aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/asp.spad.pamphlet
diff options
context:
space:
mode:
Diffstat (limited to 'src/algebra/asp.spad.pamphlet')
-rw-r--r--src/algebra/asp.spad.pamphlet4282
1 files changed, 0 insertions, 4282 deletions
diff --git a/src/algebra/asp.spad.pamphlet b/src/algebra/asp.spad.pamphlet
deleted file mode 100644
index d95211a8..00000000
--- a/src/algebra/asp.spad.pamphlet
+++ /dev/null
@@ -1,4282 +0,0 @@
-\documentclass{article}
-\usepackage{open-axiom}
-\begin{document}
-\title{\$SPAD/src/algebra asp.spad}
-\author{Mike Dewar, Grant Keady, Godfrey Nolan}
-\maketitle
-\begin{abstract}
-\end{abstract}
-\eject
-\tableofcontents
-\eject
-\section{domain ASP1 Asp1}
-<<domain ASP1 Asp1>>=
-)abbrev domain ASP1 Asp1
-++ Author: Mike Dewar, Grant Keady, Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 18 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranFunctionCategory, FortranProgramCategory.
-++ Description:
-++\spadtype{Asp1} produces Fortran for Type 1 ASPs, needed for various
-++NAG routines. Type 1 ASPs take a univariate expression (in the symbol
-++X) and turn it into a Fortran Function like the following:
-++\begin{verbatim}
-++ DOUBLE PRECISION FUNCTION F(X)
-++ DOUBLE PRECISION X
-++ F=DSIN(X)
-++ RETURN
-++ END
-++\end{verbatim}
-
-
-Asp1(name): Exports == Implementation where
- name : Symbol
-
- FEXPR ==> FortranExpression
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
-
- Exports ==> FortranFunctionCategory with
- coerce : FEXPR(['X],[],MachineFloat) -> $
- ++coerce(f) takes an object from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns it into an ASP.
-
- Implementation ==> add
-
- -- Build Symbol Table for Rep
- syms : SYMTAB := empty()$SYMTAB
- declare!(X,fortranReal()$FT,syms)$SYMTAB
- real : FST := "real"::FST
-
- Rep := FortranProgram(name,[real]$Union(fst:FST,void:"void"),[X],syms)
-
- retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$
- retractIfCan(u:FRAC POLY INT):Union($,"failed") ==
- foo : Union(FEXPR(['X],[],MachineFloat),"failed")
- foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat)
- foo case "failed" => "failed"
- foo::FEXPR(['X],[],MachineFloat)::$
-
- retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$
- retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR(['X],[],MachineFloat),"failed")
- foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat)
- foo case "failed" => "failed"
- foo::FEXPR(['X],[],MachineFloat)::$
-
- retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$
- retractIfCan(u:EXPR FLOAT):Union($,"failed") ==
- foo : Union(FEXPR(['X],[],MachineFloat),"failed")
- foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat)
- foo case "failed" => "failed"
- foo::FEXPR(['X],[],MachineFloat)::$
-
- retract(u:EXPR INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$
- retractIfCan(u:EXPR INT):Union($,"failed") ==
- foo : Union(FEXPR(['X],[],MachineFloat),"failed")
- foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat)
- foo case "failed" => "failed"
- foo::FEXPR(['X],[],MachineFloat)::$
-
- retract(u:POLY FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$
- retractIfCan(u:POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR(['X],[],MachineFloat),"failed")
- foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat)
- foo case "failed" => "failed"
- foo::FEXPR(['X],[],MachineFloat)::$
-
- retract(u:POLY INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$
- retractIfCan(u:POLY INT):Union($,"failed") ==
- foo : Union(FEXPR(['X],[],MachineFloat),"failed")
- foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat)
- foo case "failed" => "failed"
- foo::FEXPR(['X],[],MachineFloat)::$
-
- coerce(u:FEXPR(['X],[],MachineFloat)):$ ==
- coerce((u::Expression(MachineFloat))$FEXPR(['X],[],MachineFloat))$Rep
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP10 Asp10}
-<<domain ASP10 Asp10>>=
-)abbrev domain ASP10 Asp10
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 18 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{ASP10} produces Fortran for Type 10 ASPs, needed for NAG routine
-++\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions, for example:
-++\begin{verbatim}
-++ SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT)
-++ DOUBLE PRECISION ELAM,P,Q,X,DQDL
-++ INTEGER JINT
-++ P=1.0D0
-++ Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X)
-++ DQDL=1.0D0
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp10(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- EXF ==> Expression Float
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FEXPR ==> FortranExpression(['JINT,'X,'ELAM],[],MFLOAT)
- MFLOAT ==> MachineFloat
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : Vector FEXPR -> %
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : FST := "real"::FST
- syms : SYMTAB := empty()$SYMTAB
- declare!(P,fortranReal()$FT,syms)$SYMTAB
- declare!(Q,fortranReal()$FT,syms)$SYMTAB
- declare!(DQDL,fortranReal()$FT,syms)$SYMTAB
- declare!(X,fortranReal()$FT,syms)$SYMTAB
- declare!(ELAM,fortranReal()$FT,syms)$SYMTAB
- declare!(JINT,fortranInteger()$FT,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$Union(fst:FST,void:"void"),
- [P,Q,DQDL,X,ELAM,JINT],syms)
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- coerce(c:FortranCode):% == coerce(c)$Rep
-
- coerce(r:RSFC):% == coerce(r)$Rep
-
- coerce(c:List FortranCode):% == coerce(c)$Rep
-
- -- To help the poor old compiler!
- localAssign(s:Symbol,u:Expression MFLOAT):FortranCode ==
- assign(s,u)$FortranCode
-
- coerce(u:Vector FEXPR):% ==
- import Vector FEXPR
- not (#u = 3) => error "Incorrect Dimension For Vector"
- ([localAssign(P,elt(u,1)::Expression MFLOAT),_
- localAssign(Q,elt(u,2)::Expression MFLOAT),_
- localAssign(DQDL,elt(u,3)::Expression MFLOAT),_
- returns()$FortranCode ]$List(FortranCode))::Rep
-
- coerce(u:%):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP12 Asp12}
-<<domain ASP12 Asp12>>=
-)abbrev domain ASP12 Asp12
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Oct 1993
-++ Date Last Updated: 18 March 1994
-++ 21 June 1994 Changed print to printStatement
-++ Related Constructors:
-++ Description:
-++\spadtype{Asp12} produces Fortran for Type 12 ASPs, needed for NAG routine
-++\axiomOpFrom{d02kef}{d02Package} etc., for example:
-++\begin{verbatim}
-++ SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO)
-++ DOUBLE PRECISION ELAM,FINFO(15)
-++ INTEGER MAXIT,IFLAG
-++ IF(MAXIT.EQ.-1)THEN
-++ PRINT*,"Output from Monit"
-++ ENDIF
-++ PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4)
-++ RETURN
-++ END
-++\end{verbatim}
-Asp12(name): Exports == Implementation where
- name : Symbol
-
- O ==> OutputForm
- S ==> Symbol
- FST ==> FortranScalarType
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- EXI ==> Expression Integer
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- U ==> Union(I: Expression Integer,F: Expression Float,_
- CF: Expression Complex Float,switch:Switch)
- UFST ==> Union(fst:FST,void:"void")
-
- Exports ==> FortranProgramCategory with
- outputAsFortran:() -> Void
- ++outputAsFortran() generates the default code for \spadtype{ASP12}.
-
- Implementation ==> add
-
- import FC
- import Switch
-
- real : FST := "real"::FST
- syms : SYMTAB := empty()$SYMTAB
- declare!(MAXIT,fortranInteger()$FT,syms)$SYMTAB
- declare!(IFLAG,fortranInteger()$FT,syms)$SYMTAB
- declare!(ELAM,fortranReal()$FT,syms)$SYMTAB
- fType : FT := construct([real]$UFST,["15"::Symbol],false)$FT
- declare!(FINFO,fType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,[MAXIT,IFLAG,ELAM,FINFO],syms)
-
- -- eqn : O := (I::O)=(1@Integer::EXI::O)
- code:=([cond(EQ([MAXIT@S::EXI]$U,[-1::EXI]$U),
- printStatement(["_"Output from Monit_""::O])),
- printStatement([MAXIT::O,IFLAG::O,ELAM::O,subscript("(FINFO"::S,[I::O])::O,"I=1"::S::O,"4)"::S::O]), -- YUCK!
- returns()]$List(FortranCode))::Rep
-
- coerce(u:%):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u:%):Void == outputAsFortran(u)$Rep
- outputAsFortran():Void == outputAsFortran(code)$Rep
-
-@
-\section{domain ASP19 Asp19}
-<<domain ASP19 Asp19>>=
-)abbrev domain ASP19 Asp19
-++ Author: Mike Dewar, Godfrey Nolan, Grant Keady
-++ Date Created: Mar 1993
-++ Date Last Updated: 18 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp19} produces Fortran for Type 19 ASPs, evaluating a set of
-++functions and their jacobian at a given point, for example:
-++\begin{verbatim}
-++ SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC)
-++ DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N)
-++ INTEGER M,N,LJC
-++ INTEGER I,J
-++ DO 25003 I=1,LJC
-++ DO 25004 J=1,N
-++ FJACC(I,J)=0.0D0
-++25004 CONTINUE
-++25003 CONTINUE
-++ FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/(
-++ &XC(3)+15.0D0*XC(2))
-++ FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/(
-++ &XC(3)+7.0D0*XC(2))
-++ FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333
-++ &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2))
-++ FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/(
-++ &XC(3)+3.0D0*XC(2))
-++ FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)*
-++ &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2))
-++ FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333
-++ &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2))
-++ FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)*
-++ &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2))
-++ FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+
-++ &XC(2))
-++ FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714
-++ &286D0)/(XC(3)+XC(2))
-++ FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666
-++ &6667D0)/(XC(3)+XC(2))
-++ FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3)
-++ &+XC(2))
-++ FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3)
-++ &+XC(2))
-++ FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333
-++ &3333D0)/(XC(3)+XC(2))
-++ FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X
-++ &C(2))
-++ FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3
-++ &)+XC(2))
-++ FJACC(1,1)=1.0D0
-++ FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)
-++ FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2)
-++ FJACC(2,1)=1.0D0
-++ FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)
-++ FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2)
-++ FJACC(3,1)=1.0D0
-++ FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/(
-++ &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)
-++ &**2)
-++ FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666
-++ &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2)
-++ FJACC(4,1)=1.0D0
-++ FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)
-++ FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2)
-++ FJACC(5,1)=1.0D0
-++ FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399
-++ &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)
-++ FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999
-++ &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2)
-++ FJACC(6,1)=1.0D0
-++ FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/(
-++ &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)
-++ &**2)
-++ FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333
-++ &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2)
-++ FJACC(7,1)=1.0D0
-++ FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/(
-++ &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)
-++ &**2)
-++ FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428
-++ &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2)
-++ FJACC(8,1)=1.0D0
-++ FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(9,1)=1.0D0
-++ FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)*
-++ &*2)
-++ FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)*
-++ &*2)
-++ FJACC(10,1)=1.0D0
-++ FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)
-++ &**2)
-++ FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)
-++ &**2)
-++ FJACC(11,1)=1.0D0
-++ FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(12,1)=1.0D0
-++ FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(13,1)=1.0D0
-++ FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)
-++ &**2)
-++ FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)
-++ &**2)
-++ FJACC(14,1)=1.0D0
-++ FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(15,1)=1.0D0
-++ FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2)
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp19(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FC))
- FSTU ==> Union(fst:FST,void:"void")
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- MFLOAT ==> MachineFloat
- VEC ==> Vector
- VF2 ==> VectorFunctions2
- MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT)
- FEXPR ==> FortranExpression([],['XC],MFLOAT)
- S ==> Symbol
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : FSTU := ["real"::FST]$FSTU
- syms : SYMTAB := empty()$SYMTAB
- declare!(M,fortranInteger()$FT,syms)$SYMTAB
- declare!(N,fortranInteger()$FT,syms)$SYMTAB
- declare!(LJC,fortranInteger()$FT,syms)$SYMTAB
- xcType : FT := construct(real,[N],false)$FT
- declare!(XC,xcType,syms)$SYMTAB
- fveccType : FT := construct(real,[M],false)$FT
- declare!(FVECC,fveccType,syms)$SYMTAB
- fjaccType : FT := construct(real,[LJC,N],false)$FT
- declare!(FJACC,fjaccType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$FSTU,[M,N,XC,FVECC,FJACC,LJC],syms)
-
- coerce(c:List FC):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FC):$ == coerce(c)$Rep
-
- -- Take a symbol, pull of the script and turn it into an integer!!
