splitDenominator coordinates f
hyperelliptic() ==
- degree(f := definingPolynomial()) ^= 2 => "failed"
+ degree(f := definingPolynomial()) ~= 2 => "failed"
(u:=retractIfCan(reductum f)@Union(RF,"failed")) case "failed" => "failed"
(v := retractIfCan(-(u::RF) / leadingCoefficient f)@Union(UP, "failed"))
case "failed" => "failed"
@@ -299,7 +299,7 @@ FunctionFieldCategory(F, UP, UPUP): Category == Definition where
nostart:Boolean := true
ans:Z := 0
r := row(m, i)
- for j in minIndex r .. maxIndex r | qelt(r, j) ^= 0 repeat
+ for j in minIndex r .. maxIndex r | qelt(r, j) ~= 0 repeat
ans :=
nostart => (nostart := false; infOrder qelt(r, j))
min(ans, infOrder qelt(r,j))
@@ -321,7 +321,7 @@ FunctionFieldCategory(F, UP, UPUP): Category == Definition where
nostart:Boolean := true
k:Z := 0
ii := minRowIndex m - (i0 := minIndex v)
- for i in minIndex v .. maxIndex v | qelt(v, i) ^= 0 repeat
+ for i in minIndex v .. maxIndex v | qelt(v, i) ~= 0 repeat
nk := repOrder(m, i + ii)
if nostart then (nostart := false; k := nk; i0 := i)
else
@@ -476,7 +476,7 @@ ChangeOfVariable(F, UP, UPUP): Exports == Implementation where
infIntegral?: (UPUP, UPUP) -> Boolean
eval(p, x, y) == map(#1 x, p) monomial(y, 1)
- good?(a, p, q) == p(a) ^= 0 and q(a) ^= 0
+ good?(a, p, q) == p(a) ~= 0 and q(a) ~= 0
algPoly p ==
ground?(a:= retract(leadingCoefficient(q:=clearDenominator p))@UP)
@@ -514,7 +514,7 @@ ChangeOfVariable(F, UP, UPUP): Exports == Implementation where
ninv := inv(r.deg::Q)
degy:Q := degree(retract(r.radicand)@UP) * ninv
degp:Q := 0
- while p ^= 0 repeat
+ while p ~= 0 repeat
c := leadingCoefficient p
degp := max(degp,
(2 + degree(numer c)::Z - degree(denom c)::Z)::Q + degree(p) * degy)
@@ -666,7 +666,7 @@ RadicalFunctionField(F, UP, UPUP, radicnd, n): Exports == Impl where
-- is a local integral basis at infinity for the curve y**d = p
inftyBasis(p, m) ==
rt := rootPoly(p(x := inv(monomial(1, 1)$UP :: RF)), m)
- m ^= rt.exponent =>
+ m ~= rt.exponent =>
error "Curve not irreducible after change of variable 0 -> infinity"
a := (rt.coef) x
b:RF := 1
@@ -678,7 +678,7 @@ RadicalFunctionField(F, UP, UPUP, radicnd, n): Exports == Impl where
w
charPintbas(p, c, v, w) ==
- degree(p) ^= n => error "charPintbas: should not happen"
+ degree(p) ~= n => error "charPintbas: should not happen"
q:UP2 := map(retract(#1)@UP, p)
ib := integralBasis()$FunctionFieldIntegralBasis(UP, UP2,
SimpleAlgebraicExtension(UP, UP2, q))
@@ -712,7 +712,7 @@ RadicalFunctionField(F, UP, UPUP, radicnd, n): Exports == Impl where
char0StartUp() ==
rp := rootPoly(radicnd, n)
- rp.exponent ^= n => error "RadicalFunctionField: curve is not irreducible"
+ rp.exponent ~= n => error "RadicalFunctionField: curve is not irreducible"
newrad() := rp.radicand
ib := iBasis(newrad(), n)
infb := inftyBasis(radicnd, n)
@@ -831,7 +831,7 @@ AlgebraicFunctionField(F, UP, UPUP, modulus): Exports == Impl where
x := inv(monomial(1, 1)$UP :: RF)
invmod := map(#1 x, modulus)
r := mkIntegral invmod
- degree(r.poly) ^= n => error "Should not happen"
+ degree(r.poly) ~= n => error "Should not happen"
ninvmod:UP2 := map(retract(#1)@UP, r.poly)
alpha := [(r.coef ** i) x for i in 0..n1]$Vector(RF)
invalpha := [inv qelt(alpha, i)