- o2int(u:S):Integer ==
- o : OutputForm := first elt(scripts(u)$S,sub)
- o pretend Integer
-
- -- To help the poor old compiler!
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- localAssign1(s:S,j:Matrix FEXPR):FC ==
- j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2
- assign(s,j')$FC
-
- localAssign2(s:S,j:VEC FEXPR):FC ==
- j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
- assign(s,j')$FC
-
- coerce(u:VEC FEXPR):$ ==
- -- First zero the Jacobian matrix in case we miss some derivatives which
- -- are zero.
- import POLY INT
- seg1 : Segment (POLY INT) := segment(1::(POLY INT),LJC@S::(POLY INT))
- seg2 : Segment (POLY INT) := segment(1::(POLY INT),N@S::(POLY INT))
- s1 : SegmentBinding POLY INT := equation(I@S,seg1)
- s2 : SegmentBinding POLY INT := equation(J@S,seg2)
- as : FC := assign(FJACC,[I@S::(POLY INT),J@S::(POLY INT)],0.0::EXPR FLOAT)
- clear : FC := forLoop(s1,forLoop(s2,as))
- x:S := XC::S
- pu:List(S) := []
- -- Work out which variables appear in the expressions
- for e in entries(u) repeat
- pu := setUnion(pu,variables(e)$FEXPR)
- scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer)
- -- This should be the maximum XC_n which occurs (there may be others
- -- which don't):
- n:Integer := reduce(max,scriptList)$List(Integer)
- p:List(S) := []
- for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p)
- p:= reverse(p)
- jac:Matrix(FEXPR) := _
- jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
- c1:FC := localAssign2(FVECC,u)
- c2:FC := localAssign1(FJACC,jac)
- [clear,c1,c2,returns()]$List(FC)::$
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
-@
-\section{domain ASP20 Asp20}
-<<domain ASP20 Asp20>>=
-)abbrev domain ASP20 Asp20
-++ Author: Mike Dewar and Godfrey Nolan and Grant Keady
-++ Date Created: Dec 1993
-++ Date Last Updated: 21 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp20} produces Fortran for Type 20 ASPs, for example:
-++\begin{verbatim}
-++ SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX)
-++ DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH)
-++ INTEGER JTHCOL,N,NROWH,NCOLH
-++ HX(1)=2.0D0*X(1)
-++ HX(2)=2.0D0*X(2)
-++ HX(3)=2.0D0*X(4)+2.0D0*X(3)
-++ HX(4)=2.0D0*X(4)+2.0D0*X(3)
-++ HX(5)=2.0D0*X(5)
-++ HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6))
-++ HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6))
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp20(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- PI ==> PositiveInteger
- UFST ==> Union(fst:FST,void:"void")
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- MAT ==> Matrix
- VF2 ==> VectorFunctions2
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression([],['X,'HESS],MFLOAT)
- O ==> OutputForm
- M2 ==> MatrixCategoryFunctions2
- MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT,
- MAT FRAC POLY INT,FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT,
- MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT,
- FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT,
- MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT,
- FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT,
- MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
-
-
- Exports == Join(FortranMatrixFunctionCategory, CoercibleFrom MAT FEXPR)
- Implementation == add
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()
- declare!(N,fortranInteger(),syms)$SYMTAB
- declare!(NROWH,fortranInteger(),syms)$SYMTAB
- declare!(NCOLH,fortranInteger(),syms)$SYMTAB
- declare!(JTHCOL,fortranInteger(),syms)$SYMTAB
- hessType : FT := construct(real,[NROWH,NCOLH],false)$FT
- declare!(HESS,hessType,syms)$SYMTAB
- xType : FT := construct(real,[N],false)$FT
- declare!(X,xType,syms)$SYMTAB
- declare!(HX,xType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,
- [N,NROWH,NCOLH,JTHCOL,HESS,X,HX],syms)
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- -- To help the poor old compiler!
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- localAssign(s:Symbol,j:VEC FEXPR):FortranCode ==
- j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
- assign(s,j')$FortranCode
-
- coerce(u:MAT FEXPR):$ ==
- x:Symbol := X::Symbol
- n := nrows(u)::PI
- p:VEC FEXPR := [retract(subscript(x,[j::O])$Symbol)@FEXPR for j in 1..n]
- prod:VEC FEXPR := u*p
- ([localAssign(HX,prod),returns()$FortranCode]$List(FortranCode))::$
-
- retract(u:MAT FRAC POLY INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2a
- v::$
-
- retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT FRAC POLY FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2b
- v::$
-
- retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT EXPR INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2e
- v::$
-
- retractIfCan(u:MAT EXPR INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT EXPR FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2f
- v::$
-
- retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT POLY INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2c
- v::$
-
- retractIfCan(u:MAT POLY INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT POLY FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2d
- v::$
-
- retractIfCan(u:MAT POLY FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- coerce(u:$):O == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP24 Asp24}
-<<domain ASP24 Asp24>>=
-)abbrev domain ASP24 Asp24
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 21 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a
-++multivariate function at a point (needed for NAG routine \axiomOpFrom{e04jaf}{e04Package}), for example:
-++\begin{verbatim}
-++ SUBROUTINE FUNCT1(N,XC,FC)
-++ DOUBLE PRECISION FC,XC(N)
-++ INTEGER N
-++ FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5
-++ &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X
-++ &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+
-++ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC(
-++ &2)+10.0D0*XC(1)**4+XC(1)**2
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp24(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FSTU ==> Union(fst:FST,void:"void")
- FEXPR ==> FortranExpression([],['XC],MachineFloat)
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
-
- Exports ==> FortranFunctionCategory with
- coerce : FEXPR -> $
- ++ coerce(f) takes an object from the appropriate instantiation of
- ++ \spadtype{FortranExpression} and turns it into an ASP.
-
-
- Implementation ==> add
-
-
- real : FSTU := ["real"::FST]$FSTU
- syms : SYMTAB := empty()
- declare!(N,fortranInteger(),syms)$SYMTAB
- xcType : FT := construct(real,[N::Symbol],false)$FT
- declare!(XC,xcType,syms)$SYMTAB
- declare!(FC,fortranReal(),syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$FSTU,[N,XC,FC],syms)
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(u:FEXPR):$ ==
- coerce(assign(FC,u::Expression(MachineFloat))$FortranCode)$Rep
-
- retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:FRAC POLY INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:EXPR FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:EXPR INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:POLY INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:POLY INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP27 Asp27}
-<<domain ASP27 Asp27>>=
-)abbrev domain ASP27 Asp27
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Nov 1993
-++ Date Last Updated: 27 April 1994
-++ 6 October 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp27} produces Fortran for Type 27 ASPs, needed for NAG routine
-++\axiomOpFrom{f02fjf}{f02Package} ,for example:
-++\begin{verbatim}
-++ FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)
-++ DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK)
-++ INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK)
-++ DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1
-++ &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W(
-++ &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1
-++ &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W(
-++ &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8))
-++ &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7)
-++ &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0.
-++ &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3
-++ &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W(
-++ &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1)
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp27(name): Exports == Implementation where
- name : Symbol
-
- O ==> OutputForm
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- UFST ==> Union(fst:FST,void:"void")
- FC ==> FortranCode
- PI ==> PositiveInteger
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- EXPR ==> Expression
- MAT ==> Matrix
- MFLOAT ==> MachineFloat
-
-
-
- Exports == FortranMatrixCategory
-
- Implementation == add
-
-
- real : UFST := ["real"::FST]$UFST
- integer : UFST := ["integer"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!(IFLAG,fortranInteger(),syms)$SYMTAB
- declare!(N,fortranInteger(),syms)$SYMTAB
- declare!(LRWORK,fortranInteger(),syms)$SYMTAB
- declare!(LIWORK,fortranInteger(),syms)$SYMTAB
- zType : FT := construct(real,[N],false)$FT
- declare!(Z,zType,syms)$SYMTAB
- declare!(W,zType,syms)$SYMTAB
- rType : FT := construct(real,[LRWORK],false)$FT
- declare!(RWORK,rType,syms)$SYMTAB
- iType : FT := construct(integer,[LIWORK],false)$FT
- declare!(IWORK,iType,syms)$SYMTAB
- Rep := FortranProgram(name,real,
- [IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK],syms)
-
- -- To help the poor old compiler!
- localCoerce(u:Symbol):EXPR(MFLOAT) == coerce(u)$EXPR(MFLOAT)
-
- coerce (u:MAT MFLOAT):$ ==
- Ws: Symbol := W
- Zs: Symbol := Z
- code : List FC
- l:EXPR MFLOAT := "+"/ _
- [("+"/[localCoerce(elt(Ws,[j::O])$Symbol) * u(j,i)_
- for j in 1..nrows(u)::PI])_
- *localCoerce(elt(Zs,[i::O])$Symbol) for i in 1..ncols(u)::PI]
- c := assign(name,l)$FC
- code := [c,returns()]$List(FC)
- code::$
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP28 Asp28}
-<<domain ASP28 Asp28>>=
-)abbrev domain ASP28 Asp28
-++ Author: Mike Dewar
-++ Date Created: 21 March 1994
-++ Date Last Updated: 28 April 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp28} produces Fortran for Type 28 ASPs, used in NAG routine
-++\axiomOpFrom{f02fjf}{f02Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK)
-++ DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK)
-++ INTEGER N,LIWORK,IFLAG,LRWORK
-++ W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00
-++ &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554
-++ &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365
-++ &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z(
-++ &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0.
-++ &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050
-++ &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z
-++ &(1)
-++ W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010
-++ &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136
-++ &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D
-++ &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8)
-++ &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532
-++ &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056
-++ &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1
-++ &))
-++ W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0
-++ &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033
-++ &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502
-++ &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D
-++ &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(-
-++ &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961
-++ &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917
-++ &D0*Z(1))
-++ W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0.
-++ &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688
-++ &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315
-++ &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z
-++ &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0
-++ &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802
-++ &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0*
-++ &Z(1)
-++ W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+(
-++ &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014
-++ &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966
-++ &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352
-++ &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6))
-++ &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718
-++ &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851
-++ &6D0*Z(1)
-++ W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048
-++ &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323
-++ &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730
-++ &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z(
-++ &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583
-++ &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700
-++ &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1)
-++ W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0
-++ &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843
-++ &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017
-++ &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z(
-++ &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136
-++ &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015
-++ &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1
-++ &)
-++ W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05
-++ &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338
-++ &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869
-++ &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8)
-++ &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056
-++ &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544
-++ &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z(
-++ &1)
-++ W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(-
-++ &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173
-++ &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441
-++ &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8
-++ &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23
-++ &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773
-++ &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z(
-++ &1)
-++ W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0
-++ &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246
-++ &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609
-++ &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8
-++ &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032
-++ &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688
-++ &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z(
-++ &1)
-++ W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0
-++ &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830
-++ &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D
-++ &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8)
-++ &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493
-++ &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054
-++ &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1)
-++ W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(-
-++ &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162
-++ &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889
-++ &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8
-++ &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0.
-++ &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226
-++ &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763
-++ &75D0*Z(1)
-++ W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+(
-++ &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169
-++ &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453
-++ &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z(
-++ &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05
-++ &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277
-++ &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0
-++ &*Z(1)
-++ W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15))
-++ &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236
-++ &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278
-++ &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D
-++ &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0
-++ &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660
-++ &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903
-++ &02D0*Z(1)
-++ W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0
-++ &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325
-++ &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556
-++ &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D
-++ &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0.
-++ &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122
-++ &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z
-++ &(1)
-++ W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0.
-++ &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669
-++ &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114
-++ &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z
-++ &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0
-++ &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739
-++ &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0*
-++ &Z(1)
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp28(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- FC ==> FortranCode
- PI ==> PositiveInteger
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- EXPR ==> Expression
- MFLOAT ==> MachineFloat
- VEC ==> Vector
- UFST ==> Union(fst:FST,void:"void")
- MAT ==> Matrix
-
- Exports == FortranMatrixCategory
-
- Implementation == add
-
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()
- declare!(IFLAG,fortranInteger(),syms)$SYMTAB
- declare!(N,fortranInteger(),syms)$SYMTAB
- declare!(LRWORK,fortranInteger(),syms)$SYMTAB
- declare!(LIWORK,fortranInteger(),syms)$SYMTAB
- xType : FT := construct(real,[N],false)$FT
- declare!(Z,xType,syms)$SYMTAB
- declare!(W,xType,syms)$SYMTAB
- rType : FT := construct(real,[LRWORK],false)$FT
- declare!(RWORK,rType,syms)$SYMTAB
- iType : FT := construct(real,[LIWORK],false)$FT
- declare!(IWORK,rType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,
- [IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK],syms)
-
- -- To help the poor old compiler!
- localCoerce(u:Symbol):EXPR(MFLOAT) == coerce(u)$EXPR(MFLOAT)
-
- coerce (u:MAT MFLOAT):$ ==
- Zs: Symbol := Z
- code : List FC
- r: List EXPR MFLOAT
- r := ["+"/[u(j,i)*localCoerce(elt(Zs,[i::OutputForm])$Symbol)_
- for i in 1..ncols(u)$MAT(MFLOAT)::PI]_
- for j in 1..nrows(u)$MAT(MFLOAT)::PI]
- code := [assign(W@Symbol,vector(r)$VEC(EXPR MFLOAT)),returns()]$List(FC)
- code::$
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP29 Asp29}
-<<domain ASP29 Asp29>>=
-)abbrev domain ASP29 Asp29
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Nov 1993
-++ Date Last Updated: 18 March 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp29} produces Fortran for Type 29 ASPs, needed for NAG routine
-++\axiomOpFrom{f02fjf}{f02Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)
-++ DOUBLE PRECISION D(K),F(K)
-++ INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE
-++ CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp29(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- FSTU ==> Union(fst:FST,void:"void")
- SYMTAB ==> SymbolTable
- FC ==> FortranCode
- PI ==> PositiveInteger
- EXF ==> Expression Float
- EXI ==> Expression Integer
- VEF ==> Vector Expression Float
- VEI ==> Vector Expression Integer
- MEI ==> Matrix Expression Integer
- MEF ==> Matrix Expression Float
- UEXPR ==> Union(I: Expression Integer,F: Expression Float,_
- CF: Expression Complex Float)
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
-
- Exports == FortranProgramCategory with
- outputAsFortran:() -> Void
- ++outputAsFortran() generates the default code for \spadtype{ASP29}.
-
-
- Implementation == add
-
- import FST
- import FT
- import FC
- import SYMTAB
-
- real : FSTU := ["real"::FST]$FSTU
- integer : FSTU := ["integer"::FST]$FSTU
- syms : SYMTAB := empty()
- declare!(ISTATE,fortranInteger(),syms)
- declare!(NEXTIT,fortranInteger(),syms)
- declare!(NEVALS,fortranInteger(),syms)
- declare!(NVECS,fortranInteger(),syms)
- declare!(K,fortranInteger(),syms)
- kType : FT := construct(real,[K],false)$FT
- declare!(F,kType,syms)
- declare!(D,kType,syms)
- Rep := FortranProgram(name,["void"]$FSTU,
- [ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D],syms)
-
-
- outputAsFortran():Void ==
- callOne := call("F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)")
- code : List FC := [callOne,returns()]$List(FC)
- outputAsFortran(coerce(code)@Rep)$Rep
-
-@
-\section{domain ASP30 Asp30}
-<<domain ASP30 Asp30>>=
-)abbrev domain ASP30 Asp30
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Nov 1993
-++ Date Last Updated: 28 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp30} produces Fortran for Type 30 ASPs, needed for NAG routine
-++\axiomOpFrom{f04qaf}{f04Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK)
-++ DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK)
-++ INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE
-++ DOUBLE PRECISION A(5,5)
-++ EXTERNAL F06PAF
-++ A(1,1)=1.0D0
-++ A(1,2)=0.0D0
-++ A(1,3)=0.0D0
-++ A(1,4)=-1.0D0
-++ A(1,5)=0.0D0
-++ A(2,1)=0.0D0
-++ A(2,2)=1.0D0
-++ A(2,3)=0.0D0
-++ A(2,4)=0.0D0
-++ A(2,5)=-1.0D0
-++ A(3,1)=0.0D0
-++ A(3,2)=0.0D0
-++ A(3,3)=1.0D0
-++ A(3,4)=-1.0D0
-++ A(3,5)=0.0D0
-++ A(4,1)=-1.0D0
-++ A(4,2)=0.0D0
-++ A(4,3)=-1.0D0
-++ A(4,4)=4.0D0
-++ A(4,5)=-1.0D0
-++ A(5,1)=0.0D0
-++ A(5,2)=-1.0D0
-++ A(5,3)=0.0D0
-++ A(5,4)=-1.0D0
-++ A(5,5)=4.0D0
-++ IF(MODE.EQ.1)THEN
-++ CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1)
-++ ELSEIF(MODE.EQ.2)THEN
-++ CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1)
-++ ENDIF
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp30(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- FC ==> FortranCode
- PI ==> PositiveInteger
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- UFST ==> Union(fst:FST,void:"void")
- MAT ==> Matrix
- MFLOAT ==> MachineFloat
- EXI ==> Expression Integer
- UEXPR ==> Union(I:Expression Integer,F:Expression Float,_
- CF:Expression Complex Float,switch:Switch)
- S ==> Symbol
-
- Exports == FortranMatrixCategory
-
- Implementation == add
-
- import FC
- import FT
- import Switch
-
- real : UFST := ["real"::FST]$UFST
- integer : UFST := ["integer"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!(MODE,fortranInteger()$FT,syms)$SYMTAB
- declare!(M,fortranInteger()$FT,syms)$SYMTAB
- declare!(N,fortranInteger()$FT,syms)$SYMTAB
- declare!(LRWORK,fortranInteger()$FT,syms)$SYMTAB
- declare!(LIWORK,fortranInteger()$FT,syms)$SYMTAB
- xType : FT := construct(real,[N],false)$FT
- declare!(X,xType,syms)$SYMTAB
- yType : FT := construct(real,[M],false)$FT
- declare!(Y,yType,syms)$SYMTAB
- rType : FT := construct(real,[LRWORK],false)$FT
- declare!(RWORK,rType,syms)$SYMTAB
- iType : FT := construct(integer,[LIWORK],false)$FT
- declare!(IWORK,iType,syms)$SYMTAB
- declare!(IFAIL,fortranInteger()$FT,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,
- [MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK],syms)
-
- coerce(a:MAT MFLOAT):$ ==
- locals : SYMTAB := empty()
- numRows := nrows(a) :: Polynomial Integer
- numCols := ncols(a) :: Polynomial Integer
- declare!(A,[real,[numRows,numCols],false]$FT,locals)
- declare!(F06PAF@S,construct(["void"]$UFST,[]@List(S),true)$FT,locals)
- ptA:UEXPR := [("MODE"::S)::EXI]
- ptB:UEXPR := [1::EXI]
- ptC:UEXPR := [2::EXI]
- sw1 : Switch := EQ(ptA,ptB)$Switch
- sw2 : Switch := EQ(ptA,ptC)$Switch
- callOne := call("F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1)")
- callTwo := call("F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1)")
- c : FC := cond(sw1,callOne,cond(sw2,callTwo))
- code' : List FC := [assign(A,a),c,returns()]
- ([locals,code']$RSFC)::$
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP31 Asp31}
-<<domain ASP31 Asp31>>=
-)abbrev domain ASP31 Asp31
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 22 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp31} produces Fortran for Type 31 ASPs, needed for NAG routine
-++\axiomOpFrom{d02ejf}{d02Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE PEDERV(X,Y,PW)
-++ DOUBLE PRECISION X,Y(*)
-++ DOUBLE PRECISION PW(3,3)
-++ PW(1,1)=-0.03999999999999999D0
-++ PW(1,2)=10000.0D0*Y(3)
-++ PW(1,3)=10000.0D0*Y(2)
-++ PW(2,1)=0.03999999999999999D0
-++ PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2))
-++ PW(2,3)=-10000.0D0*Y(2)
-++ PW(3,1)=0.0D0
-++ PW(3,2)=60000000.0D0*Y(2)
-++ PW(3,3)=0.0D0
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp31(name): Exports == Implementation where
- name : Symbol
-
- O ==> OutputForm
- FST ==> FortranScalarType
- UFST ==> Union(fst:FST,void:"void")
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression(['X],['Y],MFLOAT)
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- MAT ==> Matrix
- VF2 ==> VectorFunctions2
- MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR,
- EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT)
-
-
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()
- declare!(X,fortranReal(),syms)$SYMTAB
- yType : FT := construct(real,["*"::Symbol],false)$FT
- declare!(Y,yType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,[X,Y,PW],syms)
-
- -- To help the poor old compiler!
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- localAssign(s:Symbol,j:MAT FEXPR):FC ==
- j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2
- assign(s,j')$FC
-
- makeXList(n:Integer):List(Symbol) ==
- y:Symbol := Y::Symbol
- p:List(Symbol) := []
- for j in 1 .. n repeat p:= cons(subscript(y,[j::OutputForm])$Symbol,p)
- p:= reverse(p)
-
- coerce(u:VEC FEXPR):$ ==
- dimension := #u::Polynomial Integer
- locals : SYMTAB := empty()
- declare!(PW,[real,[dimension,dimension],false]$FT,locals)$SYMTAB
- n:Integer := maxIndex(u)$VEC(FEXPR)
- p:List(Symbol) := makeXList(n)
- jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_
- Symbol,FEXPR ,VEC FEXPR,List(Symbol))
- code' : List FC := [localAssign(PW,jac),returns()$FC]$List(FC)
- ([locals,code']$RSFC)::$
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- coerce(c:List FC):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FC):$ == coerce(c)$Rep
-
- coerce(u:$):O == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP33 Asp33}
-<<domain ASP33 Asp33>>=
-)abbrev domain ASP33 Asp33
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Nov 1993
-++ Date Last Updated: 30 March 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory.
-++ Description:
-++\spadtype{Asp33} produces Fortran for Type 33 ASPs, needed for NAG routine
-++\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:
-++\begin{verbatim}
-++ SUBROUTINE REPORT(X,V,JINT)
-++ DOUBLE PRECISION V(3),X
-++ INTEGER JINT
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp33(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- UFST ==> Union(fst:FST,void:"void")
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- FC ==> FortranCode
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
-
- Exports ==> FortranProgramCategory with
- outputAsFortran:() -> Void
- ++outputAsFortran() generates the default code for \spadtype{ASP33}.
-
-
- Implementation ==> add
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()
- declare!(JINT,fortranInteger(),syms)$SYMTAB
- declare!(X,fortranReal(),syms)$SYMTAB
- vType : FT := construct(real,["3"::Symbol],false)$FT
- declare!(V,vType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,[X,V,JINT],syms)
-
- outputAsFortran():Void ==
- outputAsFortran( (returns()$FortranCode)::Rep )$Rep
-
- outputAsFortran(u):Void == outputAsFortran(u)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
-@
-\section{domain ASP34 Asp34}
-<<domain ASP34 Asp34>>=
-)abbrev domain ASP34 Asp34
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Nov 1993
-++ Date Last Updated: 14 June 1994 (Themos Tsikas)
-++ 6 October 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp34} produces Fortran for Type 34 ASPs, needed for NAG routine
-++\axiomOpFrom{f04mbf}{f04Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK)
-++ DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N)
-++ INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK)
-++ DOUBLE PRECISION W1(3),W2(3),MS(3,3)
-++ IFLAG=-1
-++ MS(1,1)=2.0D0
-++ MS(1,2)=1.0D0
-++ MS(1,3)=0.0D0
-++ MS(2,1)=1.0D0
-++ MS(2,2)=2.0D0
-++ MS(2,3)=1.0D0
-++ MS(3,1)=0.0D0
-++ MS(3,2)=1.0D0
-++ MS(3,3)=2.0D0
-++ CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG)
-++ IFLAG=-IFLAG
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp34(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- UFST ==> Union(fst:FST,void:"void")
- SYMTAB ==> SymbolTable
- FC ==> FortranCode
- PI ==> PositiveInteger
- EXI ==> Expression Integer
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
-
- Exports == FortranMatrixCategory
-
- Implementation == add
-
- real : UFST := ["real"::FST]$UFST
- integer : UFST := ["integer"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!('IFLAG,fortranInteger(),syms)$SYMTAB
- declare!('N,fortranInteger(),syms)$SYMTAB
- xType : FT := construct(real,['N],false)$FT
- declare!('X,xType,syms)$SYMTAB
- declare!('Y,xType,syms)$SYMTAB
- declare!('LRWORK,fortranInteger(),syms)$SYMTAB
- declare!('LIWORK,fortranInteger(),syms)$SYMTAB
- rType : FT := construct(real,['LRWORK],false)$FT
- declare!('RWORK,rType,syms)$SYMTAB
- iType : FT := construct(integer,['LIWORK],false)$FT
- declare!('IWORK,iType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,
- ['IFLAG,'N,'X,'Y,'RWORK,'LRWORK,'IWORK,'LIWORK],syms)
-
- -- To help the poor old compiler
- localAssign(s:Symbol,u:EXI):FC == assign(s,u)$FC
-
- coerce(u:Matrix MachineFloat):$ ==
- dimension := nrows(u) ::Polynomial Integer
- locals : SYMTAB := empty()$SYMTAB
- declare!('I,fortranInteger(),syms)$SYMTAB
- declare!('J,fortranInteger(),syms)$SYMTAB
- declare!('W1,[real,[dimension],false]$FT,locals)$SYMTAB
- declare!('W2,[real,[dimension],false]$FT,locals)$SYMTAB
- declare!('MS,[real,[dimension,dimension],false]$FT,locals)$SYMTAB
- assign1 : FC := localAssign('IFLAG,(-1)@EXI)
- call : FC := call("F04ASF(MS,N,X,N,Y,W1,W2,IFLAG)")$FC
- assign2 : FC := localAssign('IFLAG,-('IFLAG::EXI))
- assign3 : FC := assign('MS,u)$FC
- code' : List FC := [assign1,assign3,call,assign2,returns()]$List(FC)
- ([locals,code']$RSFC)::$
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP35 Asp35}
-<<domain ASP35 Asp35>>=
-)abbrev domain ASP35 Asp35
-++ Author: Mike Dewar, Godfrey Nolan, Grant Keady
-++ Date Created: Mar 1993
-++ Date Last Updated: 22 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp35} produces Fortran for Type 35 ASPs, needed for NAG routines
-++\axiomOpFrom{c05pbf}{c05Package}, \axiomOpFrom{c05pcf}{c05Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
-++ DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
-++ INTEGER LDFJAC,N,IFLAG
-++ IF(IFLAG.EQ.1)THEN
-++ FVEC(1)=(-1.0D0*X(2))+X(1)
-++ FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2)
-++ FVEC(3)=3.0D0*X(3)
-++ ELSEIF(IFLAG.EQ.2)THEN
-++ FJAC(1,1)=1.0D0
-++ FJAC(1,2)=-1.0D0
-++ FJAC(1,3)=0.0D0
-++ FJAC(2,1)=0.0D0
-++ FJAC(2,2)=2.0D0
-++ FJAC(2,3)=-1.0D0
-++ FJAC(3,1)=0.0D0
-++ FJAC(3,2)=0.0D0
-++ FJAC(3,3)=3.0D0
-++ ENDIF
-++ END
-++\end{verbatim}
-
-Asp35(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- UFST ==> Union(fst:FST,void:"void")
- SYMTAB ==> SymbolTable
- FC ==> FortranCode
- PI ==> PositiveInteger
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- MAT ==> Matrix
- VF2 ==> VectorFunctions2
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression([],['X],MFLOAT)
- MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR,
- EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT)
- SWU ==> Union(I:Expression Integer,F:Expression Float,
- CF:Expression Complex Float,switch:Switch)
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!(N,fortranInteger(),syms)$SYMTAB
- xType : FT := construct(real,[N],false)$FT
- declare!(X,xType,syms)$SYMTAB
- declare!(FVEC,xType,syms)$SYMTAB
- declare!(LDFJAC,fortranInteger(),syms)$SYMTAB
- jType : FT := construct(real,[LDFJAC,N],false)$FT
- declare!(FJAC,jType,syms)$SYMTAB
- declare!(IFLAG,fortranInteger(),syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,[N,X,FVEC,FJAC,LDFJAC,IFLAG],syms)
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- makeXList(n:Integer):List(Symbol) ==
- x:Symbol := X::Symbol
- [subscript(x,[j::OutputForm])$Symbol for j in 1..n]
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- localAssign1(s:Symbol,j:MAT FEXPR):FC ==
- j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2
- assign(s,j')$FC
-
- localAssign2(s:Symbol,j:VEC FEXPR):FC ==
- j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
- assign(s,j')$FC
-
- coerce(u:VEC FEXPR):$ ==
- n:Integer := maxIndex(u)
- p:List(Symbol) := makeXList(n)
- jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_
- Symbol,FEXPR,VEC FEXPR,List(Symbol))
- assf:FC := localAssign2(FVEC,u)
- assj:FC := localAssign1(FJAC,jac)
- iflag:SWU := [IFLAG@Symbol::EXPR(INT)]$SWU
- sw1:Switch := EQ(iflag,[1::EXPR(INT)]$SWU)
- sw2:Switch := EQ(iflag,[2::EXPR(INT)]$SWU)
- cond(sw1,assf,cond(sw2,assj)$FC)$FC::$
-
- coerce(c:List FC):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FC):$ == coerce(c)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
-@
-\section{domain ASP4 Asp4}
-<<domain ASP4 Asp4>>=
-)abbrev domain ASP4 Asp4
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 18 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp4} produces Fortran for Type 4 ASPs, which take an expression
-++in X(1) .. X(NDIM) and produce a real function of the form:
-++\begin{verbatim}
-++ DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X)
-++ DOUBLE PRECISION X(NDIM)
-++ INTEGER NDIM
-++ FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0*
-++ &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0)
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp4(name): Exports == Implementation where
- name : Symbol
-
- FEXPR ==> FortranExpression([],['X],MachineFloat)
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FSTU ==> Union(fst:FST,void:"void")
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
-
- Exports ==> FortranFunctionCategory with
- coerce : FEXPR -> $
- ++coerce(f) takes an object from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns it into an ASP.
-
- Implementation ==> add
-
- real : FSTU := ["real"::FST]$FSTU
- syms : SYMTAB := empty()$SYMTAB
- declare!(NDIM,fortranInteger(),syms)$SYMTAB
- xType : FT := construct(real,[NDIM],false)$FT
- declare!(X,xType,syms)$SYMTAB
- Rep := FortranProgram(name,real,[NDIM,X],syms)
-
- retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:FRAC POLY INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- foo::FEXPR::$
-
- retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- foo::FEXPR::$
-
- retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:EXPR FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- foo::FEXPR::$
-
- retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:EXPR INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- foo::FEXPR::$
-
- retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- foo::FEXPR::$
-
- retract(u:POLY INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:POLY INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- foo::FEXPR::$
-
- coerce(u:FEXPR):$ ==
- coerce((u::Expression(MachineFloat))$FEXPR)$Rep
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP41 Asp41}
-<<domain ASP41 Asp41>>=
-)abbrev domain ASP41 Asp41
-++ Author: Mike Dewar, Godfrey Nolan
-++ Date Created:
-++ Date Last Updated: 29 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranFunctionCategory, FortranProgramCategory.
-++ Description:
-++\spadtype{Asp41} produces Fortran for Type 41 ASPs, needed for NAG
-++routines \axiomOpFrom{d02raf}{d02Package} and \axiomOpFrom{d02saf}{d02Package}
-++in particular. These ASPs are in fact
-++three Fortran routines which return a vector of functions, and their
-++derivatives wrt Y(i) and also a continuation parameter EPS, for example:
-++\begin{verbatim}
-++ SUBROUTINE FCN(X,EPS,Y,F,N)
-++ DOUBLE PRECISION EPS,F(N),X,Y(N)
-++ INTEGER N
-++ F(1)=Y(2)
-++ F(2)=Y(3)
-++ F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS)
-++ RETURN
-++ END
-++ SUBROUTINE JACOBF(X,EPS,Y,F,N)
-++ DOUBLE PRECISION EPS,F(N,N),X,Y(N)
-++ INTEGER N
-++ F(1,1)=0.0D0
-++ F(1,2)=1.0D0
-++ F(1,3)=0.0D0
-++ F(2,1)=0.0D0
-++ F(2,2)=0.0D0
-++ F(2,3)=1.0D0
-++ F(3,1)=-1.0D0*Y(3)
-++ F(3,2)=4.0D0*EPS*Y(2)
-++ F(3,3)=-1.0D0*Y(1)
-++ RETURN
-++ END
-++ SUBROUTINE JACEPS(X,EPS,Y,F,N)
-++ DOUBLE PRECISION EPS,F(N),X,Y(N)
-++ INTEGER N
-++ F(1)=0.0D0
-++ F(2)=0.0D0
-++ F(3)=2.0D0*Y(2)**2-2.0D0
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp41(nameOne,nameTwo,nameThree): Exports == Implementation where
- nameOne : Symbol
- nameTwo : Symbol
- nameThree : Symbol
-
- D ==> differentiate
- FST ==> FortranScalarType
- UFST ==> Union(fst:FST,void:"void")
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression(['X,'EPS],['Y],MFLOAT)
- S ==> Symbol
- MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,
- EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT)
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
- real : UFST := ["real"::FST]$UFST
-
- symOne : SYMTAB := empty()$SYMTAB
- declare!(N,fortranInteger(),symOne)$SYMTAB
- declare!(X,fortranReal(),symOne)$SYMTAB
- declare!(EPS,fortranReal(),symOne)$SYMTAB
- yType : FT := construct(real,[N],false)$FT
- declare!(Y,yType,symOne)$SYMTAB
- declare!(F,yType,symOne)$SYMTAB
-
- symTwo : SYMTAB := empty()$SYMTAB
- declare!(N,fortranInteger(),symTwo)$SYMTAB
- declare!(X,fortranReal(),symTwo)$SYMTAB
- declare!(EPS,fortranReal(),symTwo)$SYMTAB
- declare!(Y,yType,symTwo)$SYMTAB
- fType : FT := construct(real,[N,N],false)$FT
- declare!(F,fType,symTwo)$SYMTAB
-
- symThree : SYMTAB := empty()$SYMTAB
- declare!(N,fortranInteger(),symThree)$SYMTAB
- declare!(X,fortranReal(),symThree)$SYMTAB
- declare!(EPS,fortranReal(),symThree)$SYMTAB
- declare!(Y,yType,symThree)$SYMTAB
- declare!(F,yType,symThree)$SYMTAB
-
- R1:=FortranProgram(nameOne,["void"]$UFST,[X,EPS,Y,F,N],symOne)
- R2:=FortranProgram(nameTwo,["void"]$UFST,[X,EPS,Y,F,N],symTwo)
- R3:=FortranProgram(nameThree,["void"]$UFST,[X,EPS,Y,F,N],symThree)
- Rep := Record(f:R1,fJacob:R2,eJacob:R3)
- Fsym:Symbol:=coerce "F"
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- localAssign1(s:S,j:Matrix FEXPR):FC ==
- j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2
- assign(s,j')$FC
-
- localAssign2(s:S,j:VEC FEXPR):FC ==
- j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
- assign(s,j')$FC
-
- makeCodeOne(u:VEC FEXPR):FortranCode ==
- -- simple assign
- localAssign2(Fsym,u)
-
- makeCodeThree(u:VEC FEXPR):FortranCode ==
- -- compute jacobian wrt to eps
- jacEps:VEC FEXPR := [D(v,EPS) for v in entries(u)]$VEC(FEXPR)
- makeCodeOne(jacEps)
-
- makeYList(n:Integer):List(Symbol) ==
- y:Symbol := Y::Symbol
- p:List(Symbol) := []
- [subscript(y,[j::OutputForm])$Symbol for j in 1..n]
-
- makeCodeTwo(u:VEC FEXPR):FortranCode ==
- -- compute jacobian wrt to f
- n:Integer := maxIndex(u)$VEC(FEXPR)
- p:List(Symbol) := makeYList(n)
- jac:Matrix(FEXPR) := _
- jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
- localAssign1(Fsym,jac)
-
- coerce(u:VEC FEXPR):$ ==
- aF:FortranCode := makeCodeOne(u)
- bF:FortranCode := makeCodeTwo(u)
- cF:FortranCode := makeCodeThree(u)
- -- add returns() to complete subroutines
- aLF:List(FortranCode) := [aF,returns()$FortranCode]$List(FortranCode)
- bLF:List(FortranCode) := [bF,returns()$FortranCode]$List(FortranCode)
- cLF:List(FortranCode) := [cF,returns()$FortranCode]$List(FortranCode)
- [coerce(aLF)$R1,coerce(bLF)$R2,coerce(cLF)$R3]
-
- coerce(u:$):OutputForm ==
- bracket commaSeparate
- [nameOne::OutputForm,nameTwo::OutputForm,nameThree::OutputForm]
-
- outputAsFortran(u:$):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran elt(u,f)$Rep
- outputAsFortran elt(u,fJacob)$Rep
- outputAsFortran elt(u,eJacob)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
-@
-\section{domain ASP42 Asp42}
-<<domain ASP42 Asp42>>=
-)abbrev domain ASP42 Asp42
-++ Author: Mike Dewar, Godfrey Nolan
-++ Date Created:
-++ Date Last Updated: 29 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranFunctionCategory, FortranProgramCategory.
-++ Description:
-++\spadtype{Asp42} produces Fortran for Type 42 ASPs, needed for NAG
-++routines \axiomOpFrom{d02raf}{d02Package} and \axiomOpFrom{d02saf}{d02Package}
-++in particular. These ASPs are in fact
-++three Fortran routines which return a vector of functions, and their
-++derivatives wrt Y(i) and also a continuation parameter EPS, for example:
-++\begin{verbatim}
-++ SUBROUTINE G(EPS,YA,YB,BC,N)
-++ DOUBLE PRECISION EPS,YA(N),YB(N),BC(N)
-++ INTEGER N
-++ BC(1)=YA(1)
-++ BC(2)=YA(2)
-++ BC(3)=YB(2)-1.0D0
-++ RETURN
-++ END
-++ SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N)
-++ DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N)
-++ INTEGER N
-++ AJ(1,1)=1.0D0
-++ AJ(1,2)=0.0D0
-++ AJ(1,3)=0.0D0
-++ AJ(2,1)=0.0D0
-++ AJ(2,2)=1.0D0
-++ AJ(2,3)=0.0D0
-++ AJ(3,1)=0.0D0
-++ AJ(3,2)=0.0D0
-++ AJ(3,3)=0.0D0
-++ BJ(1,1)=0.0D0
-++ BJ(1,2)=0.0D0
-++ BJ(1,3)=0.0D0
-++ BJ(2,1)=0.0D0
-++ BJ(2,2)=0.0D0
-++ BJ(2,3)=0.0D0
-++ BJ(3,1)=0.0D0
-++ BJ(3,2)=1.0D0
-++ BJ(3,3)=0.0D0
-++ RETURN
-++ END
-++ SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N)
-++ DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N)
-++ INTEGER N
-++ BCEP(1)=0.0D0
-++ BCEP(2)=0.0D0
-++ BCEP(3)=0.0D0
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp42(nameOne,nameTwo,nameThree): Exports == Implementation where
- nameOne : Symbol
- nameTwo : Symbol
- nameThree : Symbol
-
- D ==> differentiate
- FST ==> FortranScalarType
- FT ==> FortranType
- FP ==> FortranProgram
- FC ==> FortranCode
- PI ==> PositiveInteger
- NNI ==> NonNegativeInteger
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- UFST ==> Union(fst:FST,void:"void")
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression(['EPS],['YA,'YB],MFLOAT)
- S ==> Symbol
- MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,
- EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT)
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
- real : UFST := ["real"::FST]$UFST
-
- symOne : SYMTAB := empty()$SYMTAB
- declare!(EPS,fortranReal(),symOne)$SYMTAB
- declare!(N,fortranInteger(),symOne)$SYMTAB
- yType : FT := construct(real,[N],false)$FT
- declare!(YA,yType,symOne)$SYMTAB
- declare!(YB,yType,symOne)$SYMTAB
- declare!(BC,yType,symOne)$SYMTAB
-
- symTwo : SYMTAB := empty()$SYMTAB
- declare!(EPS,fortranReal(),symTwo)$SYMTAB
- declare!(N,fortranInteger(),symTwo)$SYMTAB
- declare!(YA,yType,symTwo)$SYMTAB
- declare!(YB,yType,symTwo)$SYMTAB
- ajType : FT := construct(real,[N,N],false)$FT
- declare!(AJ,ajType,symTwo)$SYMTAB
- declare!(BJ,ajType,symTwo)$SYMTAB
-
- symThree : SYMTAB := empty()$SYMTAB
- declare!(EPS,fortranReal(),symThree)$SYMTAB
- declare!(N,fortranInteger(),symThree)$SYMTAB
- declare!(YA,yType,symThree)$SYMTAB
- declare!(YB,yType,symThree)$SYMTAB
- declare!(BCEP,yType,symThree)$SYMTAB
-
- rt := ["void"]$UFST
- R1:=FortranProgram(nameOne,rt,[EPS,YA,YB,BC,N],symOne)
- R2:=FortranProgram(nameTwo,rt,[EPS,YA,YB,AJ,BJ,N],symTwo)
- R3:=FortranProgram(nameThree,rt,[EPS,YA,YB,BCEP,N],symThree)
- Rep := Record(g:R1,gJacob:R2,geJacob:R3)
- BCsym:Symbol:=coerce "BC"
- AJsym:Symbol:=coerce "AJ"
- BJsym:Symbol:=coerce "BJ"
- BCEPsym:Symbol:=coerce "BCEP"
-
- makeList(n:Integer,s:Symbol):List(Symbol) ==
- p:List(Symbol) := []
- for j in 1 .. n repeat p:= cons(subscript(s,[j::OutputForm])$Symbol,p)
- reverse(p)
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- localAssign1(s:S,j:Matrix FEXPR):FC ==
- j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2
- assign(s,j')$FC
-
- localAssign2(s:S,j:VEC FEXPR):FC ==
- j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
- assign(s,j')$FC
-
- makeCodeOne(u:VEC FEXPR):FortranCode ==
- -- simple assign
- localAssign2(BCsym,u)
-
- makeCodeTwo(u:VEC FEXPR):List(FortranCode) ==
- -- compute jacobian wrt to ya
- n:Integer := maxIndex(u)
- p:List(Symbol) := makeList(n,YA::Symbol)
- jacYA:Matrix(FEXPR) := _
- jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
- -- compute jacobian wrt to yb
- p:List(Symbol) := makeList(n,YB::Symbol)
- jacYB: Matrix(FEXPR) := _
- jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
- -- assign jacobians to AJ & BJ
- [localAssign1(AJsym,jacYA),localAssign1(BJsym,jacYB),returns()$FC]$List(FC)
-
- makeCodeThree(u:VEC FEXPR):FortranCode ==
- -- compute jacobian wrt to eps
- jacEps:VEC FEXPR := [D(v,EPS) for v in entries u]$VEC(FEXPR)
- localAssign2(BCEPsym,jacEps)
-
- coerce(u:VEC FEXPR):$ ==
- aF:FortranCode := makeCodeOne(u)
- bF:List(FortranCode) := makeCodeTwo(u)
- cF:FortranCode := makeCodeThree(u)
- -- add returns() to complete subroutines
- aLF:List(FortranCode) := [aF,returns()$FC]$List(FortranCode)
- cLF:List(FortranCode) := [cF,returns()$FC]$List(FortranCode)
- [coerce(aLF)$R1,coerce(bF)$R2,coerce(cLF)$R3]
-
- coerce(u:$) : OutputForm ==
- bracket commaSeparate
- [nameOne::OutputForm,nameTwo::OutputForm,nameThree::OutputForm]
-
- outputAsFortran(u:$):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran elt(u,g)$Rep
- outputAsFortran elt(u,gJacob)$Rep
- outputAsFortran elt(u,geJacob)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
-@
-\section{domain ASP49 Asp49}
-<<domain ASP49 Asp49>>=
-)abbrev domain ASP49 Asp49
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 23 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp49} produces Fortran for Type 49 ASPs, needed for NAG routines
-++\axiomOpFrom{e04dgf}{e04Package}, \axiomOpFrom{e04ucf}{e04Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)
-++ DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*)
-++ INTEGER N,IUSER(*),MODE,NSTATE
-++ OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7)
-++ &+(-1.0D0*X(2)*X(6))
-++ OBJGRD(1)=X(7)
-++ OBJGRD(2)=-1.0D0*X(6)
-++ OBJGRD(3)=X(8)+(-1.0D0*X(7))
-++ OBJGRD(4)=X(9)
-++ OBJGRD(5)=-1.0D0*X(8)
-++ OBJGRD(6)=-1.0D0*X(2)
-++ OBJGRD(7)=(-1.0D0*X(3))+X(1)
-++ OBJGRD(8)=(-1.0D0*X(5))+X(3)
-++ OBJGRD(9)=X(4)
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp49(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- UFST ==> Union(fst:FST,void:"void")
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FC))
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression([],['X],MFLOAT)
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
- S ==> Symbol
-
- Exports ==> FortranFunctionCategory with
- coerce : FEXPR -> $
- ++coerce(f) takes an object from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns it into an ASP.
-
- Implementation ==> add
-
- real : UFST := ["real"::FST]$UFST
- integer : UFST := ["integer"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!(MODE,fortranInteger(),syms)$SYMTAB
- declare!(N,fortranInteger(),syms)$SYMTAB
- xType : FT := construct(real,[N::S],false)$FT
- declare!(X,xType,syms)$SYMTAB
- declare!(OBJF,fortranReal(),syms)$SYMTAB
- declare!(OBJGRD,xType,syms)$SYMTAB
- declare!(NSTATE,fortranInteger(),syms)$SYMTAB
- iuType : FT := construct(integer,["*"::S],false)$FT
- declare!(IUSER,iuType,syms)$SYMTAB
- uType : FT := construct(real,["*"::S],false)$FT
- declare!(USER,uType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,
- [MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER],syms)
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- localAssign(s:S,j:VEC FEXPR):FC ==
- j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT)
- assign(s,j')$FC
-
- coerce(u:FEXPR):$ ==
- vars:List(S) := variables(u)
- grd:VEC FEXPR := gradient(u,vars)$MultiVariableCalculusFunctions(_
- S,FEXPR,VEC FEXPR,List(S))
- code : List(FC) := [assign(OBJF@S,fexpr2expr u)$FC,_
- localAssign(OBJGRD@S,grd),_
- returns()$FC]
- code::$
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- coerce(c:List FC):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FC):$ == coerce(c)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:FRAC POLY INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:EXPR FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:EXPR INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:POLY INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:POLY INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
-@
-\section{domain ASP50 Asp50}
-<<domain ASP50 Asp50>>=
-)abbrev domain ASP50 Asp50
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 23 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp50} produces Fortran for Type 50 ASPs, needed for NAG routine
-++\axiomOpFrom{e04fdf}{e04Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE LSFUN1(M,N,XC,FVECC)
-++ DOUBLE PRECISION FVECC(M),XC(N)
-++ INTEGER I,M,N
-++ FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/(
-++ &XC(3)+15.0D0*XC(2))
-++ FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X
-++ &C(3)+7.0D0*XC(2))
-++ FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666
-++ &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2))
-++ FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X
-++ &C(3)+3.0D0*XC(2))
-++ FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC
-++ &(2)+1.0D0)/(XC(3)+2.2D0*XC(2))
-++ FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X
-++ &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2))
-++ FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142
-++ &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2))
-++ FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999
-++ &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2))
-++ FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999
-++ &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2))
-++ FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666
-++ &67D0)/(XC(3)+XC(2))
-++ FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999
-++ &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2))
-++ FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3)
-++ &+XC(2))
-++ FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333
-++ &3333D0)/(XC(3)+XC(2))
-++ FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X
-++ &C(2))
-++ FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3
-++ &)+XC(2))
-++ END
-++\end{verbatim}
-
-Asp50(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- UFST ==> Union(fst:FST,void:"void")
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
- FEXPR ==> FortranExpression([],['XC],MFLOAT)
- MFLOAT ==> MachineFloat
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!(M,fortranInteger(),syms)$SYMTAB
- declare!(N,fortranInteger(),syms)$SYMTAB
- xcType : FT := construct(real,[N],false)$FT
- declare!(XC,xcType,syms)$SYMTAB
- fveccType : FT := construct(real,[M],false)$FT
- declare!(FVECC,fveccType,syms)$SYMTAB
- declare!(I,fortranInteger(),syms)$SYMTAB
- tType : FT := construct(real,[M,N],false)$FT
--- declare!(TC,tType,syms)$SYMTAB
--- declare!(Y,fveccType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST, [M,N,XC,FVECC],syms)
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- coerce(u:VEC FEXPR):$ ==
- u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT)
- assign(FVECC,u')$FortranCode::$
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP55 Asp55}
-<<domain ASP55 Asp55>>=
-)abbrev domain ASP55 Asp55
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: June 1993
-++ Date Last Updated: 23 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp55} produces Fortran for Type 55 ASPs, needed for NAG routines
-++\axiomOpFrom{e04dgf}{e04Package} and \axiomOpFrom{e04ucf}{e04Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER
-++ &,USER)
-++ DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*)
-++ INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE
-++ IF(NEEDC(1).GT.0)THEN
-++ C(1)=X(6)**2+X(1)**2
-++ CJAC(1,1)=2.0D0*X(1)
-++ CJAC(1,2)=0.0D0
-++ CJAC(1,3)=0.0D0
-++ CJAC(1,4)=0.0D0
-++ CJAC(1,5)=0.0D0
-++ CJAC(1,6)=2.0D0*X(6)
-++ ENDIF
-++ IF(NEEDC(2).GT.0)THEN
-++ C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2
-++ CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1)
-++ CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1))
-++ CJAC(2,3)=0.0D0
-++ CJAC(2,4)=0.0D0
-++ CJAC(2,5)=0.0D0
-++ CJAC(2,6)=0.0D0
-++ ENDIF
-++ IF(NEEDC(3).GT.0)THEN
-++ C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2
-++ CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1)
-++ CJAC(3,2)=2.0D0*X(2)
-++ CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1))
-++ CJAC(3,4)=0.0D0
-++ CJAC(3,5)=0.0D0
-++ CJAC(3,6)=0.0D0
-++ ENDIF
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp55(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- FSTU ==> Union(fst:FST,void:"void")
- SYMTAB ==> SymbolTable
- FC ==> FortranCode
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- S ==> Symbol
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
- MAT ==> Matrix
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression([],['X],MFLOAT)
- MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR,
- EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT)
- SWU ==> Union(I:Expression Integer,F:Expression Float,
- CF:Expression Complex Float,switch:Switch)
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : FSTU := ["real"::FST]$FSTU
- integer : FSTU := ["integer"::FST]$FSTU
- syms : SYMTAB := empty()$SYMTAB
- declare!(MODE,fortranInteger(),syms)$SYMTAB
- declare!(NCNLN,fortranInteger(),syms)$SYMTAB
- declare!(N,fortranInteger(),syms)$SYMTAB
- declare!(NROWJ,fortranInteger(),syms)$SYMTAB
- needcType : FT := construct(integer,[NCNLN::Symbol],false)$FT
- declare!(NEEDC,needcType,syms)$SYMTAB
- xType : FT := construct(real,[N::Symbol],false)$FT
- declare!(X,xType,syms)$SYMTAB
- cType : FT := construct(real,[NCNLN::Symbol],false)$FT
- declare!(C,cType,syms)$SYMTAB
- cjacType : FT := construct(real,[NROWJ::Symbol,N::Symbol],false)$FT
- declare!(CJAC,cjacType,syms)$SYMTAB
- declare!(NSTATE,fortranInteger(),syms)$SYMTAB
- iuType : FT := construct(integer,["*"::Symbol],false)$FT
- declare!(IUSER,iuType,syms)$SYMTAB
- uType : FT := construct(real,["*"::Symbol],false)$FT
- declare!(USER,uType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$FSTU,
- [MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER,USER],syms)
-
- -- Take a symbol, pull of the script and turn it into an integer!!
- o2int(u:S):Integer ==
- o : OutputForm := first elt(scripts(u)$S,sub)
- o pretend Integer
-
- localAssign(s:Symbol,dim:List POLY INT,u:FEXPR):FC ==
- assign(s,dim,(u::EXPR MFLOAT)$FEXPR)$FC
-
- makeCond(index:INT,fun:FEXPR,jac:VEC FEXPR):FC ==
- needc : EXPR INT := (subscript(NEEDC,[index::OutputForm])$S)::EXPR(INT)
- sw : Switch := GT([needc]$SWU,[0::EXPR(INT)]$SWU)$Switch
- ass : List FC := [localAssign(CJAC,[index::POLY INT,i::POLY INT],jac.i)_
- for i in 1..maxIndex(jac)]
- cond(sw,block([localAssign(C,[index::POLY INT],fun),:ass])$FC)$FC
-
- coerce(u:VEC FEXPR):$ ==
- ncnln:Integer := maxIndex(u)
- x:S := X::S
- pu:List(S) := []
- -- Work out which variables appear in the expressions
- for e in entries(u) repeat
- pu := setUnion(pu,variables(e)$FEXPR)
- scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer)
- -- This should be the maximum X_n which occurs (there may be others
- -- which don't):
- n:Integer := reduce(max,scriptList)$List(Integer)
- p:List(S) := []
- for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p)
- p:= reverse(p)
- jac:MAT FEXPR := _
- jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S))
- code : List FC := [makeCond(j,u.j,row(jac,j)) for j in 1..ncnln]
- [:code,returns()$FC]::$
-
- coerce(c:List FC):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FC):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
-@
-\section{domain ASP6 Asp6}
-<<domain ASP6 Asp6>>=
-)abbrev domain ASP6 Asp6
-++ Author: Mike Dewar and Godfrey Nolan and Grant Keady
-++ Date Created: Mar 1993
-++ Date Last Updated: 18 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp6} produces Fortran for Type 6 ASPs, needed for NAG routines
-++\axiomOpFrom{c05nbf}{c05Package}, \axiomOpFrom{c05ncf}{c05Package}.
-++These represent vectors of functions of X(i) and look like:
-++\begin{verbatim}
-++ SUBROUTINE FCN(N,X,FVEC,IFLAG)
-++ DOUBLE PRECISION X(N),FVEC(N)
-++ INTEGER N,IFLAG
-++ FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0
-++ FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1.
-++ &0D0
-++ FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1.
-++ &0D0
-++ FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1.
-++ &0D0
-++ FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1.
-++ &0D0
-++ FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1.
-++ &0D0
-++ FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1.
-++ &0D0
-++ FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1.
-++ &0D0
-++ FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp6(name): Exports == Implementation where
- name : Symbol
-
- FEXPR ==> FortranExpression([],['X],MFLOAT)
- MFLOAT ==> MachineFloat
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- UFST ==> Union(fst:FST,void:"void")
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
-
- Exports == Join(FortranVectorFunctionCategory, CoercibleFrom Vector FEXPR)
- Implementation == add
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!(N,fortranInteger()$FT,syms)$SYMTAB
- xType : FT := construct(real,[N],false)$FT
- declare!(X,xType,syms)$SYMTAB
- declare!(FVEC,xType,syms)$SYMTAB
- declare!(IFLAG,fortranInteger()$FT,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$Union(fst:FST,void:"void"),
- [N,X,FVEC,IFLAG],syms)
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VectorFunctions2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VectorFunctions2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VectorFunctions2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VectorFunctions2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VectorFunctions2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT ==
- (u::EXPR MFLOAT)$FEXPR
-
- coerce(u:VEC FEXPR):% ==
- v : VEC EXPR MFLOAT
- v := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT)
- ([assign(FVEC,v)$FortranCode,returns()$FortranCode]$List(FortranCode))::$
-
- coerce(c:List FortranCode):% == coerce(c)$Rep
-
- coerce(r:RSFC):% == coerce(r)$Rep
-
- coerce(c:FortranCode):% == coerce(c)$Rep
-
- coerce(u:%):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP7 Asp7}
-<<domain ASP7 Asp7>>=
-)abbrev domain ASP7 Asp7
-++ Author: Mike Dewar and Godfrey Nolan and Grant Keady
-++ Date Created: Mar 1993
-++ Date Last Updated: 18 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp7} produces Fortran for Type 7 ASPs, needed for NAG routines
-++\axiomOpFrom{d02bbf}{d02Package}, \axiomOpFrom{d02gaf}{d02Package}.
-++These represent a vector of functions of the scalar X and
-++the array Z, and look like:
-++\begin{verbatim}
-++ SUBROUTINE FCN(X,Z,F)
-++ DOUBLE PRECISION F(*),X,Z(*)
-++ F(1)=DTAN(Z(3))
-++ F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2)
-++ &**2))/(Z(2)*DCOS(Z(3)))
-++ F(3)=-0.03199999999999999D0/(X*Z(2)**2)
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp7(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression(['X],['Y],MFLOAT)
- UFST ==> Union(fst:FST,void:"void")
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : Vector FEXPR -> %
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!(X,fortranReal(),syms)$SYMTAB
- yType : FT := construct(real,["*"::Symbol],false)$FT
- declare!(Y,yType,syms)$SYMTAB
- declare!(F,yType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,[X,Y,F],syms)
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT ==
- (u::EXPR MFLOAT)$FEXPR
-
- coerce(u:Vector FEXPR ):% ==
- v : Vector EXPR MFLOAT
- v:=map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT)
- ([assign(F,v)$FortranCode,returns()$FortranCode]$List(FortranCode))::%
-
- coerce(c:List FortranCode):% == coerce(c)$Rep
-
- coerce(r:RSFC):% == coerce(r)$Rep
-
- coerce(c:FortranCode):% == coerce(c)$Rep
-
- coerce(u:%):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{domain ASP73 Asp73}
-<<domain ASP73 Asp73>>=
-)abbrev domain ASP73 Asp73
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 30 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp73} produces Fortran for Type 73 ASPs, needed for NAG routine
-++\axiomOpFrom{d03eef}{d03Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI)
-++ DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI
-++ ALPHA=DSIN(X)
-++ BETA=Y
-++ GAMMA=X*Y
-++ DELTA=DCOS(X)*DSIN(Y)
-++ EPSOLN=Y+X
-++ PHI=X
-++ PSI=Y
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp73(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FSTU ==> Union(fst:FST,void:"void")
- FEXPR ==> FortranExpression(['X,'Y],[],MachineFloat)
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- syms : SYMTAB := empty()$SYMTAB
- declare!(X,fortranReal(),syms) $SYMTAB
- declare!(Y,fortranReal(),syms) $SYMTAB
- declare!(ALPHA,fortranReal(),syms)$SYMTAB
- declare!(BETA,fortranReal(),syms) $SYMTAB
- declare!(GAMMA,fortranReal(),syms) $SYMTAB
- declare!(DELTA,fortranReal(),syms) $SYMTAB
- declare!(EPSOLN,fortranReal(),syms) $SYMTAB
- declare!(PHI,fortranReal(),syms) $SYMTAB
- declare!(PSI,fortranReal(),syms) $SYMTAB
- Rep := FortranProgram(name,["void"]$FSTU,
- [X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI],syms)
-
- -- To help the poor compiler!
- localAssign(u:Symbol,v:FEXPR):FortranCode ==
- assign(u,(v::EXPR MachineFloat)$FEXPR)$FortranCode
-
- coerce(u:VEC FEXPR):$ ==
- maxIndex(u) ~= 7 => error "Vector is not of dimension 7"
- [localAssign(ALPHA@Symbol,elt(u,1)),_
- localAssign(BETA@Symbol,elt(u,2)),_
- localAssign(GAMMA@Symbol,elt(u,3)),_
- localAssign(DELTA@Symbol,elt(u,4)),_
- localAssign(EPSOLN@Symbol,elt(u,5)),_
- localAssign(PHI@Symbol,elt(u,6)),_
- localAssign(PSI@Symbol,elt(u,7)),_
- returns()$FortranCode]$List(FortranCode)::$
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
-@
-\section{domain ASP74 Asp74}
-<<domain ASP74 Asp74>>=
-)abbrev domain ASP74 Asp74
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Oct 1993
-++ Date Last Updated: 30 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory.
-++ Description:
-++\spadtype{Asp74} produces Fortran for Type 74 ASPs, needed for NAG routine
-++\axiomOpFrom{d03eef}{d03Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE BNDY(X,Y,A,B,C,IBND)
-++ DOUBLE PRECISION A,B,C,X,Y
-++ INTEGER IBND
-++ IF(IBND.EQ.0)THEN
-++ A=0.0D0
-++ B=1.0D0
-++ C=-1.0D0*DSIN(X)
-++ ELSEIF(IBND.EQ.1)THEN
-++ A=1.0D0
-++ B=0.0D0
-++ C=DSIN(X)*DSIN(Y)
-++ ELSEIF(IBND.EQ.2)THEN
-++ A=1.0D0
-++ B=0.0D0
-++ C=DSIN(X)*DSIN(Y)
-++ ELSEIF(IBND.EQ.3)THEN
-++ A=0.0D0
-++ B=1.0D0
-++ C=-1.0D0*DSIN(Y)
-++ ENDIF
-++ END
-++\end{verbatim}
-
-Asp74(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FSTU ==> Union(fst:FST,void:"void")
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- FC ==> FortranCode
- PI ==> PositiveInteger
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression(['X,'Y],[],MFLOAT)
- U ==> Union(I: Expression Integer,F: Expression Float,_
- CF: Expression Complex Float,switch:Switch)
- VEC ==> Vector
- MAT ==> Matrix
- M2 ==> MatrixCategoryFunctions2
- MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT,
- MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT,
- MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT,
- FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT,
- MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT,
- FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT,
- MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
-
- Exports ==> FortranMatrixFunctionCategory with
- coerce : MAT FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- syms : SYMTAB := empty()$SYMTAB
- declare!(X,fortranReal(),syms)$SYMTAB
- declare!(Y,fortranReal(),syms)$SYMTAB
- declare!(A,fortranReal(),syms)$SYMTAB
- declare!(B,fortranReal(),syms)$SYMTAB
- declare!(C,fortranReal(),syms)$SYMTAB
- declare!(IBND,fortranInteger(),syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$FSTU,[X,Y,A,B,C,IBND],syms)
-
- -- To help the poor compiler!
- localAssign(u:Symbol,v:FEXPR):FC == assign(u,(v::EXPR MFLOAT)$FEXPR)$FC
-
- coerce(u:MAT FEXPR):$ ==
- (nrows(u) ~= 4 or ncols(u) ~= 3) => error "Not a 4X3 matrix"
- flag:U := [IBND@Symbol::EXPR INT]$U
- pt0:U := [0::EXPR INT]$U
- pt1:U := [1::EXPR INT]$U
- pt2:U := [2::EXPR INT]$U
- pt3:U := [3::EXPR INT]$U
- sw1: Switch := EQ(flag,pt0)$Switch
- sw2: Switch := EQ(flag,pt1)$Switch
- sw3: Switch := EQ(flag,pt2)$Switch
- sw4: Switch := EQ(flag,pt3)$Switch
- a11 : FC := localAssign(A,u(1,1))
- a12 : FC := localAssign(B,u(1,2))
- a13 : FC := localAssign(C,u(1,3))
- a21 : FC := localAssign(A,u(2,1))
- a22 : FC := localAssign(B,u(2,2))
- a23 : FC := localAssign(C,u(2,3))
- a31 : FC := localAssign(A,u(3,1))
- a32 : FC := localAssign(B,u(3,2))
- a33 : FC := localAssign(C,u(3,3))
- a41 : FC := localAssign(A,u(4,1))
- a42 : FC := localAssign(B,u(4,2))
- a43 : FC := localAssign(C,u(4,3))
- c : FC := cond(sw1,block([a11,a12,a13])$FC,
- cond(sw2,block([a21,a22,a23])$FC,
- cond(sw3,block([a31,a32,a33])$FC,
- cond(sw4,block([a41,a42,a43])$FC)$FC)$FC)$FC)$FC
- c::$
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:MAT FRAC POLY INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2a
- v::$
-
- retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT FRAC POLY FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2b
- v::$
-
- retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT EXPR INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2e
- v::$
-
- retractIfCan(u:MAT EXPR INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT EXPR FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2f
- v::$
-
- retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT POLY INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2c
- v::$
-
- retractIfCan(u:MAT POLY INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT POLY FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2d
- v::$
-
- retractIfCan(u:MAT POLY FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
-@
-\section{domain ASP77 Asp77}
-<<domain ASP77 Asp77>>=
-)abbrev domain ASP77 Asp77
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 30 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp77} produces Fortran for Type 77 ASPs, needed for NAG routine
-++\axiomOpFrom{d02gbf}{d02Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE FCNF(X,F)
-++ DOUBLE PRECISION X
-++ DOUBLE PRECISION F(2,2)
-++ F(1,1)=0.0D0
-++ F(1,2)=1.0D0
-++ F(2,1)=0.0D0
-++ F(2,2)=-10.0D0
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp77(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FSTU ==> Union(fst:FST,void:"void")
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FC))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression(['X],[],MFLOAT)
- VEC ==> Vector
- MAT ==> Matrix
- M2 ==> MatrixCategoryFunctions2
- MF2 ==> M2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,EXPR MFLOAT,
- VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT)
- MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT,
- MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT,
- MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT,
- FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT,
- MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT,
- FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT,
- MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
-
-
- Exports ==> FortranMatrixFunctionCategory with
- coerce : MAT FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : FSTU := ["real"::FST]$FSTU
- syms : SYMTAB := empty()$SYMTAB
- declare!(X,fortranReal(),syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$FSTU,[X,F],syms)
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- localAssign(s:Symbol,j:MAT FEXPR):FortranCode ==
- j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2
- assign(s,j')$FortranCode
-
- coerce(u:MAT FEXPR):$ ==
- dimension := nrows(u)::POLY(INT)
- locals : SYMTAB := empty()
- declare!(F,[real,[dimension,dimension]$List(POLY(INT)),false]$FT,locals)
- code' : List FC := [localAssign(F,u),returns()$FC]
- ([locals,code']$RSFC)::$
-
- coerce(c:List FC):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FC):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:MAT FRAC POLY INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2a
- v::$
-
- retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT FRAC POLY FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2b
- v::$
-
- retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT EXPR INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2e
- v::$
-
- retractIfCan(u:MAT EXPR INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT EXPR FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2f
- v::$
-
- retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT POLY INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2c
- v::$
-
- retractIfCan(u:MAT POLY INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT POLY FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2d
- v::$
-
- retractIfCan(u:MAT POLY FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
-@
-\section{domain ASP78 Asp78}
-<<domain ASP78 Asp78>>=
-)abbrev domain ASP78 Asp78
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 30 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp78} produces Fortran for Type 78 ASPs, needed for NAG routine
-++\axiomOpFrom{d02gbf}{d02Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE FCNG(X,G)
-++ DOUBLE PRECISION G(*),X
-++ G(1)=0.0D0
-++ G(2)=0.0D0
-++ END
-++\end{verbatim}
-
-Asp78(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FSTU ==> Union(fst:FST,void:"void")
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FC))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- VEC ==> Vector
- VF2 ==> VectorFunctions2
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression(['X],[],MFLOAT)
-
- Exports ==> FortranVectorFunctionCategory with
- coerce : VEC FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : FSTU := ["real"::FST]$FSTU
- syms : SYMTAB := empty()$SYMTAB
- declare!(X,fortranReal(),syms)$SYMTAB
- gType : FT := construct(real,["*"::Symbol],false)$FT
- declare!(G,gType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$FSTU,[X,G],syms)
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- coerce(u:VEC FEXPR):$ ==
- u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT)
- (assign(G,u')$FC)::$
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- coerce(c:List FC):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FC):$ == coerce(c)$Rep
-
- retract(u:VEC FRAC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC FRAC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC EXPR FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY INT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY INT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
- retract(u:VEC POLY FLOAT):$ ==
- v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR)
- v::$
-
- retractIfCan(u:VEC POLY FLOAT):Union($,"failed") ==
- v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR)
- v case "failed" => "failed"
- (v::VEC FEXPR)::$
-
-@
-\section{domain ASP8 Asp8}
-<<domain ASP8 Asp8>>=
-)abbrev domain ASP8 Asp8
-++ Author: Godfrey Nolan and Mike Dewar
-++ Date Created: 11 February 1994
-++ Date Last Updated: 18 March 1994
-++ 31 May 1994 to use alternative interface. MCD
-++ 30 June 1994 to handle the end condition correctly. MCD
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp8} produces Fortran for Type 8 ASPs, needed for NAG routine
-++\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of
-++an ODE and might look like:
-++\begin{verbatim}
-++ SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD)
-++ DOUBLE PRECISION Y(N),RESULT(M,N),XSOL
-++ INTEGER M,N,COUNT
-++ LOGICAL FORWRD
-++ DOUBLE PRECISION X02ALF,POINTS(8)
-++ EXTERNAL X02ALF
-++ INTEGER I
-++ POINTS(1)=1.0D0
-++ POINTS(2)=2.0D0
-++ POINTS(3)=3.0D0
-++ POINTS(4)=4.0D0
-++ POINTS(5)=5.0D0
-++ POINTS(6)=6.0D0
-++ POINTS(7)=7.0D0
-++ POINTS(8)=8.0D0
-++ COUNT=COUNT+1
-++ DO 25001 I=1,N
-++ RESULT(COUNT,I)=Y(I)
-++25001 CONTINUE
-++ IF(COUNT.EQ.M)THEN
-++ IF(FORWRD)THEN
-++ XSOL=X02ALF()
-++ ELSE
-++ XSOL=-X02ALF()
-++ ENDIF
-++ ELSE
-++ XSOL=POINTS(COUNT)
-++ ENDIF
-++ END
-++\end{verbatim}
-
-Asp8(name): Exports == Implementation where
- name : Symbol
-
- O ==> OutputForm
- S ==> Symbol
- FST ==> FortranScalarType
- UFST ==> Union(fst:FST,void:"void")
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- EX ==> Expression Integer
- MFLOAT ==> MachineFloat
- EXPR ==> Expression
- PI ==> Polynomial Integer
- EXU ==> Union(I: EXPR Integer,F: EXPR Float,CF: EXPR Complex Float,
- switch: Switch)
-
- Exports ==> FortranVectorCategory
-
- Implementation ==> add
-
- real : UFST := ["real"::FST]$UFST
- syms : SYMTAB := empty()$SYMTAB
- declare!([COUNT,M,N],fortranInteger(),syms)$SYMTAB
- declare!(XSOL,fortranReal(),syms)$SYMTAB
- yType : FT := construct(real,[N],false)$FT
- declare!(Y,yType,syms)$SYMTAB
- declare!(FORWRD,fortranLogical(),syms)$SYMTAB
- declare!(RESULT,construct(real,[M,N],false)$FT,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$UFST,[XSOL,Y,COUNT,M,N,RESULT,FORWRD],syms)
-
- coerce(c:List FC):% == coerce(c)$Rep
-
- coerce(r:RSFC):% == coerce(r)$Rep
-
- coerce(c:FC):% == coerce(c)$Rep
-
- coerce(u:%):O == coerce(u)$Rep
-
- outputAsFortran(u:%):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-
- f2ex(u:MFLOAT):EXPR MFLOAT == (u::EXPR MFLOAT)$EXPR(MFLOAT)
-
- coerce(points:Vector MFLOAT):% ==
- import PI
- import EXPR Integer
- -- Create some extra declarations
- locals : SYMTAB := empty()$SYMTAB
- nPol : PI := "N"::S::PI
- iPol : PI := "I"::S::PI
- countPol : PI := "COUNT"::S::PI
- pointsDim : PI := max(#points,1)::PI
- declare!(POINTS,[real,[pointsDim],false]$FT,locals)$SYMTAB
- declare!(X02ALF,[real,[],true]$FT,locals)$SYMTAB
- -- Now build up the code fragments
- index : SegmentBinding PI := equation(I@S,1::PI..nPol)$SegmentBinding(PI)
- ySym : EX := (subscript("Y"::S,[I::O])$S)::EX
- loop := forLoop(index,assign(RESULT,[countPol,iPol],ySym)$FC)$FC
- v:Vector EXPR MFLOAT
- v := map(f2ex,points)$VectorFunctions2(MFLOAT,EXPR MFLOAT)
- assign1 : FC := assign(POINTS,v)$FC
- countExp: EX := COUNT@S::EX
- newValue: EX := 1 + countExp
- assign2 : FC := assign(COUNT,newValue)$FC
- newSymbol : S := subscript(POINTS,[COUNT]@List(O))$S
- assign3 : FC := assign(XSOL, newSymbol::EX )$FC
- fphuge : EX := kernel(operator X02ALF,empty()$List(EX))
- assign4 : FC := assign(XSOL, fphuge)$FC
- assign5 : FC := assign(XSOL, -fphuge)$FC
- innerCond : FC := cond("FORWRD"::Symbol::Switch,assign4,assign5)
- mExp : EX := M@S::EX
- endCase : FC := cond(EQ([countExp]$EXU,[mExp]$EXU)$Switch,innerCond,assign3)
- code' := [assign1, assign2, loop, endCase]$List(FC)
- ([locals,code']$RSFC)::%
-
-@
-\section{domain ASP80 Asp80}
-<<domain ASP80 Asp80>>=
-)abbrev domain ASP80 Asp80
-++ Author: Mike Dewar and Godfrey Nolan
-++ Date Created: Oct 1993
-++ Date Last Updated: 30 March 1994
-++ 6 October 1994
-++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp80} produces Fortran for Type 80 ASPs, needed for NAG routine
-++\axiomOpFrom{d02kef}{d02Package}, for example:
-++\begin{verbatim}
-++ SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR)
-++ DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3)
-++ YL(1)=XL
-++ YL(2)=2.0D0
-++ YR(1)=1.0D0
-++ YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM))
-++ RETURN
-++ END
-++\end{verbatim}
-
-Asp80(name): Exports == Implementation where
- name : Symbol
-
- FST ==> FortranScalarType
- FSTU ==> Union(fst:FST,void:"void")
- FT ==> FortranType
- FC ==> FortranCode
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
- MFLOAT ==> MachineFloat
- FEXPR ==> FortranExpression(['XL,'XR,'ELAM],[],MFLOAT)
- VEC ==> Vector
- MAT ==> Matrix
- VF2 ==> VectorFunctions2
- M2 ==> MatrixCategoryFunctions2
- MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT,
- MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT,
- MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT,
- FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT,
- MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT,
- FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
- MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT,
- MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR)
-
- Exports ==> FortranMatrixFunctionCategory with
- coerce : MAT FEXPR -> $
- ++coerce(f) takes objects from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns them into an ASP.
-
- Implementation ==> add
-
- real : FSTU := ["real"::FST]$FSTU
- syms : SYMTAB := empty()$SYMTAB
- declare!(XL,fortranReal(),syms)$SYMTAB
- declare!(XR,fortranReal(),syms)$SYMTAB
- declare!(ELAM,fortranReal(),syms)$SYMTAB
- yType : FT := construct(real,["3"::Symbol],false)$FT
- declare!(YL,yType,syms)$SYMTAB
- declare!(YR,yType,syms)$SYMTAB
- Rep := FortranProgram(name,["void"]$FSTU, [XL,XR,ELAM,YL,YR],syms)
-
- fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR
-
- vecAssign(s:Symbol,u:VEC FEXPR):FC ==
- u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT)
- assign(s,u')$FC
-
- coerce(u:MAT FEXPR):$ ==
- [vecAssign(YL,row(u,1)),vecAssign(YR,row(u,2)),returns()$FC]$List(FC)::$
-
- coerce(c:List FortranCode):$ == coerce(c)$Rep
-
- coerce(r:RSFC):$ == coerce(r)$Rep
-
- coerce(c:FortranCode):$ == coerce(c)$Rep
-
- coerce(u:$):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
- retract(u:MAT FRAC POLY INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2a
- v::$
-
- retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT FRAC POLY FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2b
- v::$
-
- retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT EXPR INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2e
- v::$
-
- retractIfCan(u:MAT EXPR INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT EXPR FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2f
- v::$
-
- retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT POLY INT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2c
- v::$
-
- retractIfCan(u:MAT POLY INT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
- retract(u:MAT POLY FLOAT):$ ==
- v : MAT FEXPR := map(retract,u)$MF2d
- v::$
-
- retractIfCan(u:MAT POLY FLOAT):Union($,"failed") ==
- v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d
- v case "failed" => "failed"
- (v::MAT FEXPR)::$
-
-@
-\section{domain ASP9 Asp9}
-<<domain ASP9 Asp9>>=
-)abbrev domain ASP9 Asp9
-++ Author: Mike Dewar, Grant Keady and Godfrey Nolan
-++ Date Created: Mar 1993
-++ Date Last Updated: 18 March 1994
-++ 12 July 1994 added COMMON blocks for d02cjf, d02ejf
-++ 6 October 1994
-++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory
-++ Description:
-++\spadtype{Asp9} produces Fortran for Type 9 ASPs, needed for NAG routines
-++\axiomOpFrom{d02bhf}{d02Package}, \axiomOpFrom{d02cjf}{d02Package}, \axiomOpFrom{d02ejf}{d02Package}.
-++These ASPs represent a function of a scalar X and a vector Y, for example:
-++\begin{verbatim}
-++ DOUBLE PRECISION FUNCTION G(X,Y)
-++ DOUBLE PRECISION X,Y(*)
-++ G=X+Y(1)
-++ RETURN
-++ END
-++\end{verbatim}
-++If the user provides a constant value for G, then extra information is added
-++via COMMON blocks used by certain routines. This specifies that the value
-++returned by G in this case is to be ignored.
-
-Asp9(name): Exports == Implementation where
- name : Symbol
-
- FEXPR ==> FortranExpression(['X],['Y],MFLOAT)
- MFLOAT ==> MachineFloat
- FC ==> FortranCode
- FST ==> FortranScalarType
- FT ==> FortranType
- SYMTAB ==> SymbolTable
- RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode))
- UFST ==> Union(fst:FST,void:"void")
- FRAC ==> Fraction
- POLY ==> Polynomial
- EXPR ==> Expression
- INT ==> Integer
- FLOAT ==> Float
-
- Exports ==> FortranFunctionCategory with
- coerce : FEXPR -> %
- ++coerce(f) takes an object from the appropriate instantiation of
- ++\spadtype{FortranExpression} and turns it into an ASP.
-
- Implementation ==> add
-
- real : FST := "real"::FST
- syms : SYMTAB := empty()$SYMTAB
- declare!(X,fortranReal()$FT,syms)$SYMTAB
- yType : FT := construct([real]$UFST,["*"::Symbol],false)$FT
- declare!(Y,yType,syms)$SYMTAB
- Rep := FortranProgram(name,[real]$UFST,[X,Y],syms)
-
- retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:FRAC POLY INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:EXPR FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:EXPR INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:POLY FLOAT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- retract(u:POLY INT):$ == (retract(u)@FEXPR)::$
- retractIfCan(u:POLY INT):Union($,"failed") ==
- foo : Union(FEXPR,"failed")
- foo := retractIfCan(u)$FEXPR
- foo case "failed" => "failed"
- (foo::FEXPR)::$
-
- coerce(u:FEXPR):% ==
- expr : Expression MachineFloat := (u::Expression(MachineFloat))$FEXPR
- (retractIfCan(u)@Union(MFLOAT,"failed"))$FEXPR case "failed" =>
- coerce(expr)$Rep
- locals : SYMTAB := empty()
- charType : FT := construct(["character"::FST]$UFST,[6::POLY(INT)],false)$FT
- declare!([CHDUM1,CHDUM2,GOPT1,CHDUM,GOPT2],charType,locals)$SYMTAB
- common1 := common(CD02EJ,[CHDUM1,CHDUM2,GOPT1] )$FC
- common2 := common(AD02CJ,[CHDUM,GOPT2] )$FC
- assign1 := assign(GOPT1,"NOGOPT")$FC
- assign2 := assign(GOPT2,"NOGOPT")$FC
- result := assign(name,expr)$FC
- code' : List FC := [common1,common2,assign1,assign2,result]
- ([locals,code']$RSFC)::Rep
-
- coerce(c:List FortranCode):% == coerce(c)$Rep
-
- coerce(r:RSFC):% == coerce(r)$Rep
-
- coerce(c:FortranCode):% == coerce(c)$Rep
-
- coerce(u:%):OutputForm == coerce(u)$Rep
-
- outputAsFortran(u):Void ==
- p := checkPrecision()$NAGLinkSupportPackage
- outputAsFortran(u)$Rep
- p => restorePrecision()$NAGLinkSupportPackage
-
-@
-\section{License}
-<<license>>=
---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
---All rights reserved.
---
---Redistribution and use in source and binary forms, with or without
---modification, are permitted provided that the following conditions are
---met:
---
--- - Redistributions of source code must retain the above copyright
--- notice, this list of conditions and the following disclaimer.
---
--- - Redistributions in binary form must reproduce the above copyright
--- notice, this list of conditions and the following disclaimer in
--- the documentation and/or other materials provided with the
--- distribution.
---
--- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--- names of its contributors may be used to endorse or promote products
--- derived from this software without specific prior written permission.
---
---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-@
-<<*>>=
-<<license>>
-
-<<domain ASP1 Asp1>>
-<<domain ASP10 Asp10>>
-<<domain ASP12 Asp12>>
-<<domain ASP19 Asp19>>
-<<domain ASP20 Asp20>>
-<<domain ASP24 Asp24>>
-<<domain ASP27 Asp27>>
-<<domain ASP28 Asp28>>
-<<domain ASP29 Asp29>>
-<<domain ASP30 Asp30>>
-<<domain ASP31 Asp31>>
-<<domain ASP33 Asp33>>
-<<domain ASP34 Asp34>>
-<<domain ASP35 Asp35>>
-<<domain ASP4 Asp4>>
-<<domain ASP41 Asp41>>
-<<domain ASP42 Asp42>>
-<<domain ASP49 Asp49>>
-<<domain ASP50 Asp50>>
-<<domain ASP55 Asp55>>
-<<domain ASP6 Asp6>>
-<<domain ASP7 Asp7>>
-<<domain ASP73 Asp73>>
-<<domain ASP74 Asp74>>
-<<domain ASP77 Asp77>>
-<<domain ASP78 Asp78>>
-<<domain ASP8 Asp8>>
-<<domain ASP80 Asp80>>
-<<domain ASP9 Asp9>>
-@
-\eject
-\begin{thebibliography}{99}
-\bibitem{1} nothing
-\end{thebibliography}
-\end{document